ast_errors
stringlengths 0
3.2k
| d_id
int64 44
121k
| id
int64 70
338k
| n_whitespaces
int64 3
14k
| path
stringlengths 8
134
| n_words
int64 4
4.82k
| n_identifiers
int64 1
131
| random_cut
stringlengths 16
15.8k
| commit_message
stringlengths 2
15.3k
| fun_name
stringlengths 1
84
| commit_id
stringlengths 40
40
| repo
stringlengths 3
28
| file_name
stringlengths 5
79
| ast_levels
int64 6
31
| nloc
int64 1
548
| url
stringlengths 31
59
| complexity
int64 1
66
| token_counts
int64 6
2.13k
| n_ast_errors
int64 0
28
| vocab_size
int64 4
1.11k
| n_ast_nodes
int64 15
19.2k
| language
stringclasses 1
value | documentation
dict | code
stringlengths 101
62.2k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
82,113 | 277,639 | 441 | keras/layers/reshaping/reshape.py | 105 | 18 | def _fix_unknown_dimension(self, input_shape, output_shape):
output_shape = list(output_shape)
msg = (
"total size of new array must be unchanged, "
"input_shape = {}, output_shape = {}".format(
input_shape, output_shape
)
)
known, unknown = 1, None
for index, dim in enumerate(output_shape):
if dim < 0:
if unknown is None:
unknown = index
else:
raise ValueError(
f"There must be at most one unknown dimension in "
f"output_shape. Received: output_shape={output_shape}."
)
else:
known *= dim
original = np.prod(input_shape, dtype=int)
if unknown is not None:
if known == 0 or original % known != 0:
raise ValueError(msg)
output_shape[unknown] = original // known
elif original != known:
raise ValueError(msg)
return output_ | reduce layers line-too-long | _fix_unknown_dimension | 8401e08334d4b1f102a6ee9479738bacfee0600c | keras | reshape.py | 17 | 28 | https://github.com/keras-team/keras.git | 8 | 128 | 0 | 65 | 212 | Python | {
"docstring": "Find and replace a missing dimension in an output shape.\n\n This is a near direct port of the internal Numpy function\n `_fix_unknown_dimension` in `numpy/core/src/multiarray/shape.c`\n\n Args:\n input_shape: Shape of array being reshaped\n output_shape: Desired shape of the array with at most a single -1\n which indicates a dimension that should be derived from the input\n shape.\n\n Returns:\n The new output shape with a -1 replaced with its computed value.\n\n Raises:\n ValueError: If the total array size of the output_shape is\n different than the input_shape, or more than one unknown dimension\n is specified.\n ",
"language": "en",
"n_whitespaces": 209,
"n_words": 91,
"vocab_size": 65
} | def _fix_unknown_dimension(self, input_shape, output_shape):
output_shape = list(output_shape)
msg = (
"total size of new array must be unchanged, "
"input_shape = {}, output_shape = {}".format(
input_shape, output_shape
)
)
known, unknown = 1, None
for index, dim in enumerate(output_shape):
if dim < 0:
if unknown is None:
unknown = index
else:
raise ValueError(
f"There must be at most one unknown dimension in "
f"output_shape. Received: output_shape={output_shape}."
)
else:
known *= dim
original = np.prod(input_shape, dtype=int)
if unknown is not None:
if known == 0 or original % known != 0:
raise ValueError(msg)
output_shape[unknown] = original // known
elif original != known:
raise ValueError(msg)
return output_shape
|
|
38,437 | 159,898 | 52 | numpy/lib/tests/test_loadtxt.py | 23 | 15 | def test_converter_with_unicode_dtype():
txt = StringIO('abc,def\nrst,xyz')
conv = bytes.upper
res = np.loadtxt(
txt, dtype=np.dtype("U3"), converters=conv, delimiter=",")
expected = np.array([['ABC', 'DEF'], ['RST', 'XYZ']])
assert_equal(res, expec | TST,STY: Add small additional tests for converters/usecols
Also fix style a bit to silence linter (hopefully), removes some
black style, but I am not too opinionated about that :) | test_converter_with_unicode_dtype | 1e6b72b42292e62c1c86e4f77e30324e43aaa218 | numpy | test_loadtxt.py | 12 | 7 | https://github.com/numpy/numpy.git | 1 | 67 | 0 | 20 | 118 | Python | {
"docstring": "\n With the default 'bytes' encoding, tokens are encoded prior to being\n passed to the converter. This means that the output of the converter may\n be bytes instead of unicode as expected by `read_rows`.\n\n This test checks that outputs from the above scenario are properly decoded\n prior to parsing by `read_rows`.\n ",
"language": "en",
"n_whitespaces": 69,
"n_words": 50,
"vocab_size": 37
} | def test_converter_with_unicode_dtype():
txt = StringIO('abc,def\nrst,xyz')
conv = bytes.upper
res = np.loadtxt(
txt, dtype=np.dtype("U3"), converters=conv, delimiter=",")
expected = np.array([['ABC', 'DEF'], ['RST', 'XYZ']])
assert_equal(res, expected)
|
|
10,767 | 53,272 | 23 | src/prefect/orion/database/alembic_commands.py | 11 | 6 | def alembic_stamp(revision):
# lazy import for performance
import alembic.command
alemb | code review revisions pt3 | alembic_stamp | 36e7e0838aeaffc9492b330297e4905f3ab4b11f | prefect | alembic_commands.py | 9 | 3 | https://github.com/PrefectHQ/prefect.git | 1 | 24 | 0 | 10 | 42 | Python | {
"docstring": "\n Stamp the revision table with the given revision; don’t run any migrations\n\n Args:\n revision: The revision passed to `alembic stamp`.\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 20,
"vocab_size": 18
} | def alembic_stamp(revision):
# lazy import for performance
import alembic.command
alembic.command.stamp(alembic_config(), revision=revision)
|
|
27,261 | 122,886 | 182 | jax/_src/pjit.py | 98 | 17 | def unflatten_superdims(assignment):
def check(cond):
if cond: return
raise NotImplementedError("Failed to convert OpSharding into a ShardingSpec. "
"Please open a bug report!")
flat_assignment = np.asarray(assignment, dtype=np.int64)
check(flat_assignment[0] == 0)
dims = []
while flat_assignment.size > 1:
stride = flat_assignment[1]
for i in range(len(flat_assignment)):
if flat_assignment[i] != i * stride: break
else:
# After this loop i should point to an "element after the sequence", so
# we have t | Move `pjit.py` to `jax/_src` in preparation for merging the `jit` and `pjit` frontend APIs
PiperOrigin-RevId: 495944279 | unflatten_superdims | 4b587fa1f0049db5366fd04812ab940d80a71a22 | jax | pjit.py | 11 | 16 | https://github.com/google/jax.git | 4 | 101 | 0 | 74 | 192 | Python | {
"docstring": "Unflatten a list of dimension sizes and their strides that generates assignment.\n\n If this function succeeds for a given ``assignment``, then the following property\n should be satisfied::\n\n dims_with_strides = unflatten_superdims(assignment)\n base_array = np.arange(map(fst, sorted(dims_with_strides, key=snd, reverse=True)))\n assignment == base_array.transpose(argsort(dims_with_strides, key=snd, reverse=True)).flatten()\n\n That is, the returned dimensions list all sizes of the base array (with strides\n indicating their initial order). The order of dimensions in the list corresponds\n to the permutation that applied to the base array generates the assignment.\n ",
"language": "en",
"n_whitespaces": 94,
"n_words": 79,
"vocab_size": 56
} | def unflatten_superdims(assignment):
def check(cond):
if cond: return
raise NotImplementedError("Failed to convert OpSharding into a ShardingSpec. "
"Please open a bug report!")
flat_assignment = np.asarray(assignment, dtype=np.int64)
check(flat_assignment[0] == 0)
dims = []
while flat_assignment.size > 1:
stride = flat_assignment[1]
for i in range(len(flat_assignment)):
if flat_assignment[i] != i * stride: break
else:
# After this loop i should point to an "element after the sequence", so
# we have to increment it if the whole array is a strided sequence.
i += 1
size = i
dims.append((size, stride))
assert size > 1 # Ensure progress
flat_assignment = flat_assignment[::size]
return dims
|
|
18,080 | 86,128 | 262 | tests/sentry/event_manager/test_event_manager.py | 50 | 21 | def test_perf_issue_no_associate_error_event(self):
self.project.update_option("sentry:performance_issue_creation_rate", 1.0)
with mock.patch("sentry_sdk.tracing.Span.containing_transaction"), self.feature(
{
"projects:performance-suspect-spans-ingestion": True,
"organizations:performance-issues-ingest": True,
}
):
manager = EventManager(make_event())
manager.normalize()
event = manager.save(self.project.id)
assert len(event.groups) == 1
# sneakily make the group type wrong
group = event.groups[0]
group.type = GroupType.PERFORMANCE_N_PLUS_ONE.value
group.save()
manager = EventManager(make_event())
manager.normalize()
event = manager. | chore(perf issues): Check group type before adding event (#39171)
Ensure the group type matches the kind of event before association, e.g.
