File size: 54,511 Bytes
64cab28
 
 
 
 
2b3abee
64cab28
2b3abee
64cab28
 
 
 
 
 
 
 
 
cb0e6fc
 
64cab28
 
6885b30
 
64cab28
 
6885b30
 
71b3f2a
 
 
 
 
17f7122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7785f1b
 
 
17f7122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7785f1b
 
 
17f7122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7785f1b
 
 
17f7122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7785f1b
 
 
17f7122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7785f1b
 
 
17f7122
 
64cab28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc51ffc
64cab28
 
 
 
 
 
 
 
 
 
 
 
 
cf54b2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64cab28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb0e6fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64cab28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb0e6fc
64cab28
 
bc51ffc
 
 
64cab28
 
 
 
 
 
 
 
 
 
cb0e6fc
64cab28
cb0e6fc
 
 
bc51ffc
 
 
cf54b2f
cb0e6fc
 
64cab28
 
 
 
 
 
 
 
cf54b2f
 
 
bc51ffc
 
 
cf54b2f
 
 
 
 
 
 
64cab28
 
 
 
 
 
 
 
cf54b2f
 
 
bc51ffc
 
 
cf54b2f
 
 
64cab28
 
 
 
 
 
 
 
cb0e6fc
 
 
 
 
bc51ffc
 
 
cb0e6fc
 
 
 
 
 
 
 
64cab28
 
 
 
 
 
 
 
 
 
 
bc51ffc
 
 
 
64cab28
 
 
 
 
 
 
bc51ffc
 
 
 
 
 
64cab28
 
 
cb0e6fc
bc51ffc
cf54b2f
 
64cab28
 
 
 
 
 
 
cf54b2f
bc51ffc
cf54b2f
 
 
 
 
 
 
 
64cab28
 
 
 
 
 
 
 
cf54b2f
bc51ffc
cf54b2f
 
64cab28
 
 
 
 
 
 
 
cb0e6fc
 
 
bc51ffc
cb0e6fc
 
 
 
 
 
64cab28
 
 
cf54b2f
bc51ffc
cf54b2f
 
64cab28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb0e6fc
 
 
64cab28
 
 
 
 
 
 
 
cf54b2f
 
 
64cab28
 
 
 
 
 
 
 
cf54b2f
 
 
64cab28
 
 
 
 
 
 
 
cb0e6fc
64cab28
cb0e6fc
 
 
64cab28
 
 
cf54b2f
 
 
 
 
64cab28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a88254
64cab28
 
 
 
 
 
 
 
 
 
 
 
 
0a88254
64cab28
 
 
 
 
 
 
 
