rshrott commited on
Commit
d9a45b3
1 Parent(s): 3ac9708

Update renovation.py

Browse files
Files changed (1) hide show
  1. renovation.py +17 -10
renovation.py CHANGED
@@ -21,7 +21,7 @@ _CITATION = """\
21
 
22
  _DESCRIPTION = """\
23
  Renovations is a dataset of images of houses taken in the field using smartphone
24
- cameras. It consists of 7 classes: Not Applicable, Very Poor, Poor, Fair, Good, Excellent, and Exceptional renovations.
25
  Data was collected by the your research lab.
26
  """
27
 
@@ -82,19 +82,25 @@ class Renovations(datasets.GeneratorBasedBuilder):
82
  ]
83
 
84
  def _generate_examples(self, data_files, split):
85
- all_files_and_labels = []
 
86
  for label, path in data_files.items():
87
- files = glob.glob(path + '/*.jpeg', recursive=True)
88
- all_files_and_labels.extend((file, label) for file in files)
89
 
 
90
  random.seed(43) # ensure reproducibility
91
- random.shuffle(all_files_and_labels)
92
-
93
- num_files = len(all_files_and_labels)
94
- train_data = all_files_and_labels[:int(num_files * 0.8)]
95
- test_data = all_files_and_labels[int(num_files * 0.8):int(num_files * 0.9)]
96
- val_data = all_files_and_labels[int(num_files * 0.9):]
 
 
 
97
 
 
98
  if split == "train":
99
  data_to_use = train_data
100
  elif split == "test":
@@ -102,6 +108,7 @@ class Renovations(datasets.GeneratorBasedBuilder):
102
  else: # "val" split
103
  data_to_use = val_data
104
 
 
105
  for idx, (file, label) in enumerate(data_to_use):
106
  yield idx, {
107
  "image_file_path": file,
 
21
 
22
  _DESCRIPTION = """\
23
  Renovations is a dataset of images of houses taken in the field using smartphone
24
+ cameras. It consists of 7 classes: Not Applicable, Very Poor, Poor, Fair, Good, Great and Excellent renovations.
25
  Data was collected by the your research lab.
26
  """
27
 
 
82
  ]
83
 
84
  def _generate_examples(self, data_files, split):
85
+ # Separate data by class
86
+ data_by_class = {label: [] for label in _NAMES}
87
  for label, path in data_files.items():
88
+ files = [os.path.join(path, f) for f in os.listdir(path) if os.path.isfile(os.path.join(path, f))]
89
+ data_by_class[label].extend((file, label) for file in files)
90
 
91
+ # Shuffle and split data for each class
92
  random.seed(43) # ensure reproducibility
93
+ train_data, test_data, val_data = [], [], []
94
+ for label, files_and_labels in data_by_class.items():
95
+ random.shuffle(files_and_labels)
96
+ num_files = len(files_and_labels)
97
+ train_end = int(num_files * 0.8)
98
+ test_end = int(num_files * 0.9)
99
+ train_data.extend(files_and_labels[:train_end])
100
+ test_data.extend(files_and_labels[train_end:test_end])
101
+ val_data.extend(files_and_labels[test_end:])
102
 
103
+ # Select the appropriate split
104
  if split == "train":
105
  data_to_use = train_data
106
  elif split == "test":
 
108
  else: # "val" split
109
  data_to_use = val_data
110
 
111
+ # Yield examples
112
  for idx, (file, label) in enumerate(data_to_use):
113
  yield idx, {
114
  "image_file_path": file,