import os import datasets from datasets.tasks import ImageClassification _HOMEPAGE = "https://github.com/your-github/renovation" _CITATION = """\ @ONLINE {renovationdata, author="Your Name", title="Renovation dataset", month="January", year="2023", url="https://github.com/your-github/renovation" } """ _DESCRIPTION = """\ Renovations is a dataset of images of houses taken in the field using smartphone cameras. It consists of 3 classes: cheap, average, and expensive renovations. Data was collected by the your research lab. """ _URLS = { "cheap": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/cheap.7z", "average": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/average.7z", "expensive": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/expensive.7z", } _NAMES = ["cheap", "average", "expensive"] class Renovations(datasets.GeneratorBasedBuilder): """Renovations house images dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image_file_path": datasets.Value("string"), "image": datasets.Image(), "labels": datasets.features.ClassLabel(names=_NAMES), } ), supervised_keys=("image", "labels"), homepage=_HOMEPAGE, citation=_CITATION, task_templates=[ImageClassification(image_column="image", label_column="labels")], ) def _split_generators(self, dl_manager): data_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "files": dl_manager.iter_files([data_files["cheap"]]), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "files": dl_manager.iter_files([data_files["average"]]), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "files": dl_manager.iter_files([data_files["expensive"]]), }, ), ] def _generate_examples(self, files): for i, path in enumerate(files): file_name = os.path.basename(path) if file_name.endswith(".jpg"): yield i, { "image_file_path": path, "image": path, "labels": os.path.basename(os.path.dirname(path)).lower(), }