system HF staff commited on
Commit
64cab28
·
0 Parent(s):

Update files from the datasets library (from 1.10.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.10.0

Files changed (5) hide show
  1. .gitattributes +27 -0
  2. README.md +388 -0
  3. dataset_infos.json +1 -0
  4. dummy/asr/1.9.0/dummy_data.zip +3 -0
  5. superb.py +192 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - other
4
+ language_creators:
5
+ - other
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - unknown
10
+ multilinguality:
11
+ - monolingual
12
+ pretty_name: SUPERB
13
+ size_categories:
14
+ - unknown
15
+ source_datasets:
16
+ - original
17
+ - extended|librispeech_asr
18
+ task_categories:
19
+ - speech-processing
20
+ task_ids:
21
+ - automatic-speech-recognition
22
+ - phoneme-recognition
23
+ - keyword-spotting
24
+ - query-by-example-spoken-term-detection
25
+ - speaker-identification
26
+ - automatic-speaker-verification
27
+ - speaker-diarization
28
+ - intent-classification
29
+ - slot-filling
30
+ - emotion-recognition
31
+ ---
32
+
33
+ # Dataset Card for SUPERB
34
+
35
+ ## Table of Contents
36
+ - [Table of Contents](#table-of-contents)
37
+ - [Dataset Description](#dataset-description)
38
+ - [Dataset Summary](#dataset-summary)
39
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
40
+ - [Languages](#languages)
41
+ - [Dataset Structure](#dataset-structure)
42
+ - [Data Instances](#data-instances)
43
+ - [Data Fields](#data-fields)
44
+ - [Data Splits](#data-splits)
45
+ - [Dataset Creation](#dataset-creation)
46
+ - [Curation Rationale](#curation-rationale)
47
+ - [Source Data](#source-data)
48
+ - [Annotations](#annotations)
49
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
50
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
51
+ - [Social Impact of Dataset](#social-impact-of-dataset)
52
+ - [Discussion of Biases](#discussion-of-biases)
53
+ - [Other Known Limitations](#other-known-limitations)
54
+ - [Additional Information](#additional-information)
55
+ - [Dataset Curators](#dataset-curators)
56
+ - [Licensing Information](#licensing-information)
57
+ - [Citation Information](#citation-information)
58
+ - [Contributions](#contributions)
59
+
60
+ ## Dataset Description
61
+
62
+ - **Homepage:** [http://superbbenchmark.org](http://superbbenchmark.org)
63
+ - **Repository:** [https://github.com/s3prl/s3prl](https://github.com/s3prl/s3prl)
64
+ - **Paper:** [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
65
+ - **Leaderboard:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
66
+ - **Point of Contact:** [Lewis Tunstall](mailto:lewis@huggingface.co) and [Albert Villanova](mailto:albert@huggingface.co)
67
+
68
+ ### Dataset Summary
69
+
70
+ SUPERB is a leaderboard to benchmark the performance of a shared model across a wide range of speech processing tasks with minimal architecture changes and labeled data.
71
+
72
+ ### Supported Tasks and Leaderboards
73
+
74
+ The SUPERB leaderboard can be found here **ADD LINK WHEN LIVE** and consists of the following tasks:
75
+
76
+ #### pr
77
+
78
+ Phoneme Recognition (PR) transcribes an utterance into the smallest content units. This task includes alignment modeling to avoid potentially inaccurate forced alignment. [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) train-clean-100/dev-clean/test-clean subsets are adopted in SUPERB for training/validation/testing. Phoneme transcriptions are obtained from the LibriSpeech official g2p-model-5 and the conversion script in Kaldi librispeech s5 recipe. The evaluation metric is phone error rate (PER).
79
+
80
+ #### asr
81
+
82
+ Automatic Speech Recognition (ASR) transcribes utterances into words. While PR analyzes the improvement in modeling phonetics, ASR reflects the significance of the improvement in a real-world scenario. [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) train-clean-100/devclean/test-clean subsets are used for training/validation/testing. The evaluation metric is word error rate (WER).
