File size: 11,232 Bytes
4b6ea5c 459d6dd bd5d19b 459d6dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': The Eiffel Tower
'1': The Great Wall of China
'2': The Mona Lisa
'3': aircraft carrier
'4': airplane
'5': alarm clock
'6': ambulance
'7': angel
'8': animal migration
'9': ant
'10': anvil
'11': apple
'12': arm
'13': asparagus
'14': axe
'15': backpack
'16': banana
'17': bandage
'18': barn
'19': baseball bat
'20': baseball
'21': basket
'22': basketball
'23': bat
'24': bathtub
'25': beach
'26': bear
'27': beard
'28': bed
'29': bee
'30': belt
'31': bench
'32': bicycle
'33': binoculars
'34': bird
'35': birthday cake
'36': blackberry
'37': blueberry
'38': book
'39': boomerang
'40': bottlecap
'41': bowtie
'42': bracelet
'43': brain
'44': bread
'45': bridge
'46': broccoli
'47': broom
'48': bucket
'49': bulldozer
'50': bus
'51': bush
'52': butterfly
'53': cactus
'54': cake
'55': calculator
'56': calendar
'57': camel
'58': camera
'59': camouflage
'60': campfire
'61': candle
'62': cannon
'63': canoe
'64': car
'65': carrot
'66': castle
'67': cat
'68': ceiling fan
'69': cell phone
'70': cello
'71': chair
'72': chandelier
'73': church
'74': circle
'75': clarinet
'76': clock
'77': cloud
'78': coffee cup
'79': compass
'80': computer
'81': cookie
'82': cooler
'83': couch
'84': cow
'85': crab
'86': crayon
'87': crocodile
'88': crown
'89': cruise ship
'90': cup
'91': diamond
'92': dishwasher
'93': diving board
'94': dog
'95': dolphin
'96': donut
'97': door
'98': dragon
'99': dresser
'100': drill
'101': drums
'102': duck
'103': dumbbell
'104': ear
'105': elbow
'106': elephant
'107': envelope
'108': eraser
'109': eye
'110': eyeglasses
'111': face
'112': fan
'113': feather
'114': fence
'115': finger
'116': fire hydrant
'117': fireplace
'118': firetruck
'119': fish
'120': flamingo
'121': flashlight
'122': flip flops
'123': floor lamp
'124': flower
'125': flying saucer
'126': foot
'127': fork
'128': frog
'129': frying pan
'130': garden hose
'131': garden
'132': giraffe
'133': goatee
'134': golf club
'135': grapes
'136': grass
'137': guitar
'138': hamburger
'139': hammer
'140': hand
'141': harp
'142': hat
'143': headphones
'144': hedgehog
'145': helicopter
'146': helmet
'147': hexagon
'148': hockey puck
'149': hockey stick
'150': horse
'151': hospital
'152': hot air balloon
'153': hot dog
'154': hot tub
'155': hourglass
'156': house plant
'157': house
'158': hurricane
'159': ice cream
'160': jacket
'161': jail
'162': kangaroo
'163': key
'164': keyboard
'165': knee
'166': knife
'167': ladder
'168': lantern
'169': laptop
'170': leaf
'171': leg
'172': light bulb
'173': lighter
'174': lighthouse
'175': lightning
'176': line
'177': lion
'178': lipstick
'179': lobster
'180': lollipop
'181': mailbox
'182': map
'183': marker
'184': matches
'185': megaphone
'186': mermaid
'187': microphone
'188': microwave
'189': monkey
'190': moon
'191': mosquito
'192': motorbike
'193': mountain
'194': mouse
'195': moustache
'196': mouth
'197': mug
'198': mushroom
'199': nail
'200': necklace
'201': nose
'202': ocean
'203': octagon
'204': octopus
'205': onion
'206': oven
'207': owl
'208': paint can
'209': paintbrush
'210': palm tree
'211': panda
'212': pants
'213': paper clip
'214': parachute
'215': parrot
'216': passport
'217': peanut
'218': pear
'219': peas
'220': pencil
'221': penguin
'222': piano
'223': pickup truck
'224': picture frame
'225': pig
'226': pillow
'227': pineapple
'228': pizza
'229': pliers
'230': police car
'231': pond
'232': pool
'233': popsicle
'234': postcard
'235': potato
'236': power outlet
'237': purse
'238': rabbit
'239': raccoon
'240': radio
'241': rain
'242': rainbow
'243': rake
'244': remote control
'245': rhinoceros
'246': rifle
'247': river
'248': roller coaster
'249': rollerskates
'250': sailboat
'251': sandwich
'252': saw
'253': saxophone
'254': school bus
'255': scissors
