File size: 10,902 Bytes
7725656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
'''
Script on Cleansing Wikipedia Data that has been extracted from extract_raw_wiki_data.py
'''
#core functionality modules
import os, gc
import logging
import argparse
import warnings

from functools import partial

#text preprocess modules
import re
import urllib
from xml.etree import ElementTree as ET

#dataset related modules
import numpy as np
import pandas as pd


### MODULES DEFINITION ###
#create custom type-checking of incoming ArgParse
def argparse_bool_check(value: str):
    #cast str with value like float into actual float
    try:
        value = float(value)
    #can't be parsed as float, keep as it is
    except ValueError:
        pass

    #cast float-like value (incl int) into str
    if isinstance(value, float) and int(value) == value:
        value = str(int(value))
    #raise ArgumentTypeError if the value isn't in string already
    else:
        if not isinstance(value, str):
            raise argparse.ArgumentTypeError(f"Not the correct value (args: {value})! Expected is cast-able to '1' or '0' or already in string. Please rectify!")
    #check for these combinations of values
    if value.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif value.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise argparse.ArgumentTypeError(f"Value Error! Not the correct value (args: {value})! Please rectify!")


def set_logger():
    # Set up the logger
    logging.basicConfig(
        level=logging.INFO,  # Set the desired logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
        format='%(asctime)s [%(levelname)s]: %(message)s',  # Customize the log message format
        datefmt='%Y-%m-%d %H:%M:%S'  # Customize the date/time format
    )

    # Create a file handler to write logs into a file
    file_handler = logging.FileHandler('app.log')

    # Set the log level for the file handler
    file_handler.setLevel(logging.INFO) 

    # Create a formatter for the file handler (customize the log format for the file)
    file_formatter = logging.Formatter('%(asctime)s [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
    file_handler.setFormatter(file_formatter)

    logger = logging.getLogger("Wiki Dataset Generation")
    logger.addHandler(file_handler)

    return logger


#wrapper fn of text-cleansing
def text_cleansing_wrapper(fn, exception_class_names = []):

    #ensure caught exception class names passed to decorator is a list (if provided)
    if not isinstance(exception_class_names, list):
        raise TypeError("Exception Class Name for Wrapper is not a list!")
    #ensure all values of caught exception class name list is a string
    if not all([isinstance(val, str) for val in exception_class_names]):
        raise ValueError("Found an element of Exception Class Name for Wrapper that is not a string!")

    #lowercase all exception class name
    exception_class_names = [val.lower() for val in exception_class_names]
    if len(exception_class_names) == 0:
        warnings.warn("The wrapper receives 0 `exception_class_names` to be warned! Will return the function value with its input!")

    def text_fn_wrapper(text: str):
        try:
            return fn(text)
        except Exception as e:
            _exc_name = type(e).__name__
            if _exc_name.lower() not in exception_class_names and len(exception_class_names)>0:
                raise Exception(f"Exception Occured of {_exc_name}!") from e
            else:
                _followup_msg = "Returning the input as it is..."
                _text_warn = f"An exception of {_exc_name} occured! {_followup_msg}"
                warnings.warn(_text_warn)
                return text

    return text_fn_wrapper


#create html tags cleanser of a given text
partial_decorator = partial(text_cleansing_wrapper, exception_class_names=["parseerror"])
@partial_decorator
def remove_html_tags(text: str):
    #extracted from "https://stackoverflow.com/a/9662410", w/ additional decorator of error handler
    return ''.join(ET.fromstring(text).itertext())


#create non-ascii removal of text
@text_cleansing_wrapper
def decode_url_and_remove_non_ascii(text: str):
    # return (urllib.parse.unquote(text)).encode('utf8', errors='ignore').decode().strip()
    return (urllib.parse.unquote(text)).encode('ascii', errors='ignore').decode().strip()

#create excessive whitespace removal of text
@text_cleansing_wrapper
def remove_excessive_whitespace(text: str):
    return re.sub("(\s)(\s+)", "\1", text).strip()

#create non-alphanumeric removal of text
@text_cleansing_wrapper
def remove_non_alphanumeric(text: str):
    return re.sub("[^a-z0-9\s]", "", text, flags=re.I).strip()

def cleanse_wiki_text(text: str):
    return remove_html_tags(decode_url_and_remove_non_ascii(text))

def normalize_wiki_title(text: str):
    return remove_non_alphanumeric(remove_excessive_whitespace(text.lower()))


### MAIN CODE ###
if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument("--raw-csv-path", help="Relative location of csv file containing raw Wikipedia data")
    parser.add_argument("--drop-hard-dupl", help="""Flag whether to drop hard duplicates
                        (exact values of data of relevant text fields, Titles & Desc)""",
          default=True, type=argparse_bool_check)
    parser.add_argument("--drop-soft-dupl", help="""Flag whether to drop soft duplicates
                        (duplicates after cleansed and normalized relevant text fields, Titles & Desc)""",
          default=True, type=argparse_bool_check)
    parser.add_argument("--save-dir-path", help="""Relative dir path of saved Wikipedia CSV data
                        to the `cleanse_wiki_data.py` script dir""",
            default=os.path.dirname(os.path.abspath(__file__)))

    args = parser.parse_args()


    expected_colnames = ["id", "url", "title", "text"]

    logger = set_logger()
    logger.info("Parsing arguments...")

