File size: 5,210 Bytes
4c6e74f
596ee7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c6e74f
df769ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
annotations_creators:
- machine-generated
language:
- en
language_creators:
- found
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: unarXive citation recommendation
size_categories:
- 1M<n<10M
tags:
- arXiv.org
- arXiv
- citation recommendation
- citation
- reference
- publication
- paper
- preprint
- section
- physics
- mathematics
- computer science
- cs
task_categories:
- text-classification
task_ids:
- multi-class-classification
source_datasets:
- extended|10.5281/zenodo.7752615
dataset_info:
  features:
  - name: _id
    dtype: string
  - name: text
    dtype: string
  - name: marker
    dtype: string
  - name: marker_offsets
    sequence:
      sequence: int64
  - name: label
    dtype: string
  config_name: .
  splits:
  - name: train
    num_bytes: 5457336094
    num_examples: 2043192
  - name: test
    num_bytes: 551012459
    num_examples: 225084
  - name: validation
    num_bytes: 586422261
    num_examples: 225348
  download_size: 7005370567
  dataset_size: 6594770814
---
# Dataset Card for unarXive citation recommendation

## Dataset Description

* **Homepage:** [https://github.com/IllDepence/unarXive](https://github.com/IllDepence/unarXive)
* **Paper:** [unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network](https://arxiv.org/abs/2303.14957)

### Dataset Summary

The unarXive citation recommendation dataset contains 2.5 Million paragraphs from computer science papers and with an annotated citation marker. The paragraphs and citation information is derived from [unarXive](https://github.com/IllDepence/unarXive).

Note that citation infromation is only given as the [OpenAlex](https://openalex.org/) ID of the cited paper. An important consideration for models is therefore if the data is used *as is*, or if additional information of the cited papers (metadata, abstracts, full-text, etc.) is used.

The dataset can be used as follows.

```
from datasets import load_dataset

citrec_data = load_dataset('saier/unarXive_citrec')
citrec_data = citrec_data.class_encode_column('label')  # assign target label column
citrec_data = citrec_data.remove_columns('_id')         # remove sample ID column
```

## Dataset Structure

### Data Instances

Each data instance contains the paragraph’s text as well as information on one of the contained citation markers, in the form of a label (cited document OpenAlex ID), citation marker, and citation marker offset. An example is shown below.

```
{'_id': '7c1464bb-1f0f-4b38-b1a3-85754eaf6ad1',
 'label': 'https://openalex.org/W3115081393',
 'marker': '[1]',
 'marker_offsets': [[316, 319]],
 'text': 'Data: For sentiment analysis on Hindi-English CM tweets, we used the '
         'dataset provided by the organizers of Task 9 at SemEval-2020.\n'
         'The training dataset consists of 14 thousand tweets.\n'
         'Whereas, the validation dataset as well as the test dataset contain '
         '3 thousand tweets each.\n'
         'The details of the dataset are given in [1]}.\n'
         'For this task, we did not use any external dataset.\n'}
```

### Data Splits

The data is split into training, development, and testing data as follows.

* Training: 2,043,192 instances
* Development: 225,084 instances
* Testing: 225,348 instances

## Dataset Creation

### Source Data

The paragraph texts are extracted from the data set [unarXive](https://github.com/IllDepence/unarXive).

#### Who are the source language producers?

The paragraphs were written by the authors of the arXiv papers. In file `license_info.jsonl` author and text licensing information can be found for all samples, An example is shown below.

```

{'authors': 'Yusuke Sekikawa, Teppei Suzuki',
 'license': 'http://creativecommons.org/licenses/by/4.0/',
 'paper_arxiv_id': '2011.09852',
 'sample_ids': ['cc375518-347c-43d0-bfb2-f88564d66df8',
                '18dc073e-a48e-488e-b34c-e5fc3cb8a4ca',
                '0c2e89b3-d863-4bc2-9e11-8f6c48d867cb',
                'd85e46cf-b11d-49b6-801b-089aa2dd037d',
                '92915cea-17ab-4a98-aad2-417f6cdd53d2',
                'e88cb422-47b7-4f69-9b0b-fbddf8140d98',
                '4f5094a4-0e6e-46ae-a34d-e15ce0b9803c',
                '59003494-096f-4a7c-ad65-342b74eed561',
                '6a99b3f5-217e-4d3d-a770-693483ef8670']}
```

### Annotations

Citation information in unarXive is automatically determined ([see implementation](https://github.com/IllDepence/unarXive/blob/master/src/match_references_openalex.py)).

<!--

## Considerations for Using the Data

### Discussion and Biases

TODO

### Other Known Limitations

TODO

-->

## Additional Information

### Licensing information

The dataset is released under the Creative Commons Attribution-ShareAlike 4.0.

### Citation Information

```
@inproceedings{Saier2023unarXive,
  author        = {Saier, Tarek and Krause, Johan and F\"{a}rber, Michael},
  title         = {{unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network}},
  booktitle     = {Proceedings of the 23rd ACM/IEEE Joint Conference on Digital Libraries},
  year          = {2023},
  series        = {JCDL '23}
}
```