Update renovation.py
Browse files- renovation.py +55 -55
renovation.py
CHANGED
@@ -55,58 +55,58 @@ class RenovationQualityDataset(datasets.GeneratorBasedBuilder):
|
|
55 |
task_templates=[ImageClassification(image_column="image", label_column="labels")],
|
56 |
)
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
55 |
task_templates=[ImageClassification(image_column="image", label_column="labels")],
|
56 |
)
|
57 |
|
58 |
+
def _split_generators(self, dl_manager):
|
59 |
+
# Download and extract images
|
60 |
+
image_paths = []
|
61 |
+
for label, url in _URLS.items():
|
62 |
+
extract_path = dl_manager.download_and_extract(url)
|
63 |
+
print(f"Extracted files for label {label} to path: {extract_path}")
|
64 |
+
|
65 |
+
# Get image paths
|
66 |
+
for root, _, files in os.walk(extract_path):
|
67 |
+
for file in files:
|
68 |
+
if file.endswith(".jpeg"): # Assuming all images are .jpeg
|
69 |
+
image_paths.append((os.path.join(root, file), label))
|
70 |
+
|
71 |
+
print(f"Collected a total of {len(image_paths)} image paths.")
|
72 |
+
|
73 |
+
# Shuffle image paths
|
74 |
+
random.shuffle(image_paths)
|
75 |
+
|
76 |
+
# 80% for training, 10% for validation, 10% for testing
|
77 |
+
train_end = int(0.8 * len(image_paths))
|
78 |
+
val_end = int(0.9 * len(image_paths))
|
79 |
+
|
80 |
+
return [
|
81 |
+
datasets.SplitGenerator(
|
82 |
+
name=datasets.Split.TRAIN,
|
83 |
+
gen_kwargs={
|
84 |
+
"rows": image_paths[:train_end],
|
85 |
+
},
|
86 |
+
),
|
87 |
+
datasets.SplitGenerator(
|
88 |
+
name=datasets.Split.VALIDATION,
|
89 |
+
gen_kwargs={
|
90 |
+
"rows": image_paths[train_end:val_end],
|
91 |
+
},
|
92 |
+
),
|
93 |
+
datasets.SplitGenerator(
|
94 |
+
name=datasets.Split.TEST,
|
95 |
+
gen_kwargs={
|
96 |
+
"rows": image_paths[val_end:],
|
97 |
+
},
|
98 |
+
),
|
99 |
+
]
|
100 |
+
|
101 |
+
def _generate_examples(self, rows):
|
102 |
+
def file_to_image(file_path):
|
103 |
+
img = Image.open(file_path)
|
104 |
+
return np.array(img)
|
105 |
+
|
106 |
+
for id_, (image_file_path, label) in enumerate(rows):
|
107 |
+
image = file_to_image(image_file_path)
|
108 |
+
yield id_, {
|
109 |
+
'image_file_path': image_file_path,
|
110 |
+
'image': image,
|
111 |
+
'labels': label,
|
112 |
+
}
|