83
+
84
+ #### ks
85
+
86
+ Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and inference time are all crucial. SUPERB uses the widely used [Speech Commands dataset v1.0](https://www.tensorflow.org/datasets/catalog/speech_commands) for the task. The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the false positive. The evaluation metric is accuracy (ACC)
87
+
88
+ #### qbe
89
+
90
+ Query by Example Spoken Term Detection (QbE) detects a spoken term (query) in an audio database (documents) by binary discriminating a given pair of query and document into a match or not. The English subset in [QUESST 2014 challenge](https://github.com/s3prl/s3prl/tree/master/downstream#qbe-query-by-example-spoken-term-detection) is adopted since we focus on investigating English as the first step. The evaluation metric is maximum term weighted value (MTWV) which balances misses and false alarms.
91
+
92
+ #### ic
93
+
94
+ Intent Classification (IC) classifies utterances into predefined classes to determine the intent of speakers. SUPERB uses the [Fluent Speech Commands dataset](https://github.com/s3prl/s3prl/tree/master/downstream#ic-intent-classification---fluent-speech-commands), where each utterance is tagged with three intent labels: action, object, and location. The evaluation metric is accuracy (ACC).
95
+
96
+ #### sf
97
+
98
+ Slot Filling (SF) predicts a sequence of semantic slot-types from an utterance, like a slot-type FromLocation for a spoken word Taipei, which is known as a slot-value. Both slot-types and slot-values are essential for an SLU system to function. The evaluation metrics thus include slot-type F1 score and slotvalue CER. [Audio SNIPS](https://github.com/s3prl/s3prl/tree/master/downstream#sf-end-to-end-slot-filling) is adopted, which synthesized multi-speaker utterances for SNIPS. Following the standard split in SNIPS, US-accent speakers are further selected for training, and others are for validation/testing.
99
+
100
+ #### si
101
+ Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class classification, where speakers are in the same predefined set for both training and testing. The widely used [VoxCeleb1 dataset](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) is adopted, and the evaluation metric is accuracy (ACC).
102
+
103
+ #### asv
104
+
105
+ Automatic Speaker Verification (ASV) verifies whether the speakers of a pair of utterances match as a binary classification, and speakers in the testing set may not appear in the training set. Thus, ASV is more challenging than SID. VoxCeleb1 is used without VoxCeleb2 training data and noise augmentation. The evaluation metric is equal error rate (EER).
106
+
107
+ #### sd
108
+
109
+ Speaker Diarization (SD) predicts who is speaking when for each timestamp, and multiple speakers can speak simultaneously. The model has to encode rich speaker characteristics for each frame and should be able to represent mixtures of signals. [LibriMix](https://github.com/s3prl/s3prl/tree/master/downstream#sd-speaker-diarization) is adopted where LibriSpeech train-clean-100/dev-clean/test-clean are used to generate mixtures for training/validation/testing. We focus on the two-speaker scenario as the first step. The time-coded speaker labels were generated using alignments from Kaldi LibriSpeech ASR model. The evaluation metric is diarization error rate (DER).
110
+
111
+ #### er
112
+
113
+ Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset [IEMOCAP](https://github.com/s3prl/s3prl/tree/master/downstream#er-emotion-recognition) is adopted, and we follow the conventional evaluation protocol: we drop the unbalance emotion classes to leave the final four classes with a similar amount of data points and cross-validates on five folds of the standard splits. The evaluation metric is accuracy (ACC).
