sdiaeyu6n commited on
Commit
d8689e4
1 Parent(s): 003d608

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md CHANGED
@@ -279,3 +279,78 @@ configs:
279
  - split: test
280
  path: data/test-*
281
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279
  - split: test
280
  path: data/test-*
281
  ---
282
+ # Dataset Card for QuickDraw Dataset
283
+
284
+ This dataset card aims to provide comprehensive information about the QuickDraw dataset, a collection of hand-drawn sketches used for training and evaluating sketch classification models.
285
+
286
+ ## Dataset Details
287
+
288
+ ### Dataset Description
289
+
290
+ The QuickDraw dataset is a large-scale collection of hand-drawn sketches curated by the research team at TU Berlin. The dataset includes 20,000 unique sketches across 250 object categories, contributed by participants from around the world. The primary purpose of this dataset is to facilitate research in the field of computer vision, particularly for tasks related to sketch recognition and classification.
291
+
292
+ - **Curated by:** TU Berlin research team
293
+ - **Shared by [optional]:** TU Berlin
294
+
295
+ ### Dataset Sources
296
+
297
+ - **Source:** [QuickDraw Dataset Source](https://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/)
298
+ - **Paper:** [QuickDraw Dataset Paper](https://cybertron.cg.tu-berlin.de/eitz/pdf/2012_siggraph_classifysketch.pdf)
299
+
300
+ ## Uses
301
+
302
+ ### Direct Use
303
+
304
+ The dataset is intended for use in developing and evaluating sketch recognition algorithms. It is suitable for tasks such as:
305
+
306
+ - Training sketch classification models
307
+ - Evaluating the performance of sketch recognition systems
308
+ - Conducting research in computer vision and machine learning related to hand-drawn images
309
+
310
+ ### Out-of-Scope Use
311
+
312
+ The dataset is not suitable for use cases that require high-resolution images or photographs. It is also not intended for tasks unrelated to sketch recognition, such as natural image classification.
313
+
314
+ ## Dataset Structure
315
+
316
+ The dataset is organized into categories, each containing a collection of hand-drawn sketches. Each sketch is a black-and-white image representing an object from one of the predefined categories.
317
+
318
+ - **Number of Categories:** 250
319
+ - **Number of Sketches:** 20,000
320
+
321
+ ### Dataset Splits
322
+
323
+ I downloaded the QuickDraw dataset and split it into train set, validation set, and test set.
324
+
325
+ - **Train Set:**
326
+ - **Number of Examples:** 16,000
327
+ - **Size:** 480,609,419 bytes
328
+ - **Validation Set:**
329
+ - **Number of Examples:** 2,000
330
+ - **Size:** 59,693,656 bytes
331
+ - **Test Set:**
332
+ - **Number of Examples:** 2,000
333
+ - **Size:** 60,354,461 bytes
334
+ - **Download Size:** 589,085,954 bytes
335
+ - **Total Dataset Size:** 600,657,536 bytes
336
+
337
+ The data was split using the following code:
338
+
339
+ ```python
340
+ from sklearn.model_selection import train_test_split
341
+
342
+ train_data, temp_data = train_test_split(metadata, test_size=0.2, random_state=42)
343
+ val_data, test_data = train_test_split(temp_data, test_size=0.5, random_state=42)
344
+ ```
345
+
346
+ ## Citation
347
+
348
+ **BibTeX:**
349
+
350
+ ```bibtex
351
+ @article{eitz2012hdhso,
352
+ title={QuickDraw: A large-scale sketch dataset for computer vision},
353
+ author={Eitz, Mathias and Hays, James and Alexa, Marc},
354
+ journal={TU Berlin},
355
+ year={2012}
356
+ }