sanak commited on
Commit
427d03a
·
1 Parent(s): d9b1715

Update IDD.py

Browse files
Files changed (1) hide show
  1. IDD.py +126 -0
IDD.py CHANGED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # TODO: Address all TODOs and remove all explanatory comments
15
+ """TODO: Add a description here."""
16
+
17
+
18
+ import csv
19
+ import json
20
+ import os
21
+
22
+ import datasets
23
+
24
+
25
+ # TODO: Add BibTeX citation
26
+ # Find for instance the citation on arxiv or on the dataset repo/website
27
+ _CITATION = """\
28
+ @InProceedings{huggingface:dataset,
29
+ title = {A great new dataset},
30
+ author={huggingface, Inc.
31
+ },
32
+ year={2020}
33
+ }
34
+ """
35
+
36
+ # TODO: Add description of the dataset here
37
+ # You can copy an official description
38
+ _DESCRIPTION = """\
39
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
40
+ """
41
+
42
+ # TODO: Add a link to an official homepage for the dataset here
43
+ _HOMEPAGE = ""
44
+
45
+ # TODO: Add the licence for the dataset here if you can find it
46
+ _LICENSE = ""
47
+
48
+ # TODO: Add link to the official dataset URLs here
49
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
50
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
51
+ _URLS = 'https://huggingface.co/datasets/sanak/IDD/resolve/main/idd-detection.tar.gz'
52
+
53
+
54
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
55
+ class IDD(datasets.GeneratorBasedBuilder):
56
+ """TODO: Short description of my dataset."""
57
+
58
+ VERSION = datasets.Version("1.1.0")
59
+
60
+ # This is an example of a dataset with multiple configurations.
61
+ # If you don't want/need to define several sub-sets in your dataset,
62
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
63
+
64
+ # If you need to make complex sub-parts in the datasets with configurable options
65
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
66
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
67
+
68
+ # You will be able to load one or the other configurations in the following list with
69
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
70
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
71
+
72
+ def _info(self):
73
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
74
+ # This is the name of the configuration selected in BUILDER_CONFIGS above
75
+
76
+
77
+ return datasets.DatasetInfo(
78
+ # This is the description that will appear on the datasets page.
79
+ description=_DESCRIPTION,
80
+ # This defines the different columns of the dataset and their types
81
+ features = datasets.Features(
82
+ {
83
+
84
+ "image": datasets.Image()
85
+ # These are the features of your dataset like images, labels ...
86
+ }
87
+ )
88
+ homepage="https://huggingface.co/datasets/sanak/IDD",
89
+ # License for the dataset if available
90
+ license=_LICENSE,
91
+ # Citation for the dataset
92
+ citation=_CITATION,
93
+ )
94
+
95
+ def _split_generators(self, dl_manager):
96
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
97
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
98
+
99
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
100
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
101
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
102
+ path = dl_manager.download(_URLS)
103
+ data_dir = dl_manager.download_and_extract(urls)
104
+ return [
105
+ datasets.SplitGenerator(
106
+ name=datasets.Split.TRAIN,
107
+ # These kwargs will be passed to _generate_examples
108
+ gen_kwargs={
109
+
110
+ "image": path
111
+ }
112
+
113
+ ]
114
+
115
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
116
+ def _generate_examples(self, filepath, split):
117
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
118
+ idx = 0
119
+ #itrate trough images
120
+ from file_path , image in images:
121
+ yield idx, {
122
+ "image": {"filepath": file_path, 'image': image.read()},
123
+ }
124
+ idx += 1
125
+
126
+