114
+
115
+ ### Languages
116
+
117
+ The language data in SUPERB is in English (BCP-47 `en`)
118
+
119
+
120
+ ## Dataset Structure
121
+
122
+ ### Data Instances
123
+
124
+ #### pr
125
+
126
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
127
+
128
+
129
+ #### asr
130
+
131
+ An example from each split looks like:
132
+
133
+ ```json
134
+ {'chapter_id': 1240,
135
+ 'file': 'path/to/file.flac',
136
+ 'id': '103-1240-0000',
137
+ 'speaker_id': 103,
138
+ 'text': 'CHAPTER ONE MISSUS RACHEL LYNDE IS SURPRISED MISSUS RACHEL LYNDE '
139
+ 'LIVED JUST WHERE THE AVONLEA MAIN ROAD DIPPED DOWN INTO A LITTLE '
140
+ 'HOLLOW FRINGED WITH ALDERS AND LADIES EARDROPS AND TRAVERSED BY A '
141
+ 'BROOK'}
142
+ ```
143
+
144
+ #### ks
145
+
146
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
147
+
148
+
149
+ #### qbe
150
+
151
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
152
+
153
+
154
+ #### ic
155
+
156
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
157
+
158
+
159
+ #### sf
160
+
161
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
162
+
163
+
164
+ #### si
165
+
166
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
167
+
168
+
169
+ #### asv
170
+
171
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
172
+
173
+
174
+ #### sd
175
+
176
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
177
+
178
+
179
+ #### er
180
+
181
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
182
+
183
+
184
+
185
+
186
+ ### Data Fields
187
+
188
+ #### pr
189
+
190
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
191
+
192
+
193
+ #### asr
194
+
195
+ - `file`: a `string` feature.
196
+ - `text`: a `string` feature.
197
+ - `speaker_id`: a `int64` feature
198
+ - `chapter_id`: a `int64` feature
199
+ - `id`: a `string` feature
200
+
201
+ #### ks
202
+
203
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
204
+
205
+
206
+ #### qbe
207
+
208
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
209
+
210
+
211
+ #### ic
212
+
213
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
214
+
215
+
216
+ #### sf
217
+
218
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
219
+
220
+
221
+ #### si
222
+
223
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
224
+
225
+
226
+ #### asv
227
+
228
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
229
+
230
+
231
+ #### sd
232
+
233
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
234
+
235
+
236
+ #### er
237
+
238
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
239
+
240
+ ### Data Splits
241
+
242
+ #### pr
243
+
244
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
245
+
246
+
247
+ #### asr
248
+
249
+ | | train | validation | test |
250
+ |-----|------:|-----------:|-----:|
251
+ | asr | 28539 | 2703 | 2620 |
252
+
253
+ #### ks
254
+
255
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
256
+
257
+
258
+ #### qbe
259
+
260
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
261
+
262
+
263
+ #### ic
264
+
265
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
266
+
267
+
268
+ #### sf
269
+
270
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
271
+
272
+
273
+ #### si
274
+
275
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
276
+
277
+
278
+ #### asv
279
+
280
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
281
+
282
+
283
+ #### sd
284
+
285
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
286
+
287
+
288
+ #### er
289
+
290
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
291
+
292
+ ## Dataset Creation
293
+
294
+ ### Curation Rationale
295
+
296
+ [More Information Needed]
297
+
298
+ ### Source Data
299
+
300
+ #### Initial Data Collection and Normalization
301
+
302
+ [More Information Needed]
303
+
304
+ #### Who are the source language producers?
305
+
306
+ [More Information Needed]
307
+
308
+ ### Annotations
309
+
310
+ #### Annotation process
311
+
312
+ [More Information Needed]
313
+
314
+ #### Who are the annotators?
315
+
316
+ [More Information Needed]
317
+
318
+ ### Personal and Sensitive Information
319
+
320
+ [More Information Needed]
321
+
322
+ ## Considerations for Using the Data
323
+
324
+ ### Social Impact of Dataset
325
+
326
+ [More Information Needed]
327
+
328
+ ### Discussion of Biases
329
+
330
+ [More Information Needed]
331
+
332
+ ### Other Known Limitations
333
+
334
+ [More Information Needed]
335
+
336
+ ## Additional Information
337
+
338
+ ### Dataset Curators
339
+
340
+ [More Information Needed]
341
+
342
+ ### Licensing Information
343
+
344
+ [More Information Needed]
345
+
346
+ ### Citation Information
347
+
348
+ ```
349
+ @article{DBLP:journals/corr/abs-2105-01051,
350
+ author = {Shu{-}Wen Yang and
351
+ Po{-}Han Chi and
352
+ Yung{-}Sung Chuang and
353
+ Cheng{-}I Jeff Lai and
354
+ Kushal Lakhotia and
355
+ Yist Y. Lin and
356
+ Andy T. Liu and
357
+ Jiatong Shi and
358
+ Xuankai Chang and
359
+ Guan{-}Ting Lin and
360
+ Tzu{-}Hsien Huang and
361
+ Wei{-}Cheng Tseng and
362
+ Ko{-}tik Lee and
363
+ Da{-}Rong Liu and
364
+ Zili Huang and
365
+ Shuyan Dong and
366
+ Shang{-}Wen Li and
367
+ Shinji Watanabe and
368
+ Abdelrahman Mohamed and
369
+ Hung{-}yi Lee},
370
+ title = {{SUPERB:} Speech processing Universal PERformance Benchmark},
371
+ journal = {CoRR},
372
+ volume = {abs/2105.01051},
373
+ year = {2021},
374
+ url = {https://arxiv.org/abs/2105.01051},
375
+ archivePrefix = {arXiv},
376
+ eprint = {2105.01051},
377
+ timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},
378
+ biburl = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},
379
+ bibsource = {dblp computer science bibliography, https://dblp.org}
380
+ }
381
+
382
+ Note that each SUPERB dataset has its own citation. Please see the source to see
383
+ the correct citation for each contained dataset.