 
0a88254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64cab28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71b3f2a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
---
annotations_creators:
- other
language_creators:
- other
language:
- en
license:
- unknown
multilinguality:
- monolingual
pretty_name: SUPERB
size_categories:
- unknown
source_datasets:
- original
- extended|librispeech_asr
- extended|other-librimix
- extended|other-speech_commands
task_categories:
- automatic-speech-recognition
- audio-classification
task_ids:
- keyword-spotting
- speaker-identification
- audio-intent-classification
- audio-emotion-recognition
tags:
- query-by-example-spoken-term-detection
- audio-slot-filling
- speaker-diarization
- automatic-speaker-verification
dataset_info:
- config_name: asr
  features:
  - name: file
    dtype: string
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: text
    dtype: string
  - name: speaker_id
    dtype: int64
  - name: chapter_id
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 11852430
    num_examples: 28539
  - name: validation
    num_bytes: 897213
    num_examples: 2703
  - name: test
    num_bytes: 871234
    num_examples: 2620
  download_size: 7071899769
  dataset_size: 13620877
- config_name: sd
  features:
  - name: record_id
    dtype: string
  - name: file
    dtype: string
  - name: start
    dtype: int64
  - name: end
    dtype: int64
  - name: speakers
    list:
    - name: speaker_id
      dtype: string
    - name: start
      dtype: int64
    - name: end
      dtype: int64
  splits:
  - name: train
    num_bytes: 4622013
    num_examples: 13901
  - name: dev
    num_bytes: 860472
    num_examples: 3014
  - name: test
    num_bytes: 847803
    num_examples: 3002
  download_size: 7190370211
  dataset_size: 6330288
- config_name: ks
  features:
  - name: file
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          0: 'yes'
          1: 'no'
          2: up
          3: down
          4: left
          5: right
          6: 'on'
          7: 'off'
          8: stop
          9: go
          10: _silence_
          11: _unknown_
  splits:
  - name: train
    num_bytes: 8467781
    num_examples: 51094
  - name: validation
    num_bytes: 1126476
    num_examples: 6798
  - name: test
    num_bytes: 510619
    num_examples: 3081
  download_size: 1560367713
  dataset_size: 10104876
- config_name: ic
  features:
  - name: file
    dtype: string
  - name: speaker_id
    dtype: string
  - name: text
    dtype: string
  - name: action
    dtype:
      class_label:
        names:
          0: activate
          1: bring
          2: change language
          3: deactivate
          4: decrease
          5: increase
  - name: object
    dtype:
      class_label:
        names:
          0: Chinese
          1: English
          2: German
          3: Korean
          4: heat
          5: juice
          6: lamp
          7: lights
          8: music
          9: newspaper
          10: none
          11: shoes
          12: socks
          13: volume
  - name: location
    dtype:
      class_label:
        names:
          0: bedroom
          1: kitchen
          2: none
          3: washroom
  splits:
  - name: train
    num_bytes: 7071466
    num_examples: 23132
  - name: validation
    num_bytes: 953622
    num_examples: 3118
  - name: test
    num_bytes: 1158347
    num_examples: 3793
  download_size: 1544093324
  dataset_size: 9183435
- config_name: si
  features:
  - name: file
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          0: id10001
          1: id10002
          2: id10003
          3: id10004
          4: id10005
          5: id10006
          6: id10007
          7: id10008
          8: id10009
          9: id10010
          10: id10011
          11: id10012
          12: id10013
          13: id10014
          14: id10015
          15: id10016
          16: id10017
          17: id10018
          18: id10019
          19: id10020
          20: id10021
          21: id10022
          22: id10023
          23: id10024
          24: id10025
          25: id10026
          26: id10027
          27: id10028
          28: id10029
          29: id10030
          30: id10031
          31: id10032
          32: id10033
          33: id10034
          34: id10035
          35: id10036
          36: id10037
          37: id10038
          38: id10039
          39: id10040
          40: id10041
          41: id10042
          42: id10043
          43: id10044
          44: id10045
          45: id10046
          46: id10047
          47: id10048
          48: id10049
          49: id10050
          50: id10051
          51: id10052
          52: id10053
          53: id10054
          54: id10055
          55: id10056
          56: id10057
          57: id10058
          58: id10059
          59: id10060
          60: id10061
          61: id10062
          62: id10063
          63: id10064
          64: id10065
          65: id10066
          66: id10067
          67: id10068
          68: id10069
          69: id10070
          70: id10071
          71: id10072
          72: id10073
          73: id10074
          74: id10075
          75: id10076
          76: id10077
          77: id10078
          78: id10079
          79: id10080
          80: id10081
          81: id10082
          82: id10083
          83: id10084
          84: id10085
          85: id10086
          86: id10087
          87: id10088
          88: id10089
          89: id10090
          90: id10091
          91: id10092
          92: id10093
          93: id10094
          94: id10095
          95: id10096
          96: id10097
          97: id10098
          98: id10099
          99: id10100
          100: id10101
          101: id10102
          102: id10103
          103: id10104
          104: id10105
          105: id10106
          106: id10107
          107: id10108
          108: id10109
          109: id10110
          110: id10111
          111: id10112
          112: id10113
          113: id10114
          114: id10115
          115: id10116
          116: id10117
          117: id10118
          118: id10119
          119: id10120
          120: id10121
          121: id10122
          122: id10123
          123: id10124
          124: id10125
          125: id10126
          126: id10127
          127: id10128
          128: id10129
          129: id10130
          130: id10131
          131: id10132
          132: id10133
          133: id10134
          134: id10135
          135: id10136
          136: id10137
          137: id10138
          138: id10139
          139: id10140
          140: id10141
          141: id10142
          142: id10143
          143: id10144
          144: id10145
          145: id10146
          146: id10147
          147: id10148
          148: id10149
          149: id10150
          150: id10151
          151: id10152
          152: id10153
          153: id10154
          154: id10155
          155: id10156
          156: id10157
          157: id10158
          158: id10159
          159: id10160
          160: id10161
          161: id10162
          162: id10163
          163: id10164
          164: id10165
          165: id10166
          166: id10167
          167: id10168
          168: id10169
          169: id10170
          170: id10171
          171: id10172
          172: id10173
          173: id10174
          174: id10175
          175: id10176
          176: id10177
          177: id10178
          178: id10179
          179: id10180
          180: id10181
          181: id10182
          182: id10183
          183: id10184
          184: id10185
          185: id10186
          186: id10187
          187: id10188
          188: id10189
          189: id10190
          190: id10191
          191: id10192
          192: id10193
          193: id10194
          194: id10195
          195: id10196
          196: id10197
          197: id10198
          198: id10199
          199: id10200
          200: id10201
          201: id10202
          202: id10203
          203: id10204
          204: id10205
          205: id10206
