Datasets:

Modalities:
Image
Languages:
English
ArXiv:
Libraries:
Datasets
License:
nyu_depth_v2 / nyu_depth_v2.py
sayakpaul's picture
sayakpaul HF staff
fix: basepath for the downloaded and extracted dataset.
0c9913a
raw
history blame
4.56 kB
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NYU-Depth V2."""
import os
import datasets
import h5py
import numpy as np
_CITATION = """\
@inproceedings{Silberman:ECCV12,
author = {Nathan Silberman, Derek Hoiem, Pushmeet Kohli and Rob Fergus},
title = {Indoor Segmentation and Support Inference from RGBD Images},
booktitle = {ECCV},
year = {2012}
}
@inproceedings{icra_2019_fastdepth,
author = {Wofk, Diana and Ma, Fangchang and Yang, Tien-Ju and Karaman, Sertac and Sze, Vivienne},
title = {FastDepth: Fast Monocular Depth Estimation on Embedded Systems},
booktitle = {IEEE International Conference on Robotics and Automation (ICRA)},
year = {2019}
}
"""
_DESCRIPTION = """\
The NYU-Depth V2 data set is comprised of video sequences from a variety of indoor scenes as recorded by both the RGB and Depth cameras from the Microsoft Kinect.
"""
_HOMEPAGE = "https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html"
_LICENSE = "Apace 2.0 License"
_URLS = {
"depth_estimation": {
"train/val": "http://datasets.lids.mit.edu/fastdepth/data/nyudepthv2.tar.gz",
}
}
_IMG_EXTENSIONS = [".h5"]
class NYUDepthV2(datasets.GeneratorBasedBuilder):
"""NYU-Depth V2 dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="depth_estimation",
version=VERSION,
description="The depth estimation variant.",
),
]
DEFAULT_CONFIG_NAME = "depth_estimation"
def _info(self):
features = datasets.Features(
{"image": datasets.Image(), "depth_map": datasets.Image()}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _is_image_file(self, filename):
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L21-L23
return any(filename.endswith(extension) for extension in _IMG_EXTENSIONS)
def _get_file_paths(self, dir):
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L31-L44
file_paths = []
dir = os.path.expanduser(dir)
for target in sorted(os.listdir(dir)):
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
for root, _, fnames in sorted(os.walk(d)):
for fname in sorted(fnames):
if self._is_image_file(fname):
path = os.path.join(root, fname)
file_paths.append(path)
return file_paths
def _h5_loader(self, path):
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L8-L13
h5f = h5py.File(path, "r")
rgb = np.array(h5f["rgb"])
rgb = np.transpose(rgb, (1, 2, 0))
depth = np.array(h5f["depth"])
return rgb, depth
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
base_path = dl_manager.download_and_extract(urls)["train/val"]
train_data_files = self._get_file_paths(
os.path.join(base_path, "nyudepthv2", "train")
)
val_data_files = self._get_file_paths(os.path.join(base_path, "nyudepthv2", "val"))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepaths": train_data_files},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepaths": val_data_files},
),
]
def _generate_examples(self, filepaths):
for idx, filepath in enumerate(filepaths):
image, depth = self._h5_loader(filepath)
yield idx, {"image": image, "depth_map": depth}