384
+ ```
385
+
386
+ ### Contributions
387
+
388
+ Thanks to [@lewtun](https://github.com/lewtun) and [@albertvillanova](https://github.com/albertvillanova) for adding this dataset.
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"asr": {"description": "Self-supervised learning (SSL) has proven vital for advancing research in\nnatural language processing (NLP) and computer vision (CV). The paradigm\npretrains a shared model on large volumes of unlabeled data and achieves\nstate-of-the-art (SOTA) for various tasks with minimal adaptation. However, the\nspeech processing community lacks a similar setup to systematically explore the\nparadigm. To bridge this gap, we introduce Speech processing Universal\nPERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the\nperformance of a shared model across a wide range of speech processing tasks\nwith minimal architecture changes and labeled data. Among multiple usages of the\nshared model, we especially focus on extracting the representation learned from\nSSL due to its preferable re-usability. We present a simple framework to solve\nSUPERB tasks by learning task-specialized lightweight prediction heads on top of\nthe frozen shared model. Our results demonstrate that the framework is promising\nas SSL representations show competitive generalizability and accessibility\nacross SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a\nbenchmark toolkit to fuel the research in representation learning and general\nspeech processing.\n\nNote that in order to limit the required storage for preparing this dataset, the\naudio is stored in the .flac format and is not converted to a float32 array. To\nconvert, the audio file to a float32 array, please make use of the `.map()`\nfunction as follows:\n\n\n```python\nimport soundfile as sf\n\ndef map_to_array(batch):\n speech_array, _ = sf.read(batch[\"file\"])\n batch[\"speech\"] = speech_array\n return batch\n\ndataset = dataset.map(map_to_array, remove_columns=[\"file\"])\n```\n", "citation": "@article{DBLP:journals/corr/abs-2105-01051,\n author = {Shu{-}Wen Yang and\n Po{-}Han Chi and\n Yung{-}Sung Chuang and\n Cheng{-}I Jeff Lai and\n Kushal Lakhotia and\n Yist Y. Lin and\n Andy T. Liu and\n Jiatong Shi and\n Xuankai Chang and\n Guan{-}Ting Lin and\n Tzu{-}Hsien Huang and\n Wei{-}Cheng Tseng and\n Ko{-}tik Lee and\n Da{-}Rong Liu and\n Zili Huang and\n Shuyan Dong and\n Shang{-}Wen Li and\n Shinji Watanabe and\n Abdelrahman Mohamed and\n Hung{-}yi Lee},\n title = {{SUPERB:} Speech processing Universal PERformance Benchmark},\n journal = {CoRR},\n volume = {abs/2105.01051},\n year = {2021},\n url = {https://arxiv.org/abs/2105.01051},\n archivePrefix = {arXiv},\n eprint = {2105.01051},\n timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "http://www.openslr.org/12", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "file", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "superb", "config_name": "asr", "version": {"version_str": "1.9.0", "description": "", "major": 1, "minor": 9, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 11823891, "num_examples": 28539, "dataset_name": "superb"}, "validation": {"name": "validation", "num_bytes": 894510, "num_examples": 2703, "dataset_name": "superb"}, "test": {"name": "test", "num_bytes": 868614, "num_examples": 2620, "dataset_name": "superb"}}, "download_checksums": {"http://www.openslr.org/resources/12/dev-clean.tar.gz": {"num_bytes": 337926286, "checksum": "76f87d090650617fca0cac8f88b9416e0ebf80350acb97b343a85fa903728ab3"}, "http://www.openslr.org/resources/12/test-clean.tar.gz": {"num_bytes": 346663984, "checksum": "39fde525e59672dc6d1551919b1478f724438a95aa55f874b576be21967e6c23"}, "http://www.openslr.org/resources/12/train-clean-100.tar.gz": {"num_bytes": 6387309499, "checksum": "d4ddd1d5a6ab303066f14971d768ee43278a5f2a0aa43dc716b0e64ecbbbf6e2"}}, "download_size": 7071899769, "post_processing_size": null, "dataset_size": 13587015, "size_in_bytes": 7085486784}}
dummy/asr/1.9.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ff8f5cf44cc18aa16659d42a5ef7ebd754ef594130762f9e6d48909292154b8
3
+ size 805749
superb.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """SUPERB: Speech processing Universal PERformance Benchmark."""
