import os import glob import random import datasets from datasets.tasks import ImageClassification from datasets import load_dataset import os from huggingface_hub import login _HOMEPAGE = "https://github.com/your-github/renovation" _CITATION = """\ @ONLINE {renovationdata, author="Your Name", title="Renovation dataset", month="January", year="2023", url="https://github.com/your-github/renovation" } """ _DESCRIPTION = """\ Renovations is a dataset of images of houses taken in the field using smartphone cameras. It consists of 7 classes: Not Applicable, Very Poor, Poor, Fair, Good, Great and Excellent renovations. Data was collected by the your research lab. """ _URLS = { "Not Applicable": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Not Applicable.zip", "Very Poor": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Very Poor.zip", "Poor": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Poor.zip", "Fair": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Fair.zip", "Good": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Good.zip", "Great": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Great.zip", "Excellent": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Excellent.zip" } _NAMES = ["Not Applicable", "Very Poor", "Poor", "Fair", "Good", "Great", "Excellent"] class Renovations(datasets.GeneratorBasedBuilder): """Renovations house images dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image_file_path": datasets.Value("string"), "image": datasets.Image(), "labels": datasets.features.ClassLabel(names=_NAMES), } ), supervised_keys=("image", "labels"), homepage=_HOMEPAGE, citation=_CITATION, task_templates=[ImageClassification(image_column="image", label_column="labels")], ) def _split_generators(self, dl_manager): data_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_files": data_files, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data_files": data_files, "split": "val", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_files": data_files, "split": "test", }, ), ] def _generate_examples(self, data_files, split): # Separate data by class data_by_class = {label: [] for label in _NAMES} for label, path in data_files.items(): files = [os.path.join(path, f) for f in os.listdir(path) if os.path.isfile(os.path.join(path, f))] data_by_class[label].extend((file, label) for file in files) # Shuffle and split data for each class random.seed(43) # ensure reproducibility train_data, test_data, val_data = [], [], [] for label, files_and_labels in data_by_class.items(): random.shuffle(files_and_labels) num_files = len(files_and_labels) train_end = int(num_files * 0.8) test_end = int(num_files * 0.9) train_data.extend(files_and_labels[:train_end]) test_data.extend(files_and_labels[train_end:test_end]) val_data.extend(files_and_labels[test_end:]) # Select the appropriate split if split == "train": data_to_use = train_data elif split == "test": data_to_use = test_data else: # "val" split data_to_use = val_data # Yield examples for idx, (file, label) in enumerate(data_to_use): yield idx, { "image_file_path": file, "image": file, "labels": label, }