don't put an error event on a performance issue and vice versa. | test_perf_issue_no_associate_error_event | bbd7137b3d379744265f46564d5878490046dd3b | sentry | test_event_manager.py | 12 | 19 | https://github.com/getsentry/sentry.git | 1 | 132 | 0 | 35 | 222 | Python | {
"docstring": "Test that you can't associate an error event with a performance issue",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 12
} | def test_perf_issue_no_associate_error_event(self):
self.project.update_option("sentry:performance_issue_creation_rate", 1.0)
with mock.patch("sentry_sdk.tracing.Span.containing_transaction"), self.feature(
{
"projects:performance-suspect-spans-ingestion": True,
"organizations:performance-issues-ingest": True,
}
):
manager = EventManager(make_event())
manager.normalize()
event = manager.save(self.project.id)
assert len(event.groups) == 1
# sneakily make the group type wrong
group = event.groups[0]
group.type = GroupType.PERFORMANCE_N_PLUS_ONE.value
group.save()
manager = EventManager(make_event())
manager.normalize()
event = manager.save(self.project.id)
assert len(event.groups) == 0
|
|
29,495 | 131,286 | 476 | python/ray/tests/test_autoscaler.py | 134 | 45 | def testNodeTerminatedDuringUpdate(self):
cluster_config = copy.deepcopy(MOCK_DEFAULT_CONFIG)
cluster_config["available_node_types"]["ray.worker.default"]["min_workers"] = 2
cluster_config["worker_start_ray_commands"] = ["ray_start_cmd"]
# Don't need the extra node type or a docker config.
cluster_config["head_node_type"] = ["ray.worker.default"]
del cluster_config["available_node_types"]["ray.head.default"]
del cluster_config["docker"]
config_path = self.write_config(cluster_config)
self.provider = MockProvider()
runner = MockProcessRunner()
lm = LoadMetrics()
mock_metrics = Mock(spec=AutoscalerPrometheusMetrics())
autoscaler = MockAutoscaler(
config_path,
lm,
MockNodeInfoStub(),
max_failures=0,
process_runner=runner,
update_interval_s=0,
prom_metrics=mock_metrics,
)
# Scale up to two up-to-date workers
autoscaler.update()
self.waitForNodes(2)
self.provider.finish_starting_nodes()
autoscaler.update()
self.waitForNodes(2, tag_filters={TAG_RAY_NODE_STATUS: STATUS_UP_TO_DATE})
# Mark both nodes as unhealthy
for _ in range(5):
if autoscaler.updaters:
time.sleep(0.05)
autoscaler.update()
lm.last_heartbeat_time_by_ip["172.0.0.0"] = 0
lm.last_hear | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | testNodeTerminatedDuringUpdate | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ray | test_autoscaler.py | 11 | 89 | https://github.com/ray-project/ray.git | 3 | 545 | 0 | 99 | 392 | Python | {
"docstring": "\n Tests autoscaler handling a node getting terminated during an update\n triggered by the node missing a heartbeat.\n\n Extension of testRecoverUnhealthyWorkers.\n\n In this test, two nodes miss a heartbeat.\n One of them (node 0) is terminated during its recovery update.\n The other (node 1) just fails its update.\n\n When processing completed updates, the autoscaler terminates node 1\n but does not try to terminate node 0 again.\n ",
"language": "en",
"n_whitespaces": 129,
"n_words": 65,
"vocab_size": 51
} | def testNodeTerminatedDuringUpdate(self):
cluster_config = copy.deepcopy(MOCK_DEFAULT_CONFIG)
cluster_config["available_node_types"]["ray.worker.default"]["min_workers"] = 2
cluster_config["worker_start_ray_commands"] = ["ray_start_cmd"]
# Don't need the extra node type or a docker config.
cluster_config["head_node_type"] = ["ray.worker.default"]
del cluster_config["available_node_types"]["ray.head.default"]
del cluster_config["docker"]
config_path = self.write_config(cluster_config)
self.provider = MockProvider()
runner = MockProcessRunner()
lm = LoadMetrics()
mock_metrics = Mock(spec=AutoscalerPrometheusMetrics())
autoscaler = MockAutoscaler(
config_path,
lm,
MockNodeInfoStub(),
max_failures=0,
process_runner=runner,
update_interval_s=0,
prom_metrics=mock_metrics,
)
# Scale up to two up-to-date workers
autoscaler.update()
self.waitForNodes(2)
self.provider.finish_starting_nodes()
autoscaler.update()
self.waitForNodes(2, tag_filters={TAG_RAY_NODE_STATUS: STATUS_UP_TO_DATE})
# Mark both nodes as unhealthy
for _ in range(5):
if autoscaler.updaters:
time.sleep(0.05)
autoscaler.update()
lm.last_heartbeat_time_by_ip["172.0.0.0"] = 0
lm.last_heartbeat_time_by_ip["172.0.0.1"] = 0
# Expect both updates to be successful, no nodes in updating state
assert mock_metrics.successful_updates.inc.call_count == 2
assert mock_metrics.worker_update_time.observe.call_count == 2
mock_metrics.updating_nodes.set.assert_called_with(0)
assert not autoscaler.updaters
# Set up process runner to terminate worker 0 during missed heartbeat
# recovery and also cause the updater to fail. |
|
84,626 | 284,059 | 529 | openbb_terminal/cryptocurrency/overview/overview_controller.py | 66 | 35 | def call_cr(self, other_args):
parser = argparse.ArgumentParser(
prog="cr",
add_help=False,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description=,
)
parser.add_argument(
"-t",
"--type",
dest="type",
type=str,
help="Select interest rate type",
default="supply",
choices=["borrow", "supply"],
)
parser.add_argument(
"-c",
"--cryptocurrrencies",
dest="cryptos",
type=loanscan_model.check_valid_coin,
help=f,
default="BTC,ETH,USDT,USDC",
)
parser.add_argument(
"-p",
"--platforms",
dest="platforms",
type=loanscan_model.check_valid_platform,
help=f,
default="BlockFi,Ledn,SwissBorg,Youhodler",
)
if other_args and "-" not in other_args[0][0]:
other_args.insert(0, "-t")
ns_parser = parse_known_args_and_warn(
parser, other_args, EXPORT_ON | Replaces coingecko deprecated commands (#1650)
* removes cgproducts and cgplatforms and replaces with cr
* add ignore word
* added .openbb script
* reverted crypto change
* doc
* failing tests
* trying chart and fixed minh issues
* Create barh
* Fix ticker labels
* fix test
* loanscan mock
* defi test
* defi test
* Fix defi test
Co-authored-by: Minh Hoang <nminh.hoang1023@gmail.com>
Co-authored-by: minhhoang1023 <40023817+minhhoang1023@users.noreply.github.com>
Co-authored-by: Theodore Aptekarev <aptekarev@gmail.com>
Co-authored-by: Colin Delahunty <72827203+colin99d@users.noreply.github.com> | call_cr | 670402396e7e25e95bd6497affb143565d9bd4ea | OpenBBTerminal | overview_controller.py | 13 | 49 | https://github.com/OpenBB-finance/OpenBBTerminal.git | 4 | 196 | 0 | 56 | 346 | Python | {
"docstring": "Process cr commandDisplays crypto {borrow,supply} interest rates for cryptocurrencies across several platforms.\n You can select rate type with --type {borrow,supply}\n You can display only N number of platforms with --limit parameter.Cryptocurrencies to search interest rates for separated by comma.\n Default: BTC,ETH,USDT,USDC. Options: {\",\".join(loanscan_model.CRYPTOS)}Platforms to search interest rates in separated by comma.\n Default: BlockFi,Ledn,SwissBorg,Youhodler. Options: {\",\".join(loanscan_model.PLATFORMS)}",
"language": "en",
"n_whitespaces": 106,
"n_words": 55,
"vocab_size": 39
} | def call_cr(self, other_args):
parser = argparse.ArgumentParser(
prog="cr",
add_help=False,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description=,
)
parser.add_argument(
"-t",
"--type",
dest="type",
type=str,
help="Select interest rate type",
default="supply",
choices=["borrow", "supply"],
)
parser.add_argument(
"-c",
"--cryptocurrrencies",
dest="cryptos",
type=loanscan_model.check_valid_coin,
help=f,
default="BTC,ETH,USDT,USDC",
)
parser.add_argument(
"-p",
"--platforms",
dest="platforms",
type=loanscan_model.check_valid_platform,
help=f,
default="BlockFi,Ledn,SwissBorg,Youhodler",
)
if other_args and "-" not in other_args[0][0]:
other_args.insert(0, "-t")
ns_parser = parse_known_args_and_warn(
parser, other_args, EXPORT_ONLY_RAW_DATA_ALLOWED, limit=10
)
if ns_parser:
loanscan_view.display_crypto_rates(
rate_type=ns_parser.type,
cryptos=ns_parser.cryptos,
platforms=ns_parser.platforms,
limit=ns_parser.limit,
export=ns_parser.export,
)
|
|
24,479 | 111,750 | 74 | nni/retiarii/oneshot/pytorch/base_lightning.py | 20 | 6 | def export(self):
result = {}
for na | Lightning implementation for retiarii oneshot nas (#4479) | export | 8b2eb425274cdb4537fbce4a315aec12a378d6db | nni | base_lightning.py | 12 | 6 | https://github.com/microsoft/nni.git | 3 | 37 | 0 | 17 | 61 | Python | {
"docstring": "\n Export the NAS result, ideally the best choice of each nas_modules.\n You may implement an ``export`` method for your customized nas_module.\n\n Returns\n --------\n result : Dict[str, int]\n Keys are names of nas_modules, and values are the choice indices of them.\n ",
"language": "en",
"n_whitespaces": 94,
"n_words": 40,
"vocab_size": 34
} | def export(self):
result = {}
for name, module in self.nas_modules:
if name not in result:
result[name] = module.export()
return result
|
|
43,614 | 181,840 | 162 | tpot/base.py | 70 | 13 | def clean_pipeline_string(self, individual):
dirty_string = str(individual)