18
+
19
+
20
+ import glob
21
+ import os
22
+ import textwrap
23
+
24
+ import datasets
25
+ from datasets.tasks import AutomaticSpeechRecognition
26
+
27
+
28
+ _CITATION = """\
29
+ @article{DBLP:journals/corr/abs-2105-01051,
30
+ author = {Shu{-}Wen Yang and
31
+ Po{-}Han Chi and
32
+ Yung{-}Sung Chuang and
33
+ Cheng{-}I Jeff Lai and
34
+ Kushal Lakhotia and
35
+ Yist Y. Lin and
36
+ Andy T. Liu and
37
+ Jiatong Shi and
38
+ Xuankai Chang and
39
+ Guan{-}Ting Lin and
40
+ Tzu{-}Hsien Huang and
41
+ Wei{-}Cheng Tseng and
42
+ Ko{-}tik Lee and
43
+ Da{-}Rong Liu and
44
+ Zili Huang and
45
+ Shuyan Dong and
46
+ Shang{-}Wen Li and
47
+ Shinji Watanabe and
48
+ Abdelrahman Mohamed and
49
+ Hung{-}yi Lee},
50
+ title = {{SUPERB:} Speech processing Universal PERformance Benchmark},
51
+ journal = {CoRR},
52
+ volume = {abs/2105.01051},
53
+ year = {2021},
54
+ url = {https://arxiv.org/abs/2105.01051},
55
+ archivePrefix = {arXiv},
56
+ eprint = {2105.01051},
57
+ timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},
58
+ biburl = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},
59
+ bibsource = {dblp computer science bibliography, https://dblp.org}
60
+ }
61
+ """
62
+
63
+ _DESCRIPTION = """\
64
+ Self-supervised learning (SSL) has proven vital for advancing research in
65
+ natural language processing (NLP) and computer vision (CV). The paradigm
66
+ pretrains a shared model on large volumes of unlabeled data and achieves
67
+ state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the
68
+ speech processing community lacks a similar setup to systematically explore the
69
+ paradigm. To bridge this gap, we introduce Speech processing Universal
70
+ PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the
71
+ performance of a shared model across a wide range of speech processing tasks
72
+ with minimal architecture changes and labeled data. Among multiple usages of the
73
+ shared model, we especially focus on extracting the representation learned from
74
+ SSL due to its preferable re-usability. We present a simple framework to solve
75
+ SUPERB tasks by learning task-specialized lightweight prediction heads on top of
76
+ the frozen shared model. Our results demonstrate that the framework is promising
77
+ as SSL representations show competitive generalizability and accessibility
78
+ across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a
79
+ benchmark toolkit to fuel the research in representation learning and general
80
+ speech processing.