          206: id10207
          207: id10208
          208: id10209
          209: id10210
          210: id10211
          211: id10212
          212: id10213
          213: id10214
          214: id10215
          215: id10216
          216: id10217
          217: id10218
          218: id10219
          219: id10220
          220: id10221
          221: id10222
          222: id10223
          223: id10224
          224: id10225
          225: id10226
          226: id10227
          227: id10228
          228: id10229
          229: id10230
          230: id10231
          231: id10232
          232: id10233
          233: id10234
          234: id10235
          235: id10236
          236: id10237
          237: id10238
          238: id10239
          239: id10240
          240: id10241
          241: id10242
          242: id10243
          243: id10244
          244: id10245
          245: id10246
          246: id10247
          247: id10248
          248: id10249
          249: id10250
          250: id10251
          251: id10252
          252: id10253
          253: id10254
          254: id10255
          255: id10256
          256: id10257
          257: id10258
          258: id10259
          259: id10260
          260: id10261
          261: id10262
          262: id10263
          263: id10264
          264: id10265
          265: id10266
          266: id10267
          267: id10268
          268: id10269
          269: id10270
          270: id10271
          271: id10272
          272: id10273
          273: id10274
          274: id10275
          275: id10276
          276: id10277
          277: id10278
          278: id10279
          279: id10280
          280: id10281
          281: id10282
          282: id10283
          283: id10284
          284: id10285
          285: id10286
          286: id10287
          287: id10288
          288: id10289
          289: id10290
          290: id10291
          291: id10292
          292: id10293
          293: id10294
          294: id10295
          295: id10296
          296: id10297
          297: id10298
          298: id10299
          299: id10300
          300: id10301
          301: id10302
          302: id10303
          303: id10304
          304: id10305
          305: id10306
          306: id10307
          307: id10308
          308: id10309
          309: id10310
          310: id10311
          311: id10312
          312: id10313
          313: id10314
          314: id10315
          315: id10316
          316: id10317
          317: id10318
          318: id10319
          319: id10320
          320: id10321
          321: id10322
          322: id10323
          323: id10324
          324: id10325
          325: id10326
          326: id10327
          327: id10328
          328: id10329
          329: id10330
          330: id10331
          331: id10332
          332: id10333
          333: id10334
          334: id10335
          335: id10336
          336: id10337
          337: id10338
          338: id10339
          339: id10340
          340: id10341
          341: id10342
          342: id10343
          343: id10344
          344: id10345
          345: id10346
          346: id10347
          347: id10348
          348: id10349
          349: id10350
          350: id10351
          351: id10352
          352: id10353
          353: id10354
          354: id10355
          355: id10356
          356: id10357
          357: id10358
          358: id10359
          359: id10360
          360: id10361
          361: id10362
          362: id10363
          363: id10364
          364: id10365
          365: id10366
          366: id10367
          367: id10368
          368: id10369
          369: id10370
          370: id10371
          371: id10372
          372: id10373
          373: id10374
          374: id10375
          375: id10376
          376: id10377
          377: id10378
          378: id10379
          379: id10380
          380: id10381
          381: id10382
          382: id10383
          383: id10384
          384: id10385
          385: id10386
          386: id10387
          387: id10388
          388: id10389
          389: id10390
          390: id10391
          391: id10392
          392: id10393
          393: id10394
          394: id10395
          395: id10396
          396: id10397
          397: id10398
          398: id10399
          399: id10400
          400: id10401
          401: id10402
          402: id10403
          403: id10404
          404: id10405
          405: id10406
          406: id10407
          407: id10408
          408: id10409
          409: id10410
          410: id10411
          411: id10412
          412: id10413
          413: id10414
          414: id10415
          415: id10416
          416: id10417
          417: id10418
          418: id10419
          419: id10420
          420: id10421
          421: id10422
          422: id10423
          423: id10424
          424: id10425
          425: id10426
          426: id10427
          427: id10428
          428: id10429
          429: id10430
          430: id10431
          431: id10432
          432: id10433
          433: id10434
          434: id10435
          435: id10436
          436: id10437
          437: id10438
          438: id10439
          439: id10440
          440: id10441
          441: id10442
          442: id10443
          443: id10444
          444: id10445
          445: id10446
          446: id10447
          447: id10448
          448: id10449
          449: id10450
          450: id10451
          451: id10452
          452: id10453
          453: id10454
          454: id10455
          455: id10456
          456: id10457
          457: id10458
          458: id10459
          459: id10460
          460: id10461
          461: id10462
          462: id10463
          463: id10464
          464: id10465
          465: id10466
          466: id10467
          467: id10468
          468: id10469
          469: id10470
          470: id10471
          471: id10472
          472: id10473
          473: id10474
          474: id10475
          475: id10476
          476: id10477
          477: id10478
          478: id10479
          479: id10480
          480: id10481
          481: id10482
          482: id10483
          483: id10484
          484: id10485
          485: id10486
          486: id10487
          487: id10488
          488: id10489
          489: id10490
          490: id10491
          491: id10492
          492: id10493
          493: id10494
          494: id10495
          495: id10496
          496: id10497
          497: id10498
          498: id10499
          499: id10500
          500: id10501
          501: id10502
          502: id10503
          503: id10504
          504: id10505
          505: id10506
          506: id10507
          507: id10508
          508: id10509
          509: id10510
          510: id10511
          511: id10512
          512: id10513
          513: id10514
          514: id10515
          515: id10516
          516: id10517
          517: id10518
          518: id10519
          519: id10520
          520: id10521
          521: id10522
          522: id10523
          523: id10524
          524: id10525
          525: id10526
          526: id10527
          527: id10528
          528: id10529
          529: id10530
          530: id10531
          531: id10532
          532: id10533
          533: id10534
          534: id10535
          535: id10536
          536: id10537
          537: id10538
          538: id10539
          539: id10540
          540: id10541
          541: id10542
          542: id10543
          543: id10544
          544: id10545
          545: id10546
          546: id10547
          547: id10548
          548: id10549
          549: id10550
          550: id10551
          551: id10552
          552: id10553
          553: id10554
          554: id10555
          555: id10556
          556: id10557
          557: id10558
          558: id10559
          559: id10560
          560: id10561