# There are many parameter prefixes in the pipeline strings, used solely for
# making the terminal name unique, eg. LinearSVC__.
parameter_prefixes = [
(m.start(), m.end()) for m in re.finditer(", [\w]+__", dirty_string)
]
# We handle them in reverse so we do not mess up indices
pretty = dirty_string
for (start, end) in reversed(parameter_prefixes | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | clean_pipeline_string | 388616b6247ca4ea8de4e2f340d6206aee523541 | tpot | base.py | 12 | 9 | https://github.com/EpistasisLab/tpot.git | 3 | 74 | 0 | 55 | 120 | Python | {
"docstring": "Provide a string of the individual without the parameter prefixes.\n\n Parameters\n ----------\n individual: individual\n Individual which should be represented by a pretty string\n\n Returns\n -------\n A string like str(individual), but with parameter prefixes removed.\n\n ",
"language": "en",
"n_whitespaces": 94,
"n_words": 34,
"vocab_size": 28
} | def clean_pipeline_string(self, individual):
dirty_string = str(individual)
# There are many parameter prefixes in the pipeline strings, used solely for
# making the terminal name unique, eg. LinearSVC__.
parameter_prefixes = [
(m.start(), m.end()) for m in re.finditer(", [\w]+__", dirty_string)
]
# We handle them in reverse so we do not mess up indices
pretty = dirty_string
for (start, end) in reversed(parameter_prefixes):
pretty = pretty[: start + 2] + pretty[end:]
return pretty
|
|
49,151 | 199,118 | 448 | sympy/polys/matrices/linsolve.py | 129 | 33 | def _lin_eq2dict(a, symset):
if a in symset:
return S.Zero, {a: S.One}
elif a.is_Add:
terms_list = defaultdict(list)
coeff_list = []
for ai in a.args:
ci, ti = _lin_eq2dict(ai, symset)
coeff_list.append(ci)
for mij, cij in ti.items():
terms_list[mij].append(cij)
coeff = Add(*coeff_list)
terms = {sym: Add(*coeffs) for sym, coeffs in t | Revert "solve changes" | _lin_eq2dict | 5534ff6796b8d515192576f771af8488a838775c | sympy | linsolve.py | 16 | 38 | https://github.com/sympy/sympy.git | 14 | 252 | 0 | 62 | 402 | Python | {
"docstring": "Efficiently convert a linear equation to a dict of coefficients",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | def _lin_eq2dict(a, symset):
if a in symset:
return S.Zero, {a: S.One}
elif a.is_Add:
terms_list = defaultdict(list)
coeff_list = []
for ai in a.args:
ci, ti = _lin_eq2dict(ai, symset)
coeff_list.append(ci)
for mij, cij in ti.items():
terms_list[mij].append(cij)
coeff = Add(*coeff_list)
terms = {sym: Add(*coeffs) for sym, coeffs in terms_list.items()}
return coeff, terms
elif a.is_Mul:
terms = terms_coeff = None
coeff_list = []
for ai in a.args:
ci, ti = _lin_eq2dict(ai, symset)
if not ti:
coeff_list.append(ci)
elif terms is None:
terms = ti
terms_coeff = ci
else:
raise PolyNonlinearError
coeff = Mul(*coeff_list)
if terms is None:
return coeff, {}
else:
terms = {sym: coeff * c for sym, c in terms.items()}
return coeff * terms_coeff, terms
elif a.is_Equality:
return _lin_eq2dict(a.lhs - a.rhs, symset)
elif not a.has_free(*symset):
return a, {}
else:
raise PolyNonlinearError
|
|
29,231 | 130,325 | 62 | python/ray/autoscaler/_private/_azure/node_provider.py | 12 | 6 | def internal_ip(self, node_id):
ip = (
self._get_cached_node(node_id=node_id)["internal_ip"]
or self._get_node(node_id=node_id)["internal_ip"]
)
return ip
| [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | internal_ip | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ray | node_provider.py | 12 | 6 | https://github.com/ray-project/ray.git | 2 | 37 | 0 | 11 | 63 | Python | {
"docstring": "Returns the internal ip (Ray ip) of the given node.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | def internal_ip(self, node_id):
ip = (
self._get_cached_node(node_id=node_id)["internal_ip"]
or self._get_node(node_id=node_id)["internal_ip"]
)
return ip
|
|
77,374 | 262,793 | 261 | PyInstaller/archive/writers.py | 49 | 30 | def _write_file(self, source, dest, type, compress=False):
start = self.lib.tell()
length = os.stat(source).st_size
with open(source, 'rb') as f:
| Fix file handle leaks.
This is mostly a refactoring of CArchiveWriter().add() which has gotten somewhat
tangled trying to apply various file modifications whilst simultaneously
juggling file streaming and optional zip compression. Since the modifications
are all done on Python source/byte code files which are small, split the archive
packing into two helpers, one which streams big files and a more malleable one
which writes small files from memory without streaming, both of which handle the
bookkeeping job of updating the TOC. This fixes a file handle leak.
Additionally take advantage of Python's builtin, but suppressed by default, file
handle leakage detection; any such leakages under a pytest run will now fail the
test. This requires a few other leakage fixes throughout the test suite to make
it pass. | _write_file | 9541ad638f73c1442c35ea870ad9c6e4f8cd9b62 | pyinstaller | writers.py | 17 | 16 | https://github.com/pyinstaller/pyinstaller.git | 4 | 152 | 0 | 42 | 243 | Python | {
"docstring": "\n Stream copy a large file into the archive and update the table of contents.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 14,
"vocab_size": 13
} | def _write_file(self, source, dest, type, compress=False):
start = self.lib.tell()
length = os.stat(source).st_size
with open(source, 'rb') as f:
if compress:
buffer = bytearray(16 * 1024)
compressor = zlib.compressobj(self.LEVEL)
while 1:
read = f.readinto(buffer)
if not read:
break
self.lib.write(compressor.compress(buffer[:read]))
self.lib.write(compressor.flush())
else:
shutil.copyfileobj(f, self.lib)
self.toc.add(start, self.lib.tell() - start, length, int(compress), type, dest)
|
|
41,755 | 176,189 | 517 | networkx/linalg/graphmatrix.py | 164 | 38 | def incidence_matrix(G, nodelist=None, edgelist=None, oriented=False, weight=None):
import scipy as sp
import scipy.sparse # call as sp.sparse
if nodelist is None:
nodelist = list(G)
if edgelist is None:
if G.is_multigraph():
edgelist = list(G.edges(keys=True))
else:
edgelist = list(G.edges())
A = sp.sparse.lil_array((len(nodelist), len(edgelist)))
node_index = {node: i for i, node in enumerate(nodelist)}
for ei, e in enumerate(edgelist):
(u, v) = e[:2]
if u == v:
continue # self loops give zero column
try:
ui = node_index[u]
vi = node_index[v]
except KeyError as err:
raise nx.NetworkXError(
f"node {u} or {v} in edgelist but not in nodelist"
) from err
if weight is None:
wt = 1
else:
if G.is_multigraph():
ekey = e[2]
wt = G[u][v][ekey].get(weight, 1)
else:
wt = G[u][v].get(weight, 1)
if oriented:
A[ui, ei] = -wt
A[vi, ei] = wt
else:
A[ui, ei] = wt
A[vi, ei] = wt
import warnings
warnings.warn(
"incidence | Use scipy.sparse array datastructure (#5139)
* Step 1: use sparse arrays in nx.to_scipy_sparse_matrix.
Seems like a reasonable place to start.
nx.to_scipy_sparse_matrix is one of the primary interfaces to
scipy.sparse from within NetworkX.
* 1: Use np.outer instead of mult col/row vectors
Fix two instances in modularitymatrix where a new 2D array was being
created via an outer product of two \"vectors\".
