""" { "document": "", "question": "", "long_answer_candidates": ["", "", ""], "long_answer_candidate_index": 0, "short_answers": ["", "", ""] } """ import sys import jsonlines from datasets import load_dataset from huggingface_hub import HfApi def clean(raw, path): fp = open(path, "a") writer = jsonlines.Writer(fp) count = 0 dataset = [] for data in raw: try: document = "" startmax, endmax = max(data["document"]["tokens"]["start_byte"]), max(data["document"]["tokens"]["end_byte"]) start2token, end2start = [-1] * (startmax + 1), [-1] * (endmax + 1) tokens = data["document"]["tokens"] for i in range(len(tokens["token"])): start2token[tokens["start_byte"][i]] = { "token": tokens["token"][i], "is_html": tokens["is_html"][i] } end2start[tokens["end_byte"][i]] = tokens["start_byte"][i] if not(tokens["is_html"][i]): document += tokens["token"][i] + " " candidates = [] for i in range(len(data["long_answer_candidates"]["start_byte"])): candidates.append(" ".join(start2token[j]["token"] for j in range(data["long_answer_candidates"]["start_byte"][i], end2start[data["long_answer_candidates"]["end_byte"][i]]) if (start2token[j] != -1) and not(start2token[j]["is_html"]))) short_answers = list(map(lambda x: x["text"][0] if x["text"] else "", data["annotations"]["short_answers"])) dataset.append({ "id": data["id"], "document": document, "question": data["question"]["text"], "long_answer_candidates": candidates, "long_answer_candidate_index": data["annotations"]["long_answer"][0]["candidate_index"], "short_answers": short_answers }) except Exception as ex: # raise ex print("Exception: " + str(ex)) if (count + 1) % 1000 == 0: writer.write_all(dataset) dataset = [] print("Done: " + str(count), end="\r") count += 1 if dataset: writer.write_all(dataset) writer.close() fp.close() if __name__ == "__main__": if len(sys.argv) < 1: raise AttributeError("Missing required argument: repository id") repo = sys.argv[1] api = HfApi() train = load_dataset("natural_questions", split="train", streaming=True) train_path = "data/train.jsonl" clean(train, train_path) api.upload_file( path_or_fileobj=train_path, path_in_repo="train.jsonl", repo_id=repo, repo_type="dataset", ) val = load_dataset("natural_questions", split="validation", streaming=True) val_path = "data/validation.jsonl" clean(val, val_path) api.upload_file( path_or_fileobj=val_path, path_in_repo="validation.jsonl", repo_id=repo, repo_type="dataset", )