          561: id10562
          562: id10563
          563: id10564
          564: id10565
          565: id10566
          566: id10567
          567: id10568
          568: id10569
          569: id10570
          570: id10571
          571: id10572
          572: id10573
          573: id10574
          574: id10575
          575: id10576
          576: id10577
          577: id10578
          578: id10579
          579: id10580
          580: id10581
          581: id10582
          582: id10583
          583: id10584
          584: id10585
          585: id10586
          586: id10587
          587: id10588
          588: id10589
          589: id10590
          590: id10591
          591: id10592
          592: id10593
          593: id10594
          594: id10595
          595: id10596
          596: id10597
          597: id10598
          598: id10599
          599: id10600
          600: id10601
          601: id10602
          602: id10603
          603: id10604
          604: id10605
          605: id10606
          606: id10607
          607: id10608
          608: id10609
          609: id10610
          610: id10611
          611: id10612
          612: id10613
          613: id10614
          614: id10615
          615: id10616
          616: id10617
          617: id10618
          618: id10619
          619: id10620
          620: id10621
          621: id10622
          622: id10623
          623: id10624
          624: id10625
          625: id10626
          626: id10627
          627: id10628
          628: id10629
          629: id10630
          630: id10631
          631: id10632
          632: id10633
          633: id10634
          634: id10635
          635: id10636
          636: id10637
          637: id10638
          638: id10639
          639: id10640
          640: id10641
          641: id10642
          642: id10643
          643: id10644
          644: id10645
          645: id10646
          646: id10647
          647: id10648
          648: id10649
          649: id10650
          650: id10651
          651: id10652
          652: id10653
          653: id10654
          654: id10655
          655: id10656
          656: id10657
          657: id10658
          658: id10659
          659: id10660
          660: id10661
          661: id10662
          662: id10663
          663: id10664
          664: id10665
          665: id10666
          666: id10667
          667: id10668
          668: id10669
          669: id10670
          670: id10671
          671: id10672
          672: id10673
          673: id10674
          674: id10675
          675: id10676
          676: id10677
          677: id10678
          678: id10679
          679: id10680
          680: id10681
          681: id10682
          682: id10683
          683: id10684
          684: id10685
          685: id10686
          686: id10687
          687: id10688
          688: id10689
          689: id10690
          690: id10691
          691: id10692
          692: id10693
          693: id10694
          694: id10695
          695: id10696
          696: id10697
          697: id10698
          698: id10699
          699: id10700
          700: id10701
          701: id10702
          702: id10703
          703: id10704
          704: id10705
          705: id10706
          706: id10707
          707: id10708
          708: id10709
          709: id10710
          710: id10711
          711: id10712
          712: id10713
          713: id10714
          714: id10715
          715: id10716
          716: id10717
          717: id10718
          718: id10719
          719: id10720
          720: id10721
          721: id10722
          722: id10723
          723: id10724
          724: id10725
          725: id10726
          726: id10727
          727: id10728
          728: id10729
          729: id10730
          730: id10731
          731: id10732
          732: id10733
          733: id10734
          734: id10735
          735: id10736
          736: id10737
          737: id10738
          738: id10739
          739: id10740
          740: id10741
          741: id10742
          742: id10743
          743: id10744
          744: id10745
          745: id10746
          746: id10747
          747: id10748
          748: id10749
          749: id10750
          750: id10751
          751: id10752
          752: id10753
          753: id10754
          754: id10755
          755: id10756
          756: id10757
          757: id10758
          758: id10759
          759: id10760
          760: id10761
          761: id10762
          762: id10763
          763: id10764
          764: id10765
          765: id10766
          766: id10767
          767: id10768
          768: id10769
          769: id10770
          770: id10771
          771: id10772
          772: id10773
          773: id10774
          774: id10775
          775: id10776
          776: id10777
          777: id10778
          778: id10779
          779: id10780
          780: id10781
          781: id10782
          782: id10783
          783: id10784
          784: id10785
          785: id10786
          786: id10787
          787: id10788
          788: id10789
          789: id10790
          790: id10791
          791: id10792
          792: id10793
          793: id10794
          794: id10795
          795: id10796
          796: id10797
          797: id10798
          798: id10799
          799: id10800
          800: id10801
          801: id10802
          802: id10803
          803: id10804
          804: id10805
          805: id10806
          806: id10807
          807: id10808
          808: id10809
          809: id10810
          810: id10811
          811: id10812
          812: id10813
          813: id10814
          814: id10815
          815: id10816
          816: id10817
          817: id10818
          818: id10819
          819: id10820
          820: id10821
          821: id10822
          822: id10823
          823: id10824
          824: id10825
          825: id10826
          826: id10827
          827: id10828
          828: id10829
          829: id10830
          830: id10831
          831: id10832
          832: id10833
          833: id10834
          834: id10835
          835: id10836
          836: id10837
          837: id10838
          838: id10839
          839: id10840
          840: id10841
          841: id10842
          842: id10843
          843: id10844
          844: id10845
          845: id10846
          846: id10847
          847: id10848
          848: id10849
          849: id10850
          850: id10851
          851: id10852
          852: id10853
          853: id10854
          854: id10855
          855: id10856
          856: id10857
          857: id10858
          858: id10859
          859: id10860
          860: id10861
          861: id10862
          862: id10863
          863: id10864
          864: id10865
          865: id10866
          866: id10867
          867: id10868
          868: id10869
          869: id10870
          870: id10871
          871: id10872
          872: id10873
          873: id10874
          874: id10875
          875: id10876
          876: id10877
          877: id10878
          878: id10879
          879: id10880
          880: id10881
          881: id10882
          882: id10883
          883: id10884
          884: id10885
          885: id10886
          886: id10887
          887: id10888
          888: id10889
          889: id10890
          890: id10891
          891: id10892
          892: id10893
          893: id10894
          894: id10895
          895: id10896
          896: id10897
          897: id10898
          898: id10899
          899: id10900
          900: id10901
          901: id10902
          902: id10903
          903: id10904
          904: id10905
          905: id10906
          906: id10907
          907: id10908
          908: id10909
          909: id10910
          910: id10911
          911: id10912
          912: id10913
          913: id10914
          914: id10915
          915: id10916
          916: id10917