In the matrix case, this was a row vector \* a column vector. In the
array case this can be disambiguated by being explicit with np.outer.
* Update _transition_matrix in laplacianmatrix module
- A few instances of matrix multiplication operator
- Add np.newaxis + transpose to get shape right for broadcasting
- Explicitly convert e.g. sp.sparse.spdiags to a csr_array.
* Update directed_combinitorial_laplacian w/ sparse array.
- Wrap spdiags in csr_array and update matmul operators.
* Rm matrix-specific code from lgc and hmn modules
- Replace .A call with appropriate array semantics
- wrap sparse.diags in csr_array.
* Change hits to use sparse array semantics.
- Replace * with @
- Remove superfluous calls to flatten.
* Update sparse matrix usage in layout module.
- Simplify lil.getrowview call
- Wrap spdiags in csr_array.
* lil_matrix -> lil_array in graphmatrix.py.
* WIP: Start working on algebraic connectivity module.
* Incorporate auth mat varname feedback.
* Revert 1D slice and comment for 1D sparse future.
* Add TODOs: rm csr_array wrapper around spdiags etc.
* WIP: cleanup algebraicconn: tracemin_fiedler.
* Typo.
* Finish reviewing algebraicconnectivity.
* Convert bethe_hessian matrix to use sparse arrays.
* WIP: update laplacian.
Update undirected laplacian functions.
* WIP: laplacian - add comment about _transition_matrix return types.
* Finish laplacianmatrix review.
* Update attrmatrix.
* Switch to official laplacian function.
* Update pagerank to use sparse array.
* Switch bipartite matrix to sparse arrays.
* Check from_scipy_sparse_matrix works with arrays.
Modifies test suite.
* Apply changes from review.
* Fix failing docstring tests.
* Fix missing axis for in-place multiplication.
* Use scipy==1.8rc2
* Use matrix multiplication
* Fix PyPy CI
* [MRG] Create plot_subgraphs.py example (#5165)
* Create plot_subgraphs.py
https://github.com/networkx/networkx/issues/4220
* Update plot_subgraphs.py
black
* Update plot_subgraphs.py
lint plus font_size
* Update plot_subgraphs.py
added more plots
* Update plot_subgraphs.py
removed plots from the unit test and added comments
* Update plot_subgraphs.py
lint
* Update plot_subgraphs.py
typos fixed
* Update plot_subgraphs.py
added nodes to the plot of the edges removed that was commented out for whatever reason
* Update plot_subgraphs.py
revert the latest commit - the line was commented out for a reason - it's broken
* Update plot_subgraphs.py
fixed node color issue
* Update plot_subgraphs.py
format fix
* Update plot_subgraphs.py
forgot to draw the nodes... now fixed
* Fix sphinx warnings about heading length.
* Update examples/algorithms/plot_subgraphs.py
* Update examples/algorithms/plot_subgraphs.py
Co-authored-by: Ross Barnowski <rossbar@berkeley.edu>
Co-authored-by: Dan Schult <dschult@colgate.edu>
* Add traveling salesman problem to example gallery (#4874)
Adds an example of the using Christofides to solve the TSP problem to the example galery.
Co-authored-by: Ross Barnowski <rossbar@berkeley.edu>
* Fixed inconsistent documentation for nbunch parameter in DiGraph.edges() (#5037)
* Fixed inconsistent documentation for nbunch parameter in DiGraph.edges()
* Resolved Requested Changes
* Revert changes to degree docstrings.
* Update comments in example.
* Apply wording to edges method in all graph classes.
Co-authored-by: Ross Barnowski <rossbar@berkeley.edu>
* Compatibility updates from testing with numpy/scipy/pytest rc's (#5226)
* Rm deprecated scipy subpkg access.
* Use recwarn fixture in place of deprecated pytest pattern.
* Rm unnecessary try/except from tests.
* Replace internal `close` fn with `math.isclose`. (#5224)
* Replace internal close fn with math.isclose.
* Fix lines in docstring examples.
* Fix Python 3.10 deprecation warning w/ int div. (#5231)
* Touchups and suggestions for subgraph gallery example (#5225)
* Simplify construction of G with edges rm'd
* Rm unused graph attribute.
* Shorten categorization by node type.
* Simplify node coloring.
* Simplify isomorphism check.
* Rm unit test.
* Rm redundant plotting of each subgraph.
* Use new package name (#5234)
* Allowing None edges in weight function of bidirectional Dijkstra (#5232)
* added following feature also to bidirectional dijkstra: The weight function can be used to hide edges by returning None.
* changed syntax for better readability and code duplicate avoidance
Co-authored-by: Hohmann, Nikolas <nikolas.hohmann@tu-darmstadt.de>
* Add an FAQ about assigning issues. (#5182)
* Add FAQ about assigning issues.
* Add note about linking issues from new PRs.
* Update dev deps (#5243)
* Update minor doc issues with tex notation (#5244)
* Add FutureWarnings to fns that return sparse matrices
- biadjacency_matrix.
- bethe_hessian_matrix.
- incidence_matrix.
- laplacian functions.
- modularity_matrix functions.
- adjacency_matrix.
* Add to_scipy_sparse_array and use it everywhere.
Add a new conversion function to preserve array semantics internally
while not altering behavior for users.
Also adds FutureWarning to to_scipy_sparse_matrix.
* Add from_scipy_sparse_array. Supercedes from_scipy_sparse_matrix.
* Handle deprecations in separate PR.
* Fix docstring examples.
Co-authored-by: Mridul Seth <mail@mriduls.com>
Co-authored-by: Jarrod Millman <jarrod.millman@gmail.com>
Co-authored-by: Andrew Knyazev <andrew.knyazev@ucdenver.edu>
Co-authored-by: Dan Schult <dschult@colgate.edu>
Co-authored-by: eskountis <56514439+eskountis@users.noreply.github.com>
Co-authored-by: Anutosh Bhat <87052487+anutosh491@users.noreply.github.com>
Co-authored-by: NikHoh <nikhoh@web.de>
Co-authored-by: Hohmann, Nikolas <nikolas.hohmann@tu-darmstadt.de>
Co-authored-by: Sultan Orazbayev <contact@econpoint.com>
Co-authored-by: Mridul Seth <mail@mriduls.com> | incidence_matrix | 5dfd57af2a141a013ae3753e160180b82bec9469 | networkx | graphmatrix.py | 18 | 44 | https://github.com/networkx/networkx.git | 11 | 290 | 0 | 103 | 463 | Python | {
"docstring": "Returns incidence matrix of G.\n\n The incidence matrix assigns each row to a node and each column to an edge.\n For a standard incidence matrix a 1 appears wherever a row's node is\n incident on the column's edge. For an oriented incidence matrix each\n edge is assigned an orientation (arbitrarily for undirected and aligning to\n direction for directed). A -1 appears for the source (tail) of an edge and\n 1 for the destination (head) of the edge. The elements are zero otherwise.\n\n Parameters\n ----------\n G : graph\n A NetworkX graph\n\n nodelist : list, optional (default= all nodes in G)\n The rows are ordered according to the nodes in nodelist.\n If nodelist is None, then the ordering is produced by G.nodes().\n\n edgelist : list, optional (default= all edges in G)\n The columns are ordered according to the edges in edgelist.\n If edgelist is None, then the ordering is produced by G.edges().\n\n oriented: bool, optional (default=False)\n If True, matrix elements are +1 or -1 for the head or tail node\n respectively of each edge. If False, +1 occurs at both nodes.\n\n weight : string or None, optional (default=None)\n The edge data key used to provide each value in the matrix.\n If None, then each edge has weight 1. Edge weights, if used,\n should be positive so that the orientation can provide the sign.\n\n Returns\n -------\n A : SciPy sparse matrix\n The incidence matrix of G.\n\n Notes\n -----\n For MultiGraph/MultiDiGraph, the edges in edgelist should be\n (u,v,key) 3-tuples.\n\n \"Networks are the best discrete model for so many problems in\n applied mathematics\" [1]_.\n\n References\n ----------\n .. [1] Gil Strang, Network applications: A = incidence matrix,\n http://videolectures.net/mit18085f07_strang_lec03/\n ",
"language": "en",
"n_whitespaces": 428,
"n_words": 272,
"vocab_size": 140
} | def incidence_matrix(G, nodelist=None, edgelist=None, oriented=False, weight=None):
import scipy as sp
import scipy.sparse # call as sp.sparse
if nodelist is None:
nodelist = list(G)
if edgelist is None:
if G.is_multigraph():
edgelist = list(G.edges(keys=True))
else:
edgelist = list(G.edges())
A = sp.sparse.lil_array((len(nodelist), len(edgelist)))
node_index = {node: i for i, node in enumerate(nodelist)}
for ei, e in enumerate(edgelist):
(u, v) = e[:2]
if u == v:
continue # self loops give zero column
try:
ui = node_index[u]
vi = node_index[v]
except KeyError as err:
raise nx.NetworkXError(
f"node {u} or {v} in edgelist but not in nodelist"
) from err
if weight is None:
wt = 1
else:
if G.is_multigraph():
ekey = e[2]
wt = G[u][v][ekey].get(weight, 1)
else:
wt = G[u][v].get(weight, 1)
if oriented:
A[ui, ei] = -wt
A[vi, ei] = wt
else:
A[ui, ei] = wt
A[vi, ei] = wt
import warnings
warnings.warn(
"incidence_matrix will return a scipy.sparse array instead of a matrix in Networkx 3.0.",
FutureWarning,
stacklevel=2,
)
# TODO: Rm sp.sparse.csc_matrix in Networkx 3.0
return A.asformat("csc")
|
|
82,375 | 278,117 | 677 | keras/feature_column/sequence_feature_column.py | 98 | 31 | def call(self, features, training=None):
if not isinstance(features, dict):
raise ValueError(
"We expected a dictionary here. Instead we got: ", features
)
if training is None:
training = backend.learning_phase()
transformation_cache = (
tf.__internal__.feature_column.FeatureTransformationCache(features)
)
output_tensors = []
sequence_lengths = []
for column in self._feature_columns:
with backend.name_scope(column.name):
try:
(
dense_tensor,
sequence_length,
) = column.get_sequence_dense_tensor(
transformation_cache,
self._state_manager,
training=training,
)
except TypeError:
(
dense_tensor,
sequence_length,
) = column.get_sequence_dense_tensor(
transformation_cache, self._state_manager
)
