File size: 4,403 Bytes
4065152
 
 
 
 
 
 
 
 
 
 
 
be77458
4065152
 
 
 
 
221543a
be77458
221543a
 
be77458
221543a
be77458
7a5d2b0
be77458
612933a
 
 
be77458
612933a
be77458
612933a
be77458
612933a
 
 
be77458
612933a
be77458
612933a
be77458
612933a
 
 
be77458
612933a
be77458
612933a
be77458
 
 
 
 
 
 
 
 
612933a
 
 
be77458
612933a
be77458
612933a
be77458
612933a
 
 
be77458
612933a
be77458
612933a
be77458
612933a
 
 
be77458
612933a
be77458
612933a
be77458
4065152
c7ddfbd
 
 
 
 
 
 
 
fa5b6e3
c7ddfbd
 
 
 
 
 
 
 
 
4065152
c7ddfbd
 
 
 
 
4065152
c7ddfbd
4065152
c7ddfbd
 
 
 
 
 
 
 
 
 
 
 
4065152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7ddfbd
 
4065152
c7ddfbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4065152
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
license: cc-by-4.0
task_categories:
- text-to-speech
language:
- en
- fr
- de
- es
- it
- pl
- nl
- pt
tags:
- speech
- synthetic
size_categories:
- 100M<n<1B
configs:
- config_name: english
  data_files:
  - split: train
    path: english/**/train*.tar.gz
  - split: test
    path: english/**/test*.tar.gz
  - split: valid
    path: english/**/dev*.tar.gz
- config_name: german
  data_files:
  - split: train
    path: german/train*.tar.gz
  - split: test
    path: german/test*.tar.gz
  - split: valid
    path: german/dev*.tar.gz
- config_name: french
  data_files:
  - split: train
    path: french/train*.tar.gz
  - split: test
    path: french/test*.tar.gz
  - split: valid
    path: french/dev*.tar.gz
- config_name: spanish
  data_files:
  - split: train
    path: spanish/train*.tar.gz
  - split: test
    path: spanish/test*.tar.gz
  - split: valid
    path: spanish/dev*.tar.gz
- config_name: portuguese
  data_files:
  - split: train
    path: portuguese/train*.tar.gz
  - split: test
    path: portuguese/test*.tar.gz
  - split: valid
    path: portuguese/dev*.tar.gz
- config_name: italian
  data_files:
  - split: train
    path: italian/train*.tar.gz
  - split: test
    path: italian/test*.tar.gz
  - split: valid
    path: italian/dev*.tar.gz
- config_name: polish
  data_files:
  - split: train
    path: polish/train*.tar.gz
  - split: test
    path: polish/test*.tar.gz
  - split: valid
    path: polish/dev*.tar.gz
- config_name: dutch
  data_files:
  - split: train
    path: dutch/train*.tar.gz
  - split: test
    path: dutch/test*.tar.gz
  - split: valid
    path: dutch/dev*.tar.gz
---
# MLS-Sidon

## Overview
This dataset is a **cleansed version of Multilingual LibriSpeech (MLS)** with **Sidon** speech restoration mode for **Speech Synthesis** and **Spoken Language Modeling**.  

The dataset is provided in **[WebDataset](https://github.com/webdataset/webdataset) format** for efficient large-scale training.  

- **Source**: [Multilingual LibriSpeech](https://www.openslr.org/94/)
- **Languages**: English, German, French, Spanish, Italian, Polish, Dutch, Portuguese  
- **Format**: WebDataset (`.tar` shards)  
- **License**: [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)

---

## Dataset Structure
Each sample in the dataset contains:  

- **`flac`** — audio file (48 kHz, single channel)  
- **`metadata.json`** *(optional)* — metadata including language, speaker ID, and original MLS reference  

Example (inside a `.tar` shard):  
```

000001.flac
000001.metadata.json
000002.flac
000002.metadata.json
...

````

---

## How to Use

### With 🤗 Datasets
You can load the WebDataset directly with Hugging Face’s `datasets` library:

```python
import datasets
from IPython.display import Audio
from huggingface_hub import hf_hub_download
import yaml

base_url = "https://huggingface.co/datasets/sarulab-speech/mls_sidon/resolve/main/"
language = 'english'
split = 'test'
data_file_path = hf_hub_download(repo_id="sarulab-speech/mls_sidon", repo_type="dataset", filename="paths.yaml")
paths = yaml.load(open(data_file_path, "r"), Loader=yaml.FullLoader)

ds = datasets.load_dataset("webdataset", data_files=[base_url + p for p in paths['english'][split]],streaming=True)['train']

sample = next(iter(ds))
audio = sample['flac']
print(sample['metadata.json'])
Audio(audio['array'], rate=audio['sampling_rate'])
````

Replace `language` with the language (e.g., `english`, `german`).



---

## Citation

If you use this dataset, please cite Sidon and the original MLS paper:

```
@misc{nakata2025sidonfastrobustopensource,
      title={Sidon: Fast and Robust Open-Source Multilingual Speech Restoration for Large-scale Dataset Cleansing}, 
      author={Wataru Nakata and Yuki Saito and Yota Ueda and Hiroshi Saruwatari},
      year={2025},
      eprint={2509.17052},
      archivePrefix={arXiv},
      primaryClass={cs.SD},
      url={https://arxiv.org/abs/2509.17052}, 
}
```


```
@inproceedings{pratap2020mls,
  title     = {MLS: A Large-Scale Multilingual Dataset for Speech Research},
  author    = {Pratap, Vineel and Xu, Qiantong and Sriram, Anuroop and others},
  booktitle = {Interspeech},
  year      = {2020}
}
```


---

## License

This dataset is released under [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/).

---

## Acknowledgements

* **Original data**: [Multilingual LibriSpeech (MLS)](https://www.openslr.org/94/)