          917: id10918
          918: id10919
          919: id10920
          920: id10921
          921: id10922
          922: id10923
          923: id10924
          924: id10925
          925: id10926
          926: id10927
          927: id10928
          928: id10929
          929: id10930
          930: id10931
          931: id10932
          932: id10933
          933: id10934
          934: id10935
          935: id10936
          936: id10937
          937: id10938
          938: id10939
          939: id10940
          940: id10941
          941: id10942
          942: id10943
          943: id10944
          944: id10945
          945: id10946
          946: id10947
          947: id10948
          948: id10949
          949: id10950
          950: id10951
          951: id10952
          952: id10953
          953: id10954
          954: id10955
          955: id10956
          956: id10957
          957: id10958
          958: id10959
          959: id10960
          960: id10961
          961: id10962
          962: id10963
          963: id10964
          964: id10965
          965: id10966
          966: id10967
          967: id10968
          968: id10969
          969: id10970
          970: id10971
          971: id10972
          972: id10973
          973: id10974
          974: id10975
          975: id10976
          976: id10977
          977: id10978
          978: id10979
          979: id10980
          980: id10981
          981: id10982
          982: id10983
          983: id10984
          984: id10985
          985: id10986
          986: id10987
          987: id10988
          988: id10989
          989: id10990
          990: id10991
          991: id10992
          992: id10993
          993: id10994
          994: id10995
          995: id10996
          996: id10997
          997: id10998
          998: id10999
          999: id11000
          1000: id11001
          1001: id11002
          1002: id11003
          1003: id11004
          1004: id11005
          1005: id11006
          1006: id11007
          1007: id11008
          1008: id11009
          1009: id11010
          1010: id11011
          1011: id11012
          1012: id11013
          1013: id11014
          1014: id11015
          1015: id11016
          1016: id11017
          1017: id11018
          1018: id11019
          1019: id11020
          1020: id11021
          1021: id11022
          1022: id11023
          1023: id11024
          1024: id11025
          1025: id11026
          1026: id11027
          1027: id11028
          1028: id11029
          1029: id11030
          1030: id11031
          1031: id11032
          1032: id11033
          1033: id11034
          1034: id11035
          1035: id11036
          1036: id11037
          1037: id11038
          1038: id11039
          1039: id11040
          1040: id11041
          1041: id11042
          1042: id11043
          1043: id11044
          1044: id11045
          1045: id11046
          1046: id11047
          1047: id11048
          1048: id11049
          1049: id11050
          1050: id11051
          1051: id11052
          1052: id11053
          1053: id11054
          1054: id11055
          1055: id11056
          1056: id11057
          1057: id11058
          1058: id11059
          1059: id11060
          1060: id11061
          1061: id11062
          1062: id11063
          1063: id11064
          1064: id11065
          1065: id11066
          1066: id11067
          1067: id11068
          1068: id11069
          1069: id11070
          1070: id11071
          1071: id11072
          1072: id11073
          1073: id11074
          1074: id11075
          1075: id11076
          1076: id11077
          1077: id11078
          1078: id11079
          1079: id11080
          1080: id11081
          1081: id11082
          1082: id11083
          1083: id11084
          1084: id11085
          1085: id11086
          1086: id11087
          1087: id11088
          1088: id11089
          1089: id11090
          1090: id11091
          1091: id11092
          1092: id11093
          1093: id11094
          1094: id11095
          1095: id11096
          1096: id11097
          1097: id11098
          1098: id11099
          1099: id11100
          1100: id11101
          1101: id11102
          1102: id11103
          1103: id11104
          1104: id11105
          1105: id11106
          1106: id11107
          1107: id11108
          1108: id11109
          1109: id11110
          1110: id11111
          1111: id11112
          1112: id11113
          1113: id11114
          1114: id11115
          1115: id11116
          1116: id11117
          1117: id11118
          1118: id11119
          1119: id11120
          1120: id11121
          1121: id11122
          1122: id11123
          1123: id11124
          1124: id11125
          1125: id11126
          1126: id11127
          1127: id11128
          1128: id11129
          1129: id11130
          1130: id11131
          1131: id11132
          1132: id11133
          1133: id11134
          1134: id11135
          1135: id11136
          1136: id11137
          1137: id11138
          1138: id11139
          1139: id11140
          1140: id11141
          1141: id11142
          1142: id11143
          1143: id11144
          1144: id11145
          1145: id11146
          1146: id11147
          1147: id11148
          1148: id11149
          1149: id11150
          1150: id11151
          1151: id11152
          1152: id11153
          1153: id11154
          1154: id11155
          1155: id11156
          1156: id11157
          1157: id11158
          1158: id11159
          1159: id11160
          1160: id11161
          1161: id11162
          1162: id11163
          1163: id11164
          1164: id11165
          1165: id11166
          1166: id11167
          1167: id11168
          1168: id11169
          1169: id11170
          1170: id11171
          1171: id11172
          1172: id11173
          1173: id11174
          1174: id11175
          1175: id11176
          1176: id11177
          1177: id11178
          1178: id11179
          1179: id11180
          1180: id11181
          1181: id11182
          1182: id11183
          1183: id11184
          1184: id11185
          1185: id11186
          1186: id11187
          1187: id11188
          1188: id11189
          1189: id11190
          1190: id11191
          1191: id11192
          1192: id11193
          1193: id11194
          1194: id11195
          1195: id11196
          1196: id11197
          1197: id11198
          1198: id11199
          1199: id11200
          1200: id11201
          1201: id11202
          1202: id11203
          1203: id11204
          1204: id11205
          1205: id11206
          1206: id11207
          1207: id11208
          1208: id11209
          1209: id11210
          1210: id11211
          1211: id11212
          1212: id11213
          1213: id11214
          1214: id11215
          1215: id11216
          1216: id11217
          1217: id11218
          1218: id11219
          1219: id11220
          1220: id11221
          1221: id11222
          1222: id11223
          1223: id11224
          1224: id11225
          1225: id11226
          1226: id11227
          1227: id11228
          1228: id11229
          1229: id11230
          1230: id11231
          1231: id11232
          1232: id11233
          1233: id11234
          1234: id11235
          1235: id11236
          1236: id11237
          1237: id11238
          1238: id11239
          1239: id11240
          1240: id11241
          1241: id11242
          1242: id11243
          1243: id11244
          1244: id11245
          1245: id11246
          1246: id11247
          1247: id11248
          1248: id11249
          1249: id11250
          1250: id11251
  splits:
  - name: train
    num_bytes: 12729268
    num_examples: 138361
  - name: validation
    num_bytes: 635172
    num_examples: 6904
  - name: test
    num_bytes: 759096
    num_examples: 8251
  download_size: 0
  dataset_size: 14123536
---