# Flattens the final dimension to produce a 3D Tensor.
output_tensors.append(
self._process_dense_tensor(column, dense_tensor)
)
sequence_lengths.append(sequence_length)
# Check and process sequence lengths.
kfc._verify | resolve line-too-long in feature_column | call | 6fafb567af4e4d9f42974d0b6c55b18bc03e17eb | keras | sequence_feature_column.py | 16 | 39 | https://github.com/keras-team/keras.git | 5 | 167 | 0 | 73 | 264 | Python | {
"docstring": "Returns sequence input corresponding to the `feature_columns`.\n\n Args:\n features: A dict mapping keys to tensors.\n training: Python boolean or None, indicating whether to the layer is\n being run in training mode. This argument is passed to the call\n method of any `FeatureColumn` that takes a `training` argument. For\n example, if a `FeatureColumn` performed dropout, the column could\n expose a `training` argument to control whether the dropout should\n be applied. If `None`, defaults to\n `tf.keras.backend.learning_phase()`.\n\n\n Returns:\n An `(input_layer, sequence_length)` tuple where:\n - input_layer: A float `Tensor` of shape `[batch_size, T, D]`.\n `T` is the maximum sequence length for this batch, which could\n differ from batch to batch. `D` is the sum of `num_elements` for\n all `feature_columns`.\n - sequence_length: An int `Tensor` of shape `[batch_size]`. The\n sequence length for each example.\n\n Raises:\n ValueError: If features are not a dictionary.\n ",
"language": "en",
"n_whitespaces": 335,
"n_words": 137,
"vocab_size": 99
} | def call(self, features, training=None):
if not isinstance(features, dict):
raise ValueError(
"We expected a dictionary here. Instead we got: ", features
)
if training is None:
training = backend.learning_phase()
transformation_cache = (
tf.__internal__.feature_column.FeatureTransformationCache(features)
)
output_tensors = []
sequence_lengths = []
for column in self._feature_columns:
with backend.name_scope(column.name):
try:
(
dense_tensor,
sequence_length,
) = column.get_sequence_dense_tensor(
transformation_cache,
self._state_manager,
training=training,
)
except TypeError:
(
dense_tensor,
sequence_length,
) = column.get_sequence_dense_tensor(
transformation_cache, self._state_manager
)
# Flattens the final dimension to produce a 3D Tensor.
output_tensors.append(
self._process_dense_tensor(column, dense_tensor)
)
sequence_lengths.append(sequence_length)
# Check and process sequence lengths.
kfc._verify_static_batch_size_equality(
sequence_lengths, self._feature_columns
)
sequence_length = _assert_all_equal_and_return(sequence_lengths)
return self._verify_and_concat_tensors(output_tensors), sequence_length
|
|
56,094 | 220,706 | 43 | python3.10.4/Lib/asyncio/sslproto.py | 15 | 7 | def feed_eof(self):
self._incoming.write | add python 3.10.4 for windows | feed_eof | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | sslproto.py | 9 | 4 | https://github.com/XX-net/XX-Net.git | 2 | 36 | 0 | 12 | 62 | Python | {
"docstring": "Send a potentially \"ragged\" EOF.\n\n This method will raise an SSL_ERROR_EOF exception if the EOF is\n unexpected.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 17,
"vocab_size": 17
} | def feed_eof(self):
self._incoming.write_eof()
ssldata, appdata = self.feed_ssldata(b'')
assert appdata == [] or appdata == [b'']
|
|
44,714 | 184,614 | 59 | src/textual/app.py | 16 | 6 | def screen(self) -> Screen:
try:
return | lots of docstrings | screen | b22436933acc0d7440ec300f971a249bd6105a5b | textual | app.py | 11 | 13 | https://github.com/Textualize/textual.git | 2 | 28 | 0 | 16 | 49 | Python | {
"docstring": "Get the current screen.\n\n Raises:\n ScreenStackError: If there are no screens on the stack.\n\n Returns:\n Screen: The currently active screen.\n ",
"language": "en",
"n_whitespaces": 63,
"n_words": 20,
"vocab_size": 18
} | def screen(self) -> Screen:
try:
return self._screen_stack[-1]
except IndexError:
raise ScreenStackError("No screens on stack") from None
|
|
49,872 | 201,102 | 31 | tests/apps/tests.py | 6 | 7 | def test_empty_dunder_path_no_dunder_file(self):
with self.assertRaises(ImproperlyConfigured):
AppConfig("label", Stub(__path__=[] | Refs #33476 -- Reformatted code with Black. | test_empty_dunder_path_no_dunder_file | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | tests.py | 13 | 3 | https://github.com/django/django.git | 1 | 26 | 0 | 6 | 49 | Python | {
"docstring": "If the __path__ attr is empty and there is no __file__, raise.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | def test_empty_dunder_path_no_dunder_file(self):
with self.assertRaises(ImproperlyConfigured):
AppConfig("label", Stub(__path__=[]))
|
|
37,440 | 158,287 | 352 | d2l/tensorflow.py | 134 | 33 | def train_epoch_ch3(net, train_iter, loss, updater):
# Sum of training loss, sum of training accuracy, no. of examples
metric = Accumulator(3)
for X, y | [PaddlePaddle] Merge master into Paddle branch (#1186)
* change 15.2 title in chinese version (#1109)
change title ’15.2. 情感分析:使用递归神经网络‘ to ’15.2. 情感分析:使用循环神经网络‘
* 修改部分语义表述 (#1105)
* Update r0.17.5 (#1120)
* Bump versions in installation
* 94行typo: (“bert.mall”)->(“bert.small”) (#1129)
* line 313: "bert.mall" -> "bert.small" (#1130)
* fix: update language as native reader (#1114)
* Fix the translation of "stride" (#1115)
* Update index.md (#1118)
修改部分语义表述
* Update self-attention-and-positional-encoding.md (#1133)
依照本书的翻译习惯,将pooling翻译成汇聚
* maybe a comment false (#1149)
* maybe a little false
* maybe a little false
* A minor bug in the rcnn section (Chinese edition) (#1148)
* Update bert.md (#1137)
一个笔误
# 假设batch_size=2,num_pred_positions=3
# 那么batch_idx应该是np.repeat( [0,1], 3 ) = [0,0,0,1,1,1]
* Update calculus.md (#1135)
* fix typo in git documentation (#1106)
* fix: Update the Chinese translation in lr-scheduler.md (#1136)
* Update lr-scheduler.md
* Update chapter_optimization/lr-scheduler.md
Co-authored-by: goldmermaid <goldpiggy@berkeley.edu>
Co-authored-by: goldmermaid <goldpiggy@berkeley.edu>
* fix translation for kaggle-house-price.md (#1107)
* fix translation for kaggle-house-price.md
* fix translation for kaggle-house-price.md
Signed-off-by: sunhaizhou <haizhou.sun@smartmore.com>
* Update weight-decay.md (#1150)
* Update weight-decay.md
关于“k多选d”这一部分,中文读者使用排列组合的方式可能更容易理解
关于“给定k个变量,阶数的个数为...”这句话是有歧义的,不是很像中国话,应该是说“阶数为d的项的个数为...”。
并增加了一句对“因此即使是阶数上的微小变化,比如从$2$到$3$,也会显著增加我们模型的复杂性。”的解释
解释为何会增加复杂性以及为何需要细粒度工具。
* Update chapter_multilayer-perceptrons/weight-decay.md
yep
Co-authored-by: goldmermaid <goldpiggy@berkeley.edu>
* Update chapter_multilayer-perceptrons/weight-decay.md
yep
Co-authored-by: goldmermaid <goldpiggy@berkeley.edu>
Co-authored-by: goldmermaid <goldpiggy@berkeley.edu>
* Fix a spelling error (#1161)
* Update gru.md (#1152)
The key distinction between vanilla RNNs and GRUs is that the latter support gating of the hidden state.