'256': scorpion
'257': screwdriver
'258': sea turtle
'259': see saw
'260': shark
'261': sheep
'262': shoe
'263': shorts
'264': shovel
'265': sink
'266': skateboard
'267': skull
'268': skyscraper
'269': sleeping bag
'270': smiley face
'271': snail
'272': snake
'273': snorkel
'274': snowflake
'275': snowman
'276': soccer ball
'277': sock
'278': speedboat
'279': spider
'280': spoon
'281': spreadsheet
'282': square
'283': squiggle
'284': squirrel
'285': stairs
'286': star
'287': steak
'288': stereo
'289': stethoscope
'290': stitches
'291': stop sign
'292': stove
'293': strawberry
'294': streetlight
'295': string bean
'296': submarine
'297': suitcase
'298': sun
'299': swan
'300': sweater
'301': swing set
'302': sword
'303': syringe
'304': t-shirt
'305': table
'306': teapot
'307': teddy-bear
'308': telephone
'309': television
'310': tennis racquet
'311': tent
'312': tiger
'313': toaster
'314': toe
'315': toilet
'316': tooth
'317': toothbrush
'318': toothpaste
'319': tornado
'320': tractor
'321': traffic light
'322': train
'323': tree
'324': triangle
'325': trombone
'326': truck
'327': trumpet
'328': umbrella
'329': underwear
'330': van
'331': vase
'332': violin
'333': washing machine
'334': watermelon
'335': waterslide
'336': whale
'337': wheel
'338': windmill
'339': wine bottle
'340': wine glass
'341': wristwatch
'342': yoga
'343': zebra
'344': zigzag
splits:
- name: train
num_bytes: 72173714.5
num_examples: 34500
download_size: 70106975
dataset_size: 72173714.5
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for Quick, Draw! Dataset
This dataset card aims to provide comprehensive information about the Quick, Draw! dataset, a collection of hand-drawn sketches used for training and evaluating sketch classification models.
## Dataset Details
### Dataset Description
The Quick, Draw! dataset is a large-scale collection of hand-drawn sketches curated by Google Creative Lab. The dataset includes over 50 million unique sketches across 345 object categories, contributed by participants from around the world. The primary purpose of this dataset is to facilitate research in the field of computer vision, particularly for tasks related to sketch recognition and classification.
- **Curated by:** Google Creative Lab
- **Shared by [optional]:** Google
### Dataset Sources
- **Source:** [The Quick, Draw! Dataset](https://github.com/googlecreativelab/quickdraw-dataset)
## Uses
### Direct Use
The dataset is intended for use in developing and evaluating sketch recognition algorithms. It is suitable for tasks such as:
- Training sketch classification models
- Evaluating the performance of sketch recognition systems
- Conducting research in computer vision and machine learning related to hand-drawn images
### Out-of-Scope Use
The dataset is not suitable for use cases that require high-resolution images or photographs. It is also not intended for tasks unrelated to sketch recognition, such as natural image classification.
## Original Dataset Structure
The dataset is organized into categories, each containing a collection of hand-drawn sketches. Each sketch is a black-and-white image representing an object from one of the predefined categories.
- **Number of Categories:** 345
- **Number of Sketches:** 50 million
### Dataset Splits
In this dataset, the Quick, Draw! dataset is provided as a single training set without predefined splits for training, validation, or testing. Due to the large size of the original dataset, I randomly selected 100 samples per category to train within limited resources, resulting in a total of 34,500 sketches.
- **Train Set:**
- **Number of Examples:** 34,500
## Citation
**BibTeX:**
```bibtex
@article{ha2017neural,
title={A Neural Representation of Sketch Drawings},
author={Ha, David and Eck, Douglas},
journal={arXiv preprint arXiv:1704.03477},
year={2017}
}
|