# Dataset Card for SUPERB

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [http://superbbenchmark.org](http://superbbenchmark.org)
- **Repository:** [https://github.com/s3prl/s3prl](https://github.com/s3prl/s3prl)
- **Paper:** [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
- **Leaderboard:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [Lewis Tunstall](mailto:lewis@huggingface.co) and [Albert Villanova](mailto:albert@huggingface.co)

### Dataset Summary

SUPERB is a leaderboard to benchmark the performance of a shared model across a wide range of speech processing tasks with minimal architecture changes and labeled data.

### Supported Tasks and Leaderboards

The SUPERB leaderboard can be found here https://superbbenchmark.org/leaderboard and consists of the following tasks:

#### pr

Phoneme Recognition (PR) transcribes an utterance into the smallest content units. This task includes alignment modeling to avoid potentially inaccurate forced alignment. [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) train-clean-100/dev-clean/test-clean subsets are adopted in SUPERB for training/validation/testing. Phoneme transcriptions are obtained from the LibriSpeech official g2p-model-5 and the conversion script in Kaldi librispeech s5 recipe. The evaluation metric is phone error rate (PER).

#### asr

Automatic Speech Recognition (ASR) transcribes utterances into words. While PR analyzes the improvement in modeling phonetics, ASR reflects the significance of the improvement in a real-world scenario. [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) train-clean-100/devclean/test-clean subsets are used for training/validation/testing. The evaluation metric is word error rate (WER).

#### ks

Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and inference time are all crucial. SUPERB uses the widely used [Speech Commands dataset v1.0](https://www.tensorflow.org/datasets/catalog/speech_commands) for the task. The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the false positive. The evaluation metric is accuracy (ACC)

##### Example of usage:

Use these auxillary functions to:
- load the audio file into an audio data array
- sample from long `_silence_` audio clips

For other examples of handling long `_silence_` clips see the [S3PRL](https://github.com/s3prl/s3prl/blob/099ce807a6ffa6bf2482ceecfcaf83dea23da355/s3prl/downstream/speech_commands/dataset.py#L80) 
or [TFDS](https://github.com/tensorflow/datasets/blob/6b8cfdb7c3c0a04e731caaa8660ce948d0a67b1e/tensorflow_datasets/audio/speech_commands.py#L143) implementations.

```python
def map_to_array(example):
    import soundfile as sf

    speech_array, sample_rate = sf.read(example["file"])
    example["speech"] = speech_array
    example["sample_rate"] = sample_rate
    return example


def sample_noise(example):
    # Use this function to extract random 1 sec slices of each _silence_ utterance,
    # e.g. inside `torch.utils.data.Dataset.__getitem__()`
    from random import randint

    if example["label"] == "_silence_":
        random_offset = randint(0, len(example["speech"]) - example["sample_rate"] - 1)
        example["speech"] = example["speech"][random_offset : random_offset + example["sample_rate"]]

    return example
```

#### qbe

Query by Example Spoken Term Detection (QbE) detects a spoken term (query) in an audio database (documents) by binary discriminating a given pair of query and document into a match or not. The English subset in [QUESST 2014 challenge](https://github.com/s3prl/s3prl/tree/master/downstream#qbe-query-by-example-spoken-term-detection) is adopted since we focus on investigating English as the first step. The evaluation metric is maximum term weighted value (MTWV) which balances misses and false alarms.

#### ic

Intent Classification (IC) classifies utterances into predefined classes to determine the intent of speakers. SUPERB uses the [Fluent Speech Commands dataset](https://github.com/s3prl/s3prl/tree/master/downstream#ic-intent-classification---fluent-speech-commands), where each utterance is tagged with three intent labels: action, object, and location. The evaluation metric is accuracy (ACC).

#### sf

Slot Filling (SF) predicts a sequence of semantic slot-types from an utterance, like a slot-type FromLocation for a spoken word Taipei, which is known as a slot-value. Both slot-types and slot-values are essential for an SLU system to function. The evaluation metrics thus include slot-type F1 score and slotvalue CER. [Audio SNIPS](https://github.com/s3prl/s3prl/tree/master/downstream#sf-end-to-end-slot-filling) is adopted, which synthesized multi-speaker utterances for SNIPS. Following the standard split in SNIPS, US-accent speakers are further selected for training, and others are for validation/testing.

#### si
Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class classification, where speakers are in the same predefined set for both training and testing. The widely used [VoxCeleb1 dataset](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) is adopted, and the evaluation metric is accuracy (ACC).

#### asv

Automatic Speaker Verification (ASV) verifies whether the speakers of a pair of utterances match as a binary classification, and speakers in the testing set may not appear in the training set. Thus, ASV is more challenging than SID. VoxCeleb1 is used without VoxCeleb2 training data and noise augmentation. The evaluation metric is equal error rate (EER).

#### sd

Speaker Diarization (SD) predicts *who is speaking when* for each timestamp, and multiple speakers can speak simultaneously. The model has to encode rich speaker characteristics for each frame and should be able to represent mixtures of signals. [LibriMix](https://github.com/s3prl/s3prl/tree/master/downstream#sd-speaker-diarization) is adopted where LibriSpeech train-clean-100/dev-clean/test-clean are used to generate mixtures for training/validation/testing. We focus on the two-speaker scenario as the first step. The time-coded speaker labels were generated using alignments from Kaldi LibriSpeech ASR model. The evaluation metric is diarization error rate (DER).

