Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
multi-class-classification
Languages:
English
Size:
1M - 10M
ArXiv:
License:
File size: 5,210 Bytes
4c6e74f 596ee7f 4c6e74f df769ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
---
annotations_creators:
- machine-generated
language:
- en
language_creators:
- found
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: unarXive citation recommendation
size_categories:
- 1M<n<10M
tags:
- arXiv.org
- arXiv
- citation recommendation
- citation
- reference
- publication
- paper
- preprint
- section
- physics
- mathematics
- computer science
- cs
task_categories:
- text-classification
task_ids:
- multi-class-classification
source_datasets:
- extended|10.5281/zenodo.7752615
dataset_info:
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: marker
dtype: string
- name: marker_offsets
sequence:
sequence: int64
- name: label
dtype: string
config_name: .
splits:
- name: train
num_bytes: 5457336094
num_examples: 2043192
- name: test
num_bytes: 551012459
num_examples: 225084
- name: validation
num_bytes: 586422261
num_examples: 225348
download_size: 7005370567
dataset_size: 6594770814
---
# Dataset Card for unarXive citation recommendation
## Dataset Description
* **Homepage:** [https://github.com/IllDepence/unarXive](https://github.com/IllDepence/unarXive)
* **Paper:** [unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network](https://arxiv.org/abs/2303.14957)
### Dataset Summary
The unarXive citation recommendation dataset contains 2.5 Million paragraphs from computer science papers and with an annotated citation marker. The paragraphs and citation information is derived from [unarXive](https://github.com/IllDepence/unarXive).
Note that citation infromation is only given as the [OpenAlex](https://openalex.org/) ID of the cited paper. An important consideration for models is therefore if the data is used *as is*, or if additional information of the cited papers (metadata, abstracts, full-text, etc.) is used.
The dataset can be used as follows.
```
from datasets import load_dataset
citrec_data = load_dataset('saier/unarXive_citrec')
citrec_data = citrec_data.class_encode_column('label') # assign target label column
citrec_data = citrec_data.remove_columns('_id') # remove sample ID column
```
## Dataset Structure
### Data Instances
Each data instance contains the paragraph’s text as well as information on one of the contained citation markers, in the form of a label (cited document OpenAlex ID), citation marker, and citation marker offset. An example is shown below.
```
{'_id': '7c1464bb-1f0f-4b38-b1a3-85754eaf6ad1',
'label': 'https://openalex.org/W3115081393',
'marker': '[1]',
'marker_offsets': [[316, 319]],
'text': 'Data: For sentiment analysis on Hindi-English CM tweets, we used the '
'dataset provided by the organizers of Task 9 at SemEval-2020.\n'
'The training dataset consists of 14 thousand tweets.\n'
'Whereas, the validation dataset as well as the test dataset contain '
'3 thousand tweets each.\n'
'The details of the dataset are given in [1]}.\n'
'For this task, we did not use any external dataset.\n'}
```
### Data Splits
The data is split into training, development, and testing data as follows.
* Training: 2,043,192 instances
* Development: 225,084 instances
* Testing: 225,348 instances
## Dataset Creation
### Source Data
The paragraph texts are extracted from the data set [unarXive](https://github.com/IllDepence/unarXive).
#### Who are the source language producers?
The paragraphs were written by the authors of the arXiv papers. In file `license_info.jsonl` author and text licensing information can be found for all samples, An example is shown below.
```
{'authors': 'Yusuke Sekikawa, Teppei Suzuki',
'license': 'http://creativecommons.org/licenses/by/4.0/',
'paper_arxiv_id': '2011.09852',
'sample_ids': ['cc375518-347c-43d0-bfb2-f88564d66df8',
'18dc073e-a48e-488e-b34c-e5fc3cb8a4ca',
'0c2e89b3-d863-4bc2-9e11-8f6c48d867cb',
'd85e46cf-b11d-49b6-801b-089aa2dd037d',
'92915cea-17ab-4a98-aad2-417f6cdd53d2',
'e88cb422-47b7-4f69-9b0b-fbddf8140d98',
'4f5094a4-0e6e-46ae-a34d-e15ce0b9803c',
'59003494-096f-4a7c-ad65-342b74eed561',
'6a99b3f5-217e-4d3d-a770-693483ef8670']}
```
### Annotations
Citation information in unarXive is automatically determined ([see implementation](https://github.com/IllDepence/unarXive/blob/master/src/match_references_openalex.py)).
<!--
## Considerations for Using the Data
### Discussion and Biases
TODO
### Other Known Limitations
TODO
-->
## Additional Information
### Licensing information
The dataset is released under the Creative Commons Attribution-ShareAlike 4.0.
### Citation Information
```
@inproceedings{Saier2023unarXive,
author = {Saier, Tarek and Krause, Johan and F\"{a}rber, Michael},
title = {{unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network}},
booktitle = {Proceedings of the 23rd ACM/IEEE Joint Conference on Digital Libraries},
year = {2023},
series = {JCDL '23}
}
```
|