Datasets:

Languages:
English
Size:
n<1K
ArXiv:
License:
system HF staff commited on
Commit
1e21651
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

Files changed (4) hide show
  1. .gitattributes +27 -0
  2. dataset_infos.json +1 -0
  3. dummy/0.1.0/dummy_data.zip +3 -0
  4. mwsc.py +122 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "Examples taken from the Winograd Schema Challenge modified to ensure that answers are a single word from the context.\nThis modified Winograd Schema Challenge (MWSC) ensures that scores are neither inflated nor deflated by oddities in phrasing.\n", "citation": "@article{McCann2018decaNLP,\n title={The Natural Language Decathlon: Multitask Learning as Question Answering},\n author={Bryan McCann and Nitish Shirish Keskar and Caiming Xiong and Richard Socher},\n journal={arXiv preprint arXiv:1806.08730},\n year={2018}\n}\n", "homepage": "http://decanlp.com", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "options": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "mwsc", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 11022, "num_examples": 80, "dataset_name": "mwsc"}, "test": {"name": "test", "num_bytes": 15220, "num_examples": 100, "dataset_name": "mwsc"}, "validation": {"name": "validation", "num_bytes": 13109, "num_examples": 82, "dataset_name": "mwsc"}}, "download_checksums": {"https://raw.githubusercontent.com/salesforce/decaNLP/1e9605f246b9e05199b28bde2a2093bc49feeeaa/local_data/schema.txt": {"num_bytes": 19197, "checksum": "31da9bee05796bbe0f6c957f54d1eb82eb5c644a8ee59f2ff1fa890eff3885dd"}}, "download_size": 19197, "dataset_size": 39351, "size_in_bytes": 58548}}
dummy/0.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59036cd4e01170c8ff1a1e5c078698469aa453884dd1cfb69305e46e8806196f
3
+ size 478
mwsc.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A modification of the Winograd Schema Challenge to ensure answers are a single context word"""
2
+ from __future__ import absolute_import, division, print_function
3
+
4
+ import os
5
+ import re
6
+
7
+ import datasets
8
+
9
+
10
+ _CITATION = """\
11
+ @article{McCann2018decaNLP,
12
+ title={The Natural Language Decathlon: Multitask Learning as Question Answering},
13
+ author={Bryan McCann and Nitish Shirish Keskar and Caiming Xiong and Richard Socher},
14
+ journal={arXiv preprint arXiv:1806.08730},
15
+ year={2018}
16
+ }
17
+ """
18
+
19
+ _DESCRIPTION = """\
20
+ Examples taken from the Winograd Schema Challenge modified to ensure that answers are a single word from the context.
21
+ This modified Winograd Schema Challenge (MWSC) ensures that scores are neither inflated nor deflated by oddities in phrasing.
22
+ """
23
+
24
+ _DATA_URL = "https://raw.githubusercontent.com/salesforce/decaNLP/1e9605f246b9e05199b28bde2a2093bc49feeeaa/local_data/schema.txt"
25
+ # Alternate: https://s3.amazonaws.com/research.metamind.io/decaNLP/data/schema.txt
26
+
27
+
28
+ class MWSC(datasets.GeneratorBasedBuilder):
29
+ """MWSC: modified Winograd Schema Challenge"""
30
+
31
+ VERSION = datasets.Version("0.1.0")
32
+
33
+ def _info(self):
34
+ return datasets.DatasetInfo(
35
+ description=_DESCRIPTION,
36
+ features=datasets.Features(
37
+ {
38
+ "sentence": datasets.Value("string"),
39
+ "question": datasets.Value("string"),
40
+ "options": datasets.features.Sequence(datasets.Value("string")),
41
+ "answer": datasets.Value("string"),
42
+ }
43
+ ),
44
+ # If there's a common (input, target) tuple from the features,
45
+ # specify them here. They'll be used if as_supervised=True in
46
+ # builder.as_dataset.
47
+ supervised_keys=None,
48
+ # Homepage of the dataset for documentation
49
+ homepage="http://decanlp.com",
50
+ citation=_CITATION,
51
+ )
52
+
53
+ def _split_generators(self, dl_manager):
54
+ """Returns SplitGenerators."""
55
+ schemas_file = dl_manager.download_and_extract(_DATA_URL)
56
+
57
+ if os.path.isdir(schemas_file):
58
+ # During testing the download manager mock gives us a directory
59
+ schemas_file = os.path.join(schemas_file, "schema.txt")
60
+
61
+ return [
62
+ datasets.SplitGenerator(
63
+ name=datasets.Split.TRAIN,
64
+ gen_kwargs={"filepath": schemas_file, "split": "train"},
65
+ ),
66
+ datasets.SplitGenerator(
67
+ name=datasets.Split.TEST,
68
+ gen_kwargs={"filepath": schemas_file, "split": "test"},
69
+ ),
70
+ datasets.SplitGenerator(
71
+ name=datasets.Split.VALIDATION,
72
+ gen_kwargs={"filepath": schemas_file, "split": "dev"},
73
+ ),
74
+ ]
75
+
76
+ def _get_both_schema(self, context):
77
+ """Split [option1/option2] into 2 sentences.
78
+ From https://github.com/salesforce/decaNLP/blob/1e9605f246b9e05199b28bde2a2093bc49feeeaa/text/torchtext/datasets/generic.py#L815-L827"""
79
+ pattern = r"\[.*\]"
80
+ variations = [x[1:-1].split("/") for x in re.findall(pattern, context)]
81
+ splits = re.split(pattern, context)
82
+ results = []
83
+ for which_schema in range(2):
84
+ vs = [v[which_schema] for v in variations]
85
+ context = ""
86
+ for idx in range(len(splits)):
87
+ context += splits[idx]
88
+ if idx < len(vs):
89
+ context += vs[idx]
90
+ results.append(context)
91
+ return results
92
+
93
+ def _generate_examples(self, filepath, split):
94
+ """Yields examples."""
95
+
96
+ schemas = []
97
+ with open(filepath, encoding="utf-8") as schema_file:
98
+ schema = []
99
+ for line in schema_file:
100
+ if len(line.split()) == 0:
101
+ schemas.append(schema)
102
+ schema = []
103
+ continue
104
+ else:
105
+ schema.append(line.strip())
106
+
107
+ # Train/test/dev split from decaNLP code
108
+ splits = {}
109
+ traindev = schemas[:-50]
110
+ splits["test"] = schemas[-50:]
111
+ splits["train"] = traindev[:40]
112
+ splits["dev"] = traindev[40:]
113
+
114
+ idx = 0
115
+ for schema in splits[split]:
116
+ sentence, question, answers = schema
117
+ sentence = self._get_both_schema(sentence)
118
+ question = self._get_both_schema(question)
119
+ answers = answers.split("/")
120
+ for i in range(2):
121
+ yield idx, {"sentence": sentence[i], "question": question[i], "options": answers, "answer": answers[i]}
122
+ idx += 1