##### Example of usage

Use these auxiliary functions to:
- load the audio file into an audio data array
- generate the label array

```python
def load_audio_file(example, frame_shift=160):
    import soundfile as sf

    example["array"], example["sample_rate"] = sf.read(
        example["file"], start=example["start"] * frame_shift, stop=example["end"] * frame_shift
    )
    return example


def generate_label(example, frame_shift=160, num_speakers=2, rate=16000):
    import numpy as np

    start = example["start"]
    end = example["end"]
    frame_num = end - start
    speakers = sorted({speaker["speaker_id"] for speaker in example["speakers"]})
    label = np.zeros((frame_num, num_speakers), dtype=np.int32)
    for speaker in example["speakers"]:
        speaker_index = speakers.index(speaker["speaker_id"])
        start_frame = np.rint(speaker["start"] * rate / frame_shift).astype(int)
        end_frame = np.rint(speaker["end"] * rate / frame_shift).astype(int)
        rel_start = rel_end = None
        if start <= start_frame < end:
            rel_start = start_frame - start
        if start < end_frame <= end:
            rel_end = end_frame - start
        if rel_start is not None or rel_end is not None:
            label[rel_start:rel_end, speaker_index] = 1
    example["label"] = label
    return example
```

#### er

Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset [IEMOCAP](https://github.com/s3prl/s3prl/tree/master/downstream#er-emotion-recognition) is adopted, and we follow the conventional evaluation protocol: we drop the unbalance emotion classes to leave the final four classes with a similar amount of data points and cross-validates on five folds of the standard splits. The evaluation metric is accuracy (ACC).

### Languages

The language data in SUPERB is in English (BCP-47 `en`)


## Dataset Structure

### Data Instances

#### pr

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### asr

An example from each split looks like:

```python
{'chapter_id': 1240,
 'file': 'path/to/file.flac',
 'audio': {'path': 'path/to/file.flac',
		   'array': array([-0.00048828, -0.00018311, -0.00137329, ...,  0.00079346, 0.00091553,  0.00085449], dtype=float32),
		   'sampling_rate': 16000},
 'id': '103-1240-0000',
 'speaker_id': 103,
 'text': 'CHAPTER ONE MISSUS RACHEL LYNDE IS SURPRISED MISSUS RACHEL LYNDE '
         'LIVED JUST WHERE THE AVONLEA MAIN ROAD DIPPED DOWN INTO A LITTLE '
         'HOLLOW FRINGED WITH ALDERS AND LADIES EARDROPS AND TRAVERSED BY A '
         'BROOK'}
```

#### ks

An example from each split looks like:

```python
{
  'file': '/path/yes/af7a8296_nohash_1.wav', 
  'audio': {'path': '/path/yes/af7a8296_nohash_1.wav',
		    'array': array([-0.00048828, -0.00018311, -0.00137329, ...,  0.00079346, 0.00091553,  0.00085449], dtype=float32),
		    'sampling_rate': 16000},
  'label': 0  # 'yes'
}
```

#### qbe

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### ic

```python
{
  'file': "/path/wavs/speakers/2BqVo8kVB2Skwgyb/063aa8f0-4479-11e9-a9a5-5dbec3b8816a.wav",
  'audio': {'path': '/path/wavs/speakers/2BqVo8kVB2Skwgyb/063aa8f0-4479-11e9-a9a5-5dbec3b8816a.wav',
		    'array': array([-0.00048828, -0.00018311, -0.00137329, ...,  0.00079346, 0.00091553,  0.00085449], dtype=float32),
		    'sampling_rate': 16000},
  'speaker_id': '2BqVo8kVB2Skwgyb',
  'text': 'Turn the bedroom lights off',
  'action': 3,  # 'deactivate'
  'object': 7,  # 'lights'
  'location': 0  # 'bedroom'
}
```

#### sf

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### si

```python
{
  'file': '/path/wav/id10003/na8-QEFmj44/00003.wav', 
  'audio': {'path': '/path/wav/id10003/na8-QEFmj44/00003.wav',
		    'array': array([-0.00048828, -0.00018311, -0.00137329, ...,  0.00079346, 0.00091553,  0.00085449], dtype=float32),
		    'sampling_rate': 16000},
  'label': 2  # 'id10003'
}
```

#### asv

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### sd

An example from each split looks like:
```python
{
  'record_id': '1578-6379-0038_6415-111615-0009',
  'file': 'path/to/file.wav',
  'audio': {'path': 'path/to/file.wav',
		    'array': array([-0.00048828, -0.00018311, -0.00137329, ...,  0.00079346, 0.00091553,  0.00085449], dtype=float32),
		    'sampling_rate': 16000},
  'start': 0,
  'end': 1590,
  'speakers': [
    {'speaker_id': '1578', 'start': 28, 'end': 657},
    {'speaker_id': '6415', 'start': 28, 'end': 1576}
  ]
}
```


#### er

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)




### Data Fields

####Note abouth the `audio` fields

When accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.

#### pr

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### asr

- `file` (`string`): Path to the WAV audio file.
- `audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate.
- `text` (`string`): The transcription of the audio file.
- `speaker_id` (`integer`): A unique ID of the speaker. The same speaker id can be found for multiple data samples.
- `chapter_id` (`integer`): ID of the audiobook chapter which includes the transcription.
- `id` (`string`): A unique ID of the data sample.