翻译错误
* Unify the function naming (#1113)
Unify naming of the function 'init_xavier()'.
* Update mlp-concise.md (#1166)
* Update mlp-concise.md
语句不通顺
* Update environment.md
语序异常
* Update config.ini
* fix the imprecise description (#1168)
Co-authored-by: yuande <yuande>
* fix typo in chapter_natural-language-processing-pretraining/glove.md (#1175)
* Fix some typos. (#1163)
* Update batch-norm.md (#1170)
fixing typos u->x in article
* Update linear-regression.md (#1090)
We invoke Stuart Russell and Peter Norvig who, in their classic AI text book Artificial Intelligence: A Modern Approach :cite:Russell.Norvig.2016, pointed out that
原译文把who也直接翻译出来了。
* Update mlp.md (#1117)
* Update mlp.md
修改部分语义表述
* Update chapter_multilayer-perceptrons/mlp.md
Co-authored-by: goldmermaid <goldpiggy@berkeley.edu>
* Update chapter_multilayer-perceptrons/mlp.md
Co-authored-by: Aston Zhang <22279212+astonzhang@users.noreply.github.com>
Co-authored-by: goldmermaid <goldpiggy@berkeley.edu>
* Correct a translation error. (#1091)
* Correct a translation error.
* Update chapter_computer-vision/image-augmentation.md
Co-authored-by: Aston Zhang <22279212+astonzhang@users.noreply.github.com>
* Update aws.md (#1121)
* Update aws.md
* Update chapter_appendix-tools-for-deep-learning/aws.md
Co-authored-by: Aston Zhang <22279212+astonzhang@users.noreply.github.com>
* Update image-augmentation.md (#1093)
* Update anchor.md (#1088)
fix a minor issue in code
* Update anchor.md
* Update image-augmentation.md
* fix typo and improve translation in chapter_linear-networks\softmax-regression.md (#1087)
* Avoid `torch.meshgrid` user warning (#1174)
Avoids the following user warning:
```python
~/anaconda3/envs/torch/lib/python3.10/site-packages/torch/functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2228.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
```
* bump to 2.0.0-beta1
* Update sequence.md
* bump beta1 on readme
* Add latex code block background to config
* BLD: Bump python support version 3.9 (#1183)
* BLD: Bump python support version 3.9
* Remove clear and manually downgrade protobuf 4.21.4 to 3.19.4
* BLD: Bump torch and tensorflow
* Update Jenkinsfile
* Update chapter_installation/index.md
* Update chapter_installation/index.md
Co-authored-by: Aston Zhang <22279212+astonzhang@users.noreply.github.com>
* Update config.ini
* Update INFO.md
* Update INFO.md
* Drop mint to show code in pdf, use Inconsolata font, apply code cell color (#1187)
* resolve the conflicts
* revise from publisher (#1089)
* revise from publisher
* d2l api
* post_latex
* revise from publisher
* revise ch11
* Delete d2l-Copy1.bib
* clear cache
* rm d2lbook clear
* debug anchor
* keep original d2l doc
Co-authored-by: Ubuntu <ubuntu@ip-172-31-12-66.us-west-2.compute.internal>
Co-authored-by: Aston Zhang <22279212+astonzhang@users.noreply.github.com>
Co-authored-by: Aston Zhang <asv325@gmail.com>
* 重复语句 (#1188)
Co-authored-by: Aston Zhang <22279212+astonzhang@users.noreply.github.com>
* Improve expression for chapter_preliminaries/pandas.md (#1184)
* Update pandas.md
* Improve expression
* Improve expression
* Update chapter_preliminaries/pandas.md
Co-authored-by: Aston Zhang <22279212+astonzhang@users.noreply.github.com>
* Improce expression for chapter_preliminaries/linear-algebra.md (#1185)
* Improce expression
* Improve code comments
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
Co-authored-by: Aston Zhang <22279212+astonzhang@users.noreply.github.com>
* Fix multibox_detection bugs
* Update d2l to 0.17.5 version
* restore older version
* Upgrade pandas
* change to python3.8
* Test warning log
* relocate warning log
* test logs filtering
* Update gru.md
* Add DeprecationWarning filter
* Test warning log
* Update attention mechanisms & computational performance
* Update multilayer perceptron& linear & convolution networks & computer vision
* Update recurrent&optimition&nlp pretraining & nlp applications
* ignore warnings
* Update index.md
* Update linear networks
* Update multilayer perceptrons&deep learning computation
* Update preliminaries
* Check and Add warning filter
* Update kaggle-cifar10.md
* Update object-detection-dataset.md
* Update ssd.md fcn.md
* Update hybridize.md
* Update hybridize.md
Signed-off-by: sunhaizhou <haizhou.sun@smartmore.com>
Co-authored-by: zhou201505013 <39976863+zhou201505013@users.noreply.github.com>
Co-authored-by: Xinwei Liu <xinzone@outlook.com>
Co-authored-by: Anirudh Dagar <anirudhdagar6@gmail.com>
Co-authored-by: Aston Zhang <22279212+astonzhang@users.noreply.github.com>
Co-authored-by: hugo_han <57249629+HugoHann@users.noreply.github.com>
Co-authored-by: gyro永不抽风 <1247006353@qq.com>
Co-authored-by: CanChengZheng <zcc550169544@163.com>
Co-authored-by: linlin <jajupmochi@gmail.com>
Co-authored-by: iuk <liukun0104@gmail.com>
Co-authored-by: yoos <49556860+liyunlongaaa@users.noreply.github.com>
Co-authored-by: Mr. Justice Lawrence John Wargrave <65226618+RUCWargrave@users.noreply.github.com>
Co-authored-by: Chiyuan Fu <fuchiyuan2019@outlook.com>
Co-authored-by: Sunhuashan <48636870+Sunhuashan@users.noreply.github.com>
Co-authored-by: Haiker Sun <haizhou.uestc2011@gmail.com>
Co-authored-by: Ming Liu <akira.liu@njnu.edu.cn>
Co-authored-by: goldmermaid <goldpiggy@berkeley.edu>
Co-authored-by: silenceZheng66 <13754430639@163.com>
Co-authored-by: Wenchao Yan <56541797+YWonchall@users.noreply.github.com>
Co-authored-by: Kiki2049 <55939997+Kiki2049@users.noreply.github.com>
Co-authored-by: Krahets <krahets@163.com>
Co-authored-by: friedmainfunction <73703265+friedmainfunction@users.noreply.github.com>
Co-authored-by: Jameson <miraclecome@gmail.com>
Co-authored-by: P. Yao <12227516+YaoPengCN@users.noreply.github.com>
Co-authored-by: Yulv-git <34329208+Yulv-git@users.noreply.github.com>
Co-authored-by: Liu,Xiao <45966993+liuxiao916@users.noreply.github.com>
Co-authored-by: YIN, Gang <1246410+yingang@users.noreply.github.com>
Co-authored-by: Joe-HZ <58297431+Joe-HZ@users.noreply.github.com>
Co-authored-by: lybloveyou <102609904+lybloveyou@users.noreply.github.com>
Co-authored-by: VigourJiang <jiangfuqiang154@163.com>
Co-authored-by: zxhd863943427 <74853597+zxhd863943427@users.noreply.github.com>
Co-authored-by: LYF <27893441+liyufan@users.noreply.github.com>
Co-authored-by: Aston Zhang <asv325@gmail.com>
Co-authored-by: xiaotinghe <xiaotih@amazon.com>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-12-66.us-west-2.compute.internal>
Co-authored-by: Holly-Max <60691735+Holly-Max@users.noreply.github.com>
Co-authored-by: HinGwenWoong <peterhuang0323@qq.com>
Co-authored-by: Shuai Zhang <cheungdaven@gmail.com> | train_epoch_ch3 | b64b41d8c1ac23c43f7a4e3f9f6339d6f0012ab2 | d2l-zh | tensorflow.py | 15 | 19 | https://github.com/d2l-ai/d2l-zh.git | 5 | 207 | 0 | 98 | 324 | Python | {
"docstring": "The training loop defined in Chapter 3.\n\n Defined in :numref:`sec_softmax_scratch`",
"language": "en",
"n_whitespaces": 12,
"n_words": 10,
"vocab_size": 9
} | def train_epoch_ch3(net, train_iter, loss, updater):
# Sum of training loss, sum of training accuracy, no. of examples
metric = Accumulator(3)
for X, y in train_iter:
# Compute gradients and update parameters
with tf.GradientTape() as tape:
y_hat = net(X)
# Keras implementations for loss takes (labels, predictions)
# instead of (predictions, labels) that users might implement
# in this book, e.g. `cross_entropy` that we implemented above
if isinstance(loss, tf.keras.losses.Loss):
l = loss(y, y_hat)
else:
l = loss(y_hat, y)
if isinstance(updater, tf.keras.optimizers.Optimizer):
params = net.trainable_variables
grads = tape.gradient(l, params)
updater.apply_gradients(zip(grads, params))
else:
updater(X.shape[0], tape.gradient(l, updater.params))
# Keras loss by default returns the average loss in a batch
l_sum = l * float(tf.size(y)) if isinstance(
loss, tf.keras.losses.Loss) else tf.reduce_sum(l)
