import pandas as pd from datasets import load_dataset data = load_dataset('relbert/semeval2012_relational_similarity_v3') stats = [] for k in data.keys(): for i in data[k]: stats.append( { 'relation_type': i['relation_type'], 'split': k, 'positives': len(i['positives']), 'negatives': len(i['negatives']), 'level': i['level'] }) df = pd.DataFrame(stats) df_train = df[df['split'] == 'train'] df_valid = df[df['split'] == 'validation'] stats = [] for (relation_type, level), r in df.groupby(['relation_type', 'level']): _df_t = r[r['split'] == 'train'] _df_v = r[r['split'] == 'validation'] stats.append({ 'relation_type': relation_type, 'level': level, 'positive (train)': 0 if len(_df_t) == 0 else _df_t['positives'].values[0], 'negative (train)': 0 if len(_df_t) == 0 else _df_t['negatives'].values[0], 'positive (validation)': 0 if len(_df_v) == 0 else _df_v['positives'].values[0], 'negative (validation)': 0 if len(_df_v) == 0 else _df_v['negatives'].values[0], }) df = pd.DataFrame(stats).sort_values(by=['relation_type']) df.index = df.pop('relation_type') # sum_pairs = df.sum(0) # df = df.T # df['SUM'] = sum_pairs # df = df.T df.to_csv('stats.csv') with open('stats.md', 'w') as f: f.write(df.to_markdown())