#### ks

- `file` (`string`): Path to the WAV audio file.
- `audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate.
- `label` (`ClassLabel`): Label of the spoken command. Possible values:
    - `0: "yes", 1: "no", 2: "up", 3: "down", 4: "left", 5: "right", 6: "on", 7: "off", 8: "stop", 9: "go", 10: "_silence_", 11: "_unknown_"`

#### qbe

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### ic

- `file` (`string`): Path to the WAV audio file.
- `audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate.
- `speaker_id` (`string`): ID of the speaker.
- `text` (`string`): Transcription of the spoken command.
- `action` (`ClassLabel`): Label of the command's action. Possible values:
    - `0: "activate", 1: "bring", 2: "change language", 3: "deactivate", 4: "decrease", 5: "increase"`
- `object` (`ClassLabel`): Label of the command's object. Possible values:
    - `0: "Chinese", 1: "English", 2: "German", 3: "Korean", 4: "heat", 5: "juice", 6: "lamp", 7: "lights", 8: "music", 9: "newspaper", 10: "none", 11: "shoes", 12: "socks", 13: "volume"`
- `location` (`ClassLabel`): Label of the command's location. Possible values:
    - `0: "bedroom", 1: "kitchen", 2: "none", 3: "washroom"`

#### sf

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### si

- `file` (`string`): Path to the WAV audio file.
- `audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate.
- `label` (`ClassLabel`): Label (ID) of the speaker. Possible values: 
    - `0: "id10001", 1: "id10002", 2: "id10003", ..., 1250: "id11251"`

#### asv

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### sd

The data fields in all splits are:
- `record_id` (`string`): ID of the record.
- `file` (`string`): Path to the WAV audio file.
- `audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate.
- `start` (`integer`): Start frame of the audio.
- `end` (`integer`): End frame of the audio.
- `speakers` (`list` of `dict`): List of speakers in the audio. Each item contains the fields:
  - `speaker_id` (`string`): ID of the speaker.
  - `start` (`integer`): Frame when the speaker starts speaking.
  - `end` (`integer`): Frame when the speaker stops speaking.

#### er

- `file` (`string`): Path to the WAV audio file.
- `audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate.
- `label` (`ClassLabel`): Label of the speech emotion. Possible values:
    - `0: "neu", 1: "hap", 2: "ang", 3: "sad"`

### Data Splits

#### pr

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### asr

|     | train | validation | test |
|-----|------:|-----------:|-----:|
| asr | 28539 |       2703 | 2620 |

#### ks

|    | train | validation | test |
|----|------:|-----------:|-----:|
| ks | 51094 |       6798 | 3081 |

#### qbe

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### ic

|    | train | validation | test |
|----|------:|-----------:|-----:|
| ic | 23132 |       3118 | 3793 |

#### sf

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### si

|    | train  | validation | test |
|----|-------:|-----------:|-----:|
| si | 138361 | 6904       | 8251 |

#### asv

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### sd

The data is split into "train", "dev" and "test" sets, each containing the following number of examples:

|    | train |  dev | test |
|----|------:|-----:|-----:|
| sd | 13901 | 3014 | 3002 |

#### er

The data is split into 5 sets intended for 5-fold cross-validation:

|    | session1 | session2 | session3 | session4 | session5 |
|----|---------:|---------:|---------:|---------:|---------:|
| er | 1085     | 1023     | 1151     | 1031     | 1241     |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

Dataset provided for research purposes only. Please check dataset license for additional information.

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

#### pr and asr

The license for Librispeech is the Creative Commons Attribution 4.0 International license ((CC-BY-4.0)[https://creativecommons.org/licenses/by/4.0/]).

#### ks

The license for Speech Commands is [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode)

#### qbe

The license for QUESST 2014 is not known.

#### ic

The license for Fluent Speech Commands dataset is the [Fluent Speech Commands Public License](https://fluent.ai/wp-content/uploads/2021/04/Fluent_Speech_Commands_Public_License.pdf)

#### sf

The license for Audio SNIPS dataset is not known.

#### si and asv

The license for VoxCeleb1 dataset is the Creative Commons Attribution 4.0 International license ([CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)).

#### sd

LibriMix is based on the LibriSpeech (see above) and Wham! noises datasets. The Wham! noises dataset is distributed under the Attribution-NonCommercial 4.0 International ([CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/)) license.

#### er
The IEMOCAP license is ditributed under [its own license](https://sail.usc.edu/iemocap/Data_Release_Form_IEMOCAP.pdf).

### Citation Information

```
@article{DBLP:journals/corr/abs-2105-01051,
  author    = {Shu{-}Wen Yang and
               Po{-}Han Chi and
               Yung{-}Sung Chuang and
               Cheng{-}I Jeff Lai and
               Kushal Lakhotia and
               Yist Y. Lin and
               Andy T. Liu and
               Jiatong Shi and
               Xuankai Chang and
               Guan{-}Ting Lin and
               Tzu{-}Hsien Huang and
               Wei{-}Cheng Tseng and
               Ko{-}tik Lee and
               Da{-}Rong Liu and
               Zili Huang and
               Shuyan Dong and
               Shang{-}Wen Li and
               Shinji Watanabe and
               Abdelrahman Mohamed and
               Hung{-}yi Lee},
  title     = {{SUPERB:} Speech processing Universal PERformance Benchmark},
  journal   = {CoRR},
  volume    = {abs/2105.01051},
  year      = {2021},
  url       = {https://arxiv.org/abs/2105.01051},
  archivePrefix = {arXiv},
  eprint    = {2105.01051},
  timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Note that each SUPERB dataset has its own citation. Please see the source to see
the correct citation for each contained dataset.
```

### Contributions

Thanks to [@lewtun](https://github.com/lewtun), [@albertvillanova](https://github.com/albertvillanova) and [@anton-l](https://github.com/anton-l) for adding this dataset.