81
+
82
+ Note that in order to limit the required storage for preparing this dataset, the
83
+ audio is stored in the .flac format and is not converted to a float32 array. To
84
+ convert, the audio file to a float32 array, please make use of the `.map()`
85
+ function as follows:
86
+
87
+
88
+ ```python
89
+ import soundfile as sf
90
+
91
+ def map_to_array(batch):
92
+ speech_array, _ = sf.read(batch["file"])
93
+ batch["speech"] = speech_array
94
+ return batch
95
+
96
+ dataset = dataset.map(map_to_array, remove_columns=["file"])
97
+ ```
98
+ """
99
+
100
+
101
+ class SuperbConfig(datasets.BuilderConfig):
102
+ """BuilderConfig for Superb."""
103
+
104
+ def __init__(
105
+ self,
106
+ data_url,
107
+ url,
108
+ task_templates=None,
109
+ **kwargs,
110
+ ):
111
+ super(SuperbConfig, self).__init__(version=datasets.Version("1.9.0", ""), **kwargs)
112
+ self.data_url = data_url
113
+ self.url = url
114
+ self.task_templates = task_templates
115
+
116
+
117
+ class Superb(datasets.GeneratorBasedBuilder):
118
+ """Superb dataset."""
119
+
120
+ BUILDER_CONFIGS = [
121
+ SuperbConfig(
122
+ name="asr",
123
+ description=textwrap.dedent(
124
+ """\
125
+ ASR transcribes utterances into words. While PR analyzes the
126
+ improvement in modeling phonetics, ASR reflects the significance of
127
+ the improvement in a real-world scenario. LibriSpeech
128
+ train-clean-100/dev-clean/test-clean subsets are used for
129
+ training/validation/testing. The evaluation metric is word error
130
+ rate (WER)."""
131
+ ),
132
+ url="http://www.openslr.org/12",
133
+ data_url="http://www.openslr.org/resources/12/",
134
+ task_templates=[AutomaticSpeechRecognition(audio_file_path_column="file", transcription_column="text")],
135
+ )
136
+ ]
137
+
138
+ def _info(self):
139
+ return datasets.DatasetInfo(
140
+ description=_DESCRIPTION,
141
+ features=datasets.Features(
142
+ {
143
+ "file": datasets.Value("string"),
144
+ "text": datasets.Value("string"),
145
+ "speaker_id": datasets.Value("int64"),
146
+ "chapter_id": datasets.Value("int64"),
147
+ "id": datasets.Value("string"),
148
+ }
149
+ ),
150
+ supervised_keys=("file", "text"),
151
+ homepage=self.config.url,
152
+ citation=_CITATION,
153
+ task_templates=self.config.task_templates,
154
+ )
155
+
156
+ def _split_generators(self, dl_manager):
157
+ if self.config.name == "asr":
158
+ _DL_URLS = {
159
+ "dev": self.config.data_url + "dev-clean.tar.gz",
160
+ "test": self.config.data_url + "test-clean.tar.gz",
161
+ "train": self.config.data_url + "train-clean-100.tar.gz",
162
+ }
163
+ archive_path = dl_manager.download_and_extract(_DL_URLS)
164
+
165
+ return [
166
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"archive_path": archive_path["train"]}),
167
+ datasets.SplitGenerator(
168
+ name=datasets.Split.VALIDATION, gen_kwargs={"archive_path": archive_path["dev"]}
169
+ ),
170
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path["test"]}),
171
+ ]
172
+
173
+ def _generate_examples(self, archive_path):
174
+ """Generate examples."""
175
+ transcripts_glob = os.path.join(archive_path, "LibriSpeech", "*/*/*/*.txt")
176
+ key = 0
177
+ for transcript_path in sorted(glob.glob(transcripts_glob)):
178
+ transcript_dir_path = os.path.dirname(transcript_path)
179
+ with open(transcript_path, "r", encoding="utf-8") as f:
180
+ for line in f:
181
+ line = line.strip()
182
+ id_, transcript = line.split(" ", 1)
183
+ audio_file = f"{id_}.flac"
184
+ speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]]
185
+ yield key, {
186
+ "id": id_,
187
+ "speaker_id": speaker_id,
188
+ "chapter_id": chapter_id,
189
+ "file": os.path.join(transcript_dir_path, audio_file),
190
+ "text": transcript,
191
+ }
192
+ key += 1