--- license: cc-by-sa-4.0 --- ## Breast Cancer Wisconsin Diagnostic Dataset Following description was retrieved from [breast cancer dataset on UCI machine learning repository](https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)). Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. A few of the images can be found at [here](https://pages.cs.wisc.edu/~street/images/). Separating plane described above was obtained using Multisurface Method-Tree (MSM-T), a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes. The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34]. Attribute Information: - ID number - Diagnosis (M = malignant, B = benign) Ten real-valued features are computed for each cell nucleus: - radius (mean of distances from center to points on the perimeter) - texture (standard deviation of gray-scale values) - perimeter - area - smoothness (local variation in radius lengths) - compactness (perimeter^2 / area - 1.0) - concavity (severity of concave portions of the contour) - concave points (number of concave portions of the contour) - symmetry - fractal dimension ("coastline approximation" - 1)