    raw_data_path = args.raw_csv_path
    drop_hard_dupl = args.drop_hard_dupl
    drop_soft_dupl = args.drop_soft_dupl
    save_dir = args.save_dir_path

    df = pd.read_csv(raw_data_path)
    if len(set(df.columns).difference(set(expected_colnames))) != 0 or len(set(expected_colnames).difference(set(df.columns))) != 0:
        raise ValueError(f"The data schema expected, consist of columns: {', '.join(df.columns.to_list())} doesn't match with expected column values of {', '.join(expected_colnames)}!")

    if (not drop_hard_dupl) and (not drop_soft_dupl):
        raise AssertionError("The script won't run with both `drop-hard-dupl` and `drop-soft-dupl` args turned off!")
    elif (not drop_hard_dupl):
        warnings.warn("The args of `drop_hard_dupl` isn't turned off! Possibly the data will contain one template value of Wikipedia (usually no contribution text!)")

    #will save id identifier colname first (popping first list val)
    id_colname = expected_colnames.pop(0)

    # if any of the data has duplicate values from columns checked (url, title, or text),
    # it means the data integrity is questionable
    # i.e. copied from other article or filled with template text
    # hence, we will delete those duplicated datasets

    suffix_file = "_dedup_cleansed"
    #hard duplicate drop (drop all duplicate values that has exact same text on expected unique colnames)
    if drop_hard_dupl:

        for colname in expected_colnames:
            logger.info(f"Checking data integrity on column {colname} on removing hard-duplicate(s)...")
            dupl_text_df = df[df.duplicated(subset=colname,keep=False)]
            shape_of_dupl_data = dupl_text_df.shape[0]

            if shape_of_dupl_data > 0:
                logger.info(f"Found {shape_of_dupl_data} data duplicated! Will be dropped")
                df.drop_duplicates(subset=colname, keep=False, inplace=True)


        #check id/idx of the cleansed data, whether it has duplicate
        # (the duplication of id/idx should came from the very first extraction, not from the cleansing)

        if df[df.duplicated(subset=id_colname,keep=False)].shape[0] > 0:
            logger.info("Duplicated ID found! Re-assigning ID to the new ones based on `df.reset_index` method!")
            df[id_colname] = df.reset_index().index

    #soft duplicate drop (drop all except one duplicate values that has exact same text on expected unique colnames)
    #keep the data that has longest value of its raw form
    if drop_soft_dupl:

        idx_to_keep = set(df.index.to_list())
        #clean from text & title only, url isn't needed for this process
        expected_colnames.remove("url")

        for colname in expected_colnames:
            logger.info(f"Checking data integrity on column {colname} on removing soft-duplicate(s)...")
            _df = df.copy(deep=True)

            #define text processing fn for soft-duplicate cleansing
            #text processing for all colums (text & title)
            _df = _df[[colname]]
            _df[colname] = _df[colname].astype("str")
            logger.info(f"Cleansing the data based on {colname}")
            _df[colname+"_raw_len"] = _df[colname].apply(len)
            _df[colname+"_cleansed"] = _df[colname].apply(cleanse_wiki_text)
            if colname == "title":
                # title text has been cleansed by `cleanse_wiki_text` fn, but needs to normalized on
                # whitespaces, non alphanum syms (incl. punctuations), and case (all lowercased)
                _df[colname+"_cleansed"] = _df[colname+"_cleansed"].apply(normalize_wiki_title)

            #choose the data to keep by "ranking" it according to len of its raw text (greatest to keep)
            logger.info(f"Ranking and grouping the data based on {colname}")
            _df["rk"] = _df.groupby(colname+"_cleansed")[colname+"_raw_len"].rank(method="min", ascending=False)
            shape_of_dupl_data = _df[_df["rk"]>1].shape[0]

            if shape_of_dupl_data > 0:
                logger.info(f"Found {shape_of_dupl_data} data duplicated! Will be dropped")
                _idx_to_keep = _df[_df["rk"]==1].index.to_list()
                if len(_idx_to_keep)+shape_of_dupl_data != df.shape[0]:
                    raise AssertionError("Mismatch of data number!")
                idx_to_keep = idx_to_keep.intersection(set(_idx_to_keep))
            del _df
            gc.collect()

        logger.info(f"The final data kept is {len(idx_to_keep)} from {df.shape[0]}")
        df = df.loc[list(idx_to_keep),:]

    logger.info("Saving dataset cleansed form...")
    #input path splitted by ("/") for the last entry should return filename
    #whereas the filename splitted by (".") except the last value should return the filename w/o ".csv" extension
    
    _save_fn = ".".join(raw_data_path.split("/")[-1].split(".")[:-1]) + suffix_file + ".csv"
    df.to_csv(f"{save_dir}/{_save_fn}", index=False)