metric.add(l_sum, accuracy(y_hat, y), tf.size(y))
# Return training loss and training accuracy
return metric[0] / metric[2], metric[1] / metric[2]
|
|
76,674 | 261,169 | 82 | sklearn/utils/discovery.py | 29 | 11 | def all_estimators(type_filter=None):
# lazy import to avoid circular imports from sklearn.base
from . import IS_PYPY
from ._testing import ignore_warnings
| MNT numpydoc validation for Displays (#21469)
Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>
Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> | all_estimators | b22f7fa552c03aa7f6b9b4d661470d0173f8db5d | scikit-learn | discovery.py | 7 | 67 | https://github.com/scikit-learn/scikit-learn.git | 23 | 361 | 0 | 23 | 62 | Python | {
"docstring": "Get a list of all estimators from `sklearn`.\n\n This function crawls the module and gets all classes that inherit\n from BaseEstimator. Classes that are defined in test-modules are not\n included.\n\n Parameters\n ----------\n type_filter : {\"classifier\", \"regressor\", \"cluster\", \"transformer\"} \\\n or list of such str, default=None\n Which kind of estimators should be returned. If None, no filter is\n applied and all estimators are returned. Possible values are\n 'classifier', 'regressor', 'cluster' and 'transformer' to get\n estimators only of these specific types, or a list of these to\n get the estimators that fit at least one of the types.\n\n Returns\n -------\n estimators : list of tuples\n List of (name, class), where ``name`` is the class name as string\n and ``class`` is the actual type of the class.\n ",
"language": "en",
"n_whitespaces": 215,
"n_words": 124,
"vocab_size": 83
} | def all_estimators(type_filter=None):
# lazy import to avoid circular imports from sklearn.base
from . import IS_PYPY
from ._testing import ignore_warnings
from ..base import (
BaseEstimator,
ClassifierMixin,
RegressorMixin,
TransformerMixin,
ClusterMixin,
)
|
|
@image_comparison(['legend_various_labels'], remove_text=True) | 24,225 | 110,587 | 319 | lib/matplotlib/tests/test_legend.py | 109 | 39 | def test_legend_auto5():
fig, axs = plt.subplots(ncols=2, figsize=(9.6, 4.8))
leg_bboxes = []
for ax, loc in zip(axs.flat, ("center", "best")):
# An Ellipse patch at the top, a U-shaped Polygon patch at the
# bottom and a ring-like Wedge patch: the correct placement of
# the legend should be in the center.
for _patch in [
mpatches.Ellipse(
xy=(0.5, 0.9), width=0.8, height=0.2, fc="C1"),
mpatches.Polygon(np.array([
[0, 1], [0, 0], [1, 0], [1, 1], [0.9, 1.0], [0.9, 0.1],
[0.1, 0.1], [0.1, 1.0], [0.1, 1.0]]), fc="C1"),
mpatches.Wedge((0.5, 0.5), 0.5, 0, 360, width=0.05, fc="C0")
]:
ax.add_patch(_patch)
ax.plot([0.1, 0.9], [0.9, 0.9], label="A segment") # sthg to label
leg = ax.legend(loc=loc)
fig.canvas.draw()
leg_bboxes.append(
leg.get_window_extent().transformed(ax.transAxes.inverted()))
assert_allclose(leg_bboxes[1].bounds, leg_bboxes[0].bounds)
@image_comparison(['legend_various_labels'], remove_t | ENH: rely on non-rectangular patch paths rather than bboxes for legend auto-placing (fix #9580) (#9598)
* use path rather than bbox for non rectangular patches
* Add tests
* Add a short breadcrumb note in api_changes | test_legend_auto5 | d8bb1a52316c38434e526412c27d9c4b01960084 | matplotlib | test_legend.py | 14 | 19 | https://github.com/matplotlib/matplotlib.git | 3 | 300 | 1 | 82 | 390 | Python | {
"docstring": "\n Check that the automatic placement handle a rather complex\n case with non rectangular patch. Related to issue #9580.\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 18,
"vocab_size": 18
} | def test_legend_auto5():
fig, axs = plt.subplots(ncols=2, figsize=(9.6, 4.8))
leg_bboxes = []
for ax, loc in zip(axs.flat, ("center", "best")):
# An Ellipse patch at the top, a U-shaped Polygon patch at the
# bottom and a ring-like Wedge patch: the correct placement of
# the legend should be in the center.
for _patch in [
mpatches.Ellipse(
xy=(0.5, 0.9), width=0.8, height=0.2, fc="C1"),
mpatches.Polygon(np.array([
[0, 1], [0, 0], [1, 0], [1, 1], [0.9, 1.0], [0.9, 0.1],
[0.1, 0.1], [0.1, 1.0], [0.1, 1.0]]), fc="C1"),
mpatches.Wedge((0.5, 0.5), 0.5, 0, 360, width=0.05, fc="C0")
]:
ax.add_patch(_patch)
ax.plot([0.1, 0.9], [0.9, 0.9], label="A segment") # sthg to label
leg = ax.legend(loc=loc)
fig.canvas.draw()
leg_bboxes.append(
leg.get_window_extent().transformed(ax.transAxes.inverted()))
assert_allclose(leg_bboxes[1].bounds, leg_bboxes[0].bounds)
@image_comparison(['legend_various_labels'], remove_text=True) |
44,195 | 183,454 | 49 | src/textual/widgets/text_input.py | 13 | 8 | def _toggle_cursor_visible(self):
if time.monotonic() - self._last_keypress_time > self.cursor | Conditional blinking | _toggle_cursor_visible | d8179c70dc06e06b2f445fdfb47fb7012d4cb2ed | textual | text_input.py | 10 | 4 | https://github.com/Textualize/textual.git | 2 | 34 | 0 | 12 | 59 | Python | {
"docstring": "Manages the blinking of the cursor - ensuring blinking only starts when the\n user hasn't pressed a key in some time",
"language": "en",
"n_whitespaces": 27,
"n_words": 21,
"vocab_size": 18
} | def _toggle_cursor_visible(self):
if time.monotonic() - self._last_keypress_time > self.cursor_blink_period:
self._cursor_blink_visible = not self._cursor_blink_visible
self.refresh()
|
|
19,571 | 98,450 | 651 | src/sentry/search/events/filter.py | 191 | 55 | def parse_semver(version, operator) -> Optional[SemverFilter]:
(operator, negated) = handle_operator_negation(operator)
try:
operator = OPERATOR_TO_DJANGO[operator]
except KeyError:
raise InvalidSearchQuery("Invalid operation 'IN' for semantic version filter.")
version = version if "@" in version else f"{SEMVER_FAKE_PACKAGE}@{version}"
parsed = parse_release_relay(version)
parsed_version = parsed.get("version_parsed")
if parsed_version:
# Convert `pre` to always be a string
prerelease = parsed_version["pre"] if parsed_version["pre"] else ""
semver_filter = SemverFilter(
operator,
[
parsed_version["major"],
parsed_version["minor"],
parsed_version["patch"],
parsed_version["revision"],
0 if prerelease else 1,
prerelease,
],
negated=negated,
)
if parsed["package"] and parsed["package"] != SEMVER_FAKE_PACKAGE:
semver_filter.package = parsed["package"]
return semver_filter
else:
# Try to parse as a wildcard match
package, version = version.split("@", 1)
version_parts = []
if version:
for part in version.split(".", 3):
if part in SEMVER_WILDCARDS:
break
try:
# We assume all ints for a wildcard match - not handling prerelease as
# part of these
version_parts.append(int(part))
except ValueError:
raise InvalidSearchQuery(INVALID_SEMVER_MESSAGE)
package = package if package and package != SEMVER_FAKE_PACKAGE else None
return SemverFilter("exact", version_parts, package, negated)
key_convers | fix(events-search): Return helpful error message on semver filter (#33785)
'IN' type queries currently raise an unhandled KeyError, raising an
InvalidSearchQuery instead. | parse_semver | 4ffb52489e662029a08169351cd997d525977e88 | sentry | filter.py | 18 | 50 | https://github.com/getsentry/sentry.git | 14 | 224 | 0 | 132 | 498 | Python | {
"docstring": "\n Attempts to parse a release version using our semver syntax. version should be in\n format `<package_name>@<version>` or `<version>`, where package_name is a string and\n version is a version string matching semver format (https://semver.org/). We've\n slightly extended this format to allow up to 4 integers. EG\n - sentry@1.2.3.4\n - sentry@1.2.3.4-alpha\n - 1.2.3.4\n - 1.2.3.4-alpha\n - 1.*\n ",
"language": "en",
"n_whitespaces": 91,
"n_words": 55,
"vocab_size": 39
} | def parse_semver(version, operator) -> Optional[SemverFilter]:
(operator, negated) = handle_operator_negation(operator)
try:
operator = OPERATOR_TO_DJANGO[operator]
except KeyError:
raise InvalidSearchQuery("Invalid operation 'IN' for semantic version filter.")
