File size: 3,844 Bytes
1af3915
2fea8b1
1af3915
 
d61a5ba
9c4c1ff
 
d61a5ba
1af3915
 
fc74c6f
 
1af3915
fc74c6f
 
1af3915
 
 
 
 
 
fc74c6f
 
 
 
1af3915
fc74c6f
 
498fbdd
8aaa997
 
 
498fbdd
fc74c6f
1af3915
fc74c6f
1af3915
 
fc74c6f
1af3915
ea0a244
fc74c6f
 
 
 
 
3f0c3b8
d61a5ba
4058cac
fc74c6f
 
4058cac
fc74c6f
 
4058cac
fc74c6f
 
bcded4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import csv
import random
import datasets
import requests
import os
import py7zr
import numpy as np

from PIL import Image
from io import BytesIO
from datasets.tasks import ImageClassification

_HOMEPAGE = "https://huggingface.co/datasets/rshrott/renovation"

_CITATION = """\
@ONLINE {renovationquality,
    author="Your Name",
    title="Renovation Quality Dataset",
    month="Your Month",
    year="Your Year",
    url="https://huggingface.co/datasets/rshrott/renovation"
}
"""

_DESCRIPTION = """\
This dataset contains images of various properties, along with labels indicating the quality of renovation - 'cheap', 'average', 'expensive'.
"""

_URLS = {
    "cheap": "https://huggingface.co/datasets/rshrott/renovation/raw/main/cheap.7z",
    "average": "https://huggingface.co/datasets/rshrott/renovation/raw/main/average.7z",
    "expensive": "https://huggingface.co/datasets/rshrott/renovation/raw/main/expensive.7z",
}

_NAMES = ["cheap", "average", "expensive"]

class RenovationQualityDataset(datasets.GeneratorBasedBuilder):
    """Renovation Quality Dataset."""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image_file_path": datasets.Value("string"),
                    "image": datasets.Image(),
                    "labels": datasets.features.ClassLabel(names=_NAMES),
                }
            ),
            supervised_keys=("image", "labels"),
            homepage=_HOMEPAGE,
            citation=_CITATION,
            task_templates=[ImageClassification(image_column="image", label_column="labels")],
        )

     def _split_generators(self, dl_manager):
            # Download and extract images
            image_paths = []
            for label, url in _URLS.items():
                extract_path = dl_manager.download_and_extract(url)
                print(f"Extracted files for label {label} to path: {extract_path}")
    
                # Get image paths
                for root, _, files in os.walk(extract_path):
                    for file in files:
                        if file.endswith(".jpeg"):  # Assuming all images are .jpeg
                            image_paths.append((os.path.join(root, file), label))
    
            print(f"Collected a total of {len(image_paths)} image paths.")
    
            # Shuffle image paths
            random.shuffle(image_paths)
    
            # 80% for training, 10% for validation, 10% for testing
            train_end = int(0.8 * len(image_paths))
            val_end = int(0.9 * len(image_paths))
    
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "rows": image_paths[:train_end],
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "rows": image_paths[train_end:val_end],
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "rows": image_paths[val_end:],
                    },
                ),
            ]
    
        def _generate_examples(self, rows):
            def file_to_image(file_path):
                img = Image.open(file_path)
                return np.array(img)
    
            for id_, (image_file_path, label) in enumerate(rows):
                image = file_to_image(image_file_path)
                yield id_, {
                    'image_file_path': image_file_path,
                    'image': image,
                    'labels': label,
                }