File size: 7,028 Bytes
3a8e817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44255bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4662af
 
 
f7d53b0
 
 
f7e0a71
 
 
6a4c1ad
 
 
d360971
 
 
7cdbc46
 
 
 
 
44255bb
 
 
 
 
f4662af
 
f7d53b0
 
f7e0a71
 
6a4c1ad
 
d360971
 
7cdbc46
 
3a8e817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license: gpl-3.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- multiple-choice
- question-answering
- visual-question-answering
task_ids:
- multiple-choice-qa
- visual-question-answering
- multi-class-classification
tags:
- multi-modal-qa
- figure-qa
- vqa
- scientific-figure
- geometry-diagram
- chart
- chemistry
dataset_info:
  features:
  - name: image_path
    dtype: string
  - name: question
    dtype: 'null'
  - name: answer
    dtype: string
  - name: prompt_reasoning
    dtype: 'null'
  - name: prompt_no_reasoning
    dtype: string
  - name: image_category
    dtype: string
  - name: task_category
    dtype: string
  - name: question_type
    dtype: string
  - name: response_options
    sequence: string
  - name: source
    dtype: string
  - name: id
    dtype: string
  - name: decoded_image
    dtype: image
  splits:
  - name: syntheticgeometry__triangle
    num_bytes: 328198888.0
    num_examples: 10000
  - name: syntheticgeometry__quadrilateral
    num_bytes: 327409666.0
    num_examples: 10000
  - name: syntheticgeometry__length
    num_bytes: 411043854.0
    num_examples: 10000
  - name: syntheticgeometry__angle
    num_bytes: 397038300.0
    num_examples: 10000
  - name: syntheticgeometry__area
    num_bytes: 400289876.0
    num_examples: 10000
  - name: 3d__size
    num_bytes: 1930906822.0
    num_examples: 10000
  - name: 3d__angle
    num_bytes: 4093207706.0
    num_examples: 10000
  download_size: 7226264280
  dataset_size: 7888095112.0
configs:
- config_name: default
  data_files:
  - split: syntheticgeometry__triangle
    path: data/syntheticgeometry__triangle-*
  - split: syntheticgeometry__quadrilateral
    path: data/syntheticgeometry__quadrilateral-*
  - split: syntheticgeometry__length
    path: data/syntheticgeometry__length-*
  - split: syntheticgeometry__angle
    path: data/syntheticgeometry__angle-*
  - split: syntheticgeometry__area
    path: data/syntheticgeometry__area-*
  - split: 3d__size
    path: data/3d__size-*
  - split: 3d__angle
    path: data/3d__angle-*
---
# VisOnlyQA

This repository contains the code and data for the paper "VisOnlyQA: Large Vision Language Models Still Struggle with Visual Perception of Geometric Information".

VisOnlyQA is designed to evaluate the visual perception capability of large vision language models (LVLMs) on geometric information of scientific figures. The evaluation set includes 1,200 mlutiple choice questions in 12 visual perception tasks on 4 categories of scientific figures. We also provide a training dataset consisting of 70k instances.

* Datasets:
  * Eval-Real: [https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real](https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real)
  * Eval-Synthetic: [https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Synthetic](https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Synthetic)
  * Train: [https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Train](https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Train)
* Code: [https://github.com/psunlpgroup/VisOnlyQA](https://github.com/psunlpgroup/VisOnlyQA)

<p align="center">
<img src="readme_figures/accuracy_radar_chart.png" width="500">
</p>

```bibtex
@misc{kamoi2024visonlyqa,
    title={VisOnlyQA: Large Vision Language Models Still Struggle with Visual Perception of Geometric Information}, 
    author={Ryo Kamoi and Yusen Zhang and Sarkar Snigdha Sarathi Das and Ranran Haoran Zhang and Rui Zhang},
    year={2024},
}
```

## Dataset

The dataset is provided in Hugging Face Dataset.

* Eval-Real: [https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real](https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real)
  * 500 instances for questions on figures in existing datasets (e.g., MathVista, MMMU, and CharXiv)
* Eval-Synthetic: [https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Synthetic](https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Synthetic)
  * 700 instances for questions on synthetic figures
* Train: [https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Train](https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Train)
  * 70,000 instances for training (synthetic figures)

[dataset](https://github.com/psunlpgroup/VisOnlyQA/tree/main/dataset) folder of the GitHub repository includes identical datasets, except for the training data.

### Examples

<p align="center">
<img src="readme_figures/examples.png" width="800">
</p>

### Usage

```python
from datasets import load_dataset

real_eval = load_dataset("ryokamoi/VisOnlyQA_Eval_Real")
real_synthetic = load_dataset("ryokamoi/VisOnlyQA_Eval_Synthetic")

# Splits
print(real_eval.keys())
# dict_keys(['geometry__triangle', 'geometry__quadrilateral', 'geometry__length', 'geometry__angle', 'geometry__area', 'geometry__diameter_radius', 'chemistry__shape_single', 'chemistry__shape_multi', 'charts__extraction', 'charts__intersection'])

print(real_synthetic.keys())
# dict_keys(['syntheticgeometry__triangle', 'syntheticgeometry__quadrilateral', 'syntheticgeometry__length', 'syntheticgeometry__angle', 'syntheticgeometry__area', '3d__size', '3d__angle'])

# Prompt
print(real_eval['geometry__triangle'][0]['prompt_no_reasoning'])
# There is no triangle ADP in the figure. True or False?

# A triangle is a polygon with three edges and three vertices, which are explicitly connected in the figure.

# Your response should only include the final answer (True, False). Do not include any reasoning or explanation in your response.

# Image
print(real_eval['geometry__triangle'][0]['decoded_image'])
# <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=103x165 at 0x7FB4F83236A0>

# Answer
print(real_eval['geometry__triangle'][0]['answer'])
# False
```

### Data Format

Each instance of VisOnlyQA dataset has the following attributes:

#### Features
* `decoded_image`: [PIL.Image] Input image
* `question`: [string] Question (without instruction)
* `prompt_reasoning`: [string] Prompt with intstruction to use chain-of-thought
* `prompt_no_reasoning`: [string] Prompt with intstruction **not** to use chain-of-thought
* `answer`: [string] Correct answer (e.g., `True`, `a`)

#### Metadata
* `image_path`: [string] Path to the image file
* `image_category`: [string] Category of the image (e.g., `geometry`, `chemistry`)
* `question_type`: [string] `single_answer` or `multiple answers`
* `task_category`: [string] Category of the task (e.g., `triangle`)
* `response_options`: [List[string]] Multiple choice options (e.g., `['True', 'False']`, `['a', 'b', 'c', 'd', 'e']`)
* `source`: [string] Source dataset
* `id`: [string] Unique ID

### Statistics

<p align="center">
<img src="readme_figures/stats.png" width="800">
</p>

## License

Please refer to [LICENSE.md](./LICENSE.md).

## Contact

If you have any questions, feel free to open an issue or reach out directly to [Ryo Kamoi](https://ryokamoi.github.io/) (ryokamoi@psu.edu).