Datasets:
File size: 4,403 Bytes
4065152 be77458 4065152 221543a be77458 221543a be77458 221543a be77458 7a5d2b0 be77458 612933a be77458 612933a be77458 612933a be77458 612933a be77458 612933a be77458 612933a be77458 612933a be77458 612933a be77458 612933a be77458 612933a be77458 612933a be77458 612933a be77458 612933a be77458 612933a be77458 612933a be77458 612933a be77458 612933a be77458 612933a be77458 4065152 c7ddfbd fa5b6e3 c7ddfbd 4065152 c7ddfbd 4065152 c7ddfbd 4065152 c7ddfbd 4065152 c7ddfbd 4065152 c7ddfbd 4065152 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
license: cc-by-4.0
task_categories:
- text-to-speech
language:
- en
- fr
- de
- es
- it
- pl
- nl
- pt
tags:
- speech
- synthetic
size_categories:
- 100M<n<1B
configs:
- config_name: english
data_files:
- split: train
path: english/**/train*.tar.gz
- split: test
path: english/**/test*.tar.gz
- split: valid
path: english/**/dev*.tar.gz
- config_name: german
data_files:
- split: train
path: german/train*.tar.gz
- split: test
path: german/test*.tar.gz
- split: valid
path: german/dev*.tar.gz
- config_name: french
data_files:
- split: train
path: french/train*.tar.gz
- split: test
path: french/test*.tar.gz
- split: valid
path: french/dev*.tar.gz
- config_name: spanish
data_files:
- split: train
path: spanish/train*.tar.gz
- split: test
path: spanish/test*.tar.gz
- split: valid
path: spanish/dev*.tar.gz
- config_name: portuguese
data_files:
- split: train
path: portuguese/train*.tar.gz
- split: test
path: portuguese/test*.tar.gz
- split: valid
path: portuguese/dev*.tar.gz
- config_name: italian
data_files:
- split: train
path: italian/train*.tar.gz
- split: test
path: italian/test*.tar.gz
- split: valid
path: italian/dev*.tar.gz
- config_name: polish
data_files:
- split: train
path: polish/train*.tar.gz
- split: test
path: polish/test*.tar.gz
- split: valid
path: polish/dev*.tar.gz
- config_name: dutch
data_files:
- split: train
path: dutch/train*.tar.gz
- split: test
path: dutch/test*.tar.gz
- split: valid
path: dutch/dev*.tar.gz
---
# MLS-Sidon
## Overview
This dataset is a **cleansed version of Multilingual LibriSpeech (MLS)** with **Sidon** speech restoration mode for **Speech Synthesis** and **Spoken Language Modeling**.
The dataset is provided in **[WebDataset](https://github.com/webdataset/webdataset) format** for efficient large-scale training.
- **Source**: [Multilingual LibriSpeech](https://www.openslr.org/94/)
- **Languages**: English, German, French, Spanish, Italian, Polish, Dutch, Portuguese
- **Format**: WebDataset (`.tar` shards)
- **License**: [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)
---
## Dataset Structure
Each sample in the dataset contains:
- **`flac`** — audio file (48 kHz, single channel)
- **`metadata.json`** *(optional)* — metadata including language, speaker ID, and original MLS reference
Example (inside a `.tar` shard):
```
000001.flac
000001.metadata.json
000002.flac
000002.metadata.json
...
````
---
## How to Use
### With 🤗 Datasets
You can load the WebDataset directly with Hugging Face’s `datasets` library:
```python
import datasets
from IPython.display import Audio
from huggingface_hub import hf_hub_download
import yaml
base_url = "https://huggingface.co/datasets/sarulab-speech/mls_sidon/resolve/main/"
language = 'english'
split = 'test'
data_file_path = hf_hub_download(repo_id="sarulab-speech/mls_sidon", repo_type="dataset", filename="paths.yaml")
paths = yaml.load(open(data_file_path, "r"), Loader=yaml.FullLoader)
ds = datasets.load_dataset("webdataset", data_files=[base_url + p for p in paths['english'][split]],streaming=True)['train']
sample = next(iter(ds))
audio = sample['flac']
print(sample['metadata.json'])
Audio(audio['array'], rate=audio['sampling_rate'])
````
Replace `language` with the language (e.g., `english`, `german`).
---
## Citation
If you use this dataset, please cite Sidon and the original MLS paper:
```
@misc{nakata2025sidonfastrobustopensource,
title={Sidon: Fast and Robust Open-Source Multilingual Speech Restoration for Large-scale Dataset Cleansing},
author={Wataru Nakata and Yuki Saito and Yota Ueda and Hiroshi Saruwatari},
year={2025},
eprint={2509.17052},
archivePrefix={arXiv},
primaryClass={cs.SD},
url={https://arxiv.org/abs/2509.17052},
}
```
```
@inproceedings{pratap2020mls,
title = {MLS: A Large-Scale Multilingual Dataset for Speech Research},
author = {Pratap, Vineel and Xu, Qiantong and Sriram, Anuroop and others},
booktitle = {Interspeech},
year = {2020}
}
```
---
## License
This dataset is released under [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/).
---
## Acknowledgements
* **Original data**: [Multilingual LibriSpeech (MLS)](https://www.openslr.org/94/) |