version = version if "@" in version else f"{SEMVER_FAKE_PACKAGE}@{version}"
parsed = parse_release_relay(version)
parsed_version = parsed.get("version_parsed")
if parsed_version:
# Convert `pre` to always be a string
prerelease = parsed_version["pre"] if parsed_version["pre"] else ""
semver_filter = SemverFilter(
operator,
[
parsed_version["major"],
parsed_version["minor"],
parsed_version["patch"],
parsed_version["revision"],
0 if prerelease else 1,
prerelease,
],
negated=negated,
)
if parsed["package"] and parsed["package"] != SEMVER_FAKE_PACKAGE:
semver_filter.package = parsed["package"]
return semver_filter
else:
# Try to parse as a wildcard match
package, version = version.split("@", 1)
version_parts = []
if version:
for part in version.split(".", 3):
if part in SEMVER_WILDCARDS:
break
try:
# We assume all ints for a wildcard match - not handling prerelease as
# part of these
version_parts.append(int(part))
except ValueError:
raise InvalidSearchQuery(INVALID_SEMVER_MESSAGE)
package = package if package and package != SEMVER_FAKE_PACKAGE else None
return SemverFilter("exact", version_parts, package, negated)
key_conversion_map: Mapping[
str,
Callable[[SearchFilter, str, Mapping[str, Union[int, str, datetime]]], Optional[Sequence[any]]],
] = {
"environment": _environment_filter_converter,
"message": _message_filter_converter,
TRANSACTION_STATUS_ALIAS: _transaction_status_filter_converter,
"issue.id": _issue_id_filter_converter,
USER_DISPLAY_ALIAS: _user_display_filter_converter,
ERROR_UNHANDLED_ALIAS: _error_unhandled_filter_converter,
"error.handled": _error_handled_filter_converter,
TEAM_KEY_TRANSACTION_ALIAS: _team_key_transaction_filter_converter,
RELEASE_STAGE_ALIAS: _release_stage_filter_converter,
SEMVER_ALIAS: _semver_filter_converter,
SEMVER_PACKAGE_ALIAS: _semver_package_filter_converter,
SEMVER_BUILD_ALIAS: _semver_build_filter_converter,
}
|
|
15,757 | 71,810 | 79 | wagtail/admin/tests/test_account_management.py | 26 | 9 | def test_not_logged_in_gives_403_to_ajax_requests(self):
# Get dashboard
response = self.client.get(
reverse("wagtailadmin_home"), HTTP_X_REQUESTED_WITH="XMLHttpRequest"
)
# AJAX requests should be given a 403 error instead of being redirected
self.assertEqual(response.status_code, 403)
| Reformat with black | test_not_logged_in_gives_403_to_ajax_requests | d10f15e55806c6944827d801cd9c2d53f5da4186 | wagtail | test_account_management.py | 11 | 5 | https://github.com/wagtail/wagtail.git | 1 | 33 | 0 | 25 | 60 | Python | {
"docstring": "\n This tests that a not logged in user is given a 403 error on AJAX requests\n ",
"language": "en",
"n_whitespaces": 31,
"n_words": 16,
"vocab_size": 15
} | def test_not_logged_in_gives_403_to_ajax_requests(self):
# Get dashboard
response = self.client.get(
reverse("wagtailadmin_home"), HTTP_X_REQUESTED_WITH="XMLHttpRequest"
)
# AJAX requests should be given a 403 error instead of being redirected
self.assertEqual(response.status_code, 403)
|
|
47,077 | 194,784 | 207 | parlai/utils/bpe.py | 62 | 18 | def bytes_to_unicode(self) -> Dict[int, str]:
bs: List[int] = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs: List[int] = bs[:]
| autoformat (#4378) | bytes_to_unicode | 81f722d29045a7a5841d0931a082ded1d1f13863 | ParlAI | bpe.py | 17 | 25 | https://github.com/facebookresearch/ParlAI.git | 4 | 151 | 0 | 43 | 247 | Python | {
"docstring": "\n Returns list of utf-8 byte and a corresponding list of unicode strings.\n\n The reversible bpe codes work on unicode strings. This means you need a large #\n of unicode characters in your vocab if you want to avoid UNKs. When you're at\n something like a 10B token dataset you end up needing around 5K for decent\n coverage. This is a significant percentage of your normal, say, 32K bpe vocab.\n To avoid that, we want lookup tables between utf-8 bytes and unicode strings.\n And avoids mapping to whitespace/control characters the bpe code barfs on.\n ",
"language": "en",
"n_whitespaces": 150,
"n_words": 93,
"vocab_size": 69
} | def bytes_to_unicode(self) -> Dict[int, str]:
bs: List[int] = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs: List[int] = bs[:]
n = 0
for b in range(2 ** 8):
if b not in bs:
bs.append(b)
cs.append(2 ** 8 + n)
n += 1
str_cs: List[str] = [chr(n) for n in cs]
return dict(zip(bs, str_cs))
|
|
90,913 | 291,809 | 200 | tests/components/caldav/test_calendar.py | 64 | 10 | async def test_get_events_custom_calendars(hass, calendar, get_api_events):
config = dict(CALDAV_CONFIG)
config["custom_calendars"] = [
{"name": "Private", "calendar": "Private", "search": "This is a normal event"}
]
assert await async_setup_component(hass, "calendar", {"calend | Local calendar integration (#79601) | test_get_events_custom_calendars | 532ab12a48b6832180599088250fc23446a45d1e | core | test_calendar.py | 12 | 20 | https://github.com/home-assistant/core.git | 1 | 110 | 0 | 48 | 212 | Python | {
"docstring": "Test that only searched events are returned on API.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | async def test_get_events_custom_calendars(hass, calendar, get_api_events):
config = dict(CALDAV_CONFIG)
config["custom_calendars"] = [
{"name": "Private", "calendar": "Private", "search": "This is a normal event"}
]
assert await async_setup_component(hass, "calendar", {"calendar": config})
await hass.async_block_till_done()
events = await get_api_events("calendar.private_private")
assert events == [
{
"end": {"dateTime": "2017-11-27T10:00:00-08:00"},
"start": {"dateTime": "2017-11-27T09:00:00-08:00"},
"summary": "This is a normal event",
"location": "Hamburg",
"description": "Surprisingly rainy",
"uid": None,
"recurrence_id": None,
"rrule": None,
}
]
|
|
24,940 | 113,538 | 54 | nni/mutable/symbol.py | 14 | 8 | def leaf_symbols(self) -> Iterable[Symbol]:
for arg in self.arguments:
if isinstanc | Mutable V3 (Stage 2) - Symbolic execution engine (#5195) | leaf_symbols | 8f454f3bf29e2c3cd0d359231a46edd8ee768d42 | nni | symbol.py | 12 | 10 | https://github.com/microsoft/nni.git | 3 | 33 | 0 | 14 | 54 | Python | {
"docstring": "\n Return a generator of all leaf symbols.\n\n Useful for when you want to inspect when the symbols come from.\n No deduplication even if the symbols has duplicates.\n ",
"language": "en",
"n_whitespaces": 56,
"n_words": 27,
"vocab_size": 24
} | def leaf_symbols(self) -> Iterable[Symbol]:
for arg in self.arguments:
if isinstance(arg, SymbolicExpression):
yield from arg.leaf_symbols()
|
|
@eval_app.command() | 31,241 | 137,777 | 175 | rllib/evaluate.py | 35 | 16 | def append_step(self, obs, action, next_obs, reward, terminated, truncated, info):
if self._outfile:
if self._save_info:
self._current_rollout.append(
[obs, action, next_obs, reward, terminated, truncated, info]
)
else:
self._current_rollout.append(
[obs, action, | [RLlib] gymnasium support (new `Env.reset()/step()/seed()/render()` APIs). (#28369) | append_step | 8e680c483ce326cefc62e44f68ab1a6948b1c3d2 | ray | evaluate.py | 13 | 11 | https://github.com/ray-project/ray.git | 3 | 79 | 1 | 22 | 120 | Python | {
"docstring": "Add a step to the current rollout, if we are saving them",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 12
} | def append_step(self, obs, action, next_obs, reward, terminated, truncated, info):
if self._outfile:
if self._save_info:
self._current_rollout.append(
[obs, action, next_obs, reward, terminated, truncated, info]
)
else:
self._current_rollout.append(
[obs, action, next_obs, reward, terminated, truncated]
)
self._total_steps += 1
@eval_app.command() |
50,188 | 202,956 | 122 | tests/prefetch_related/tests.py | 21 | 17 | def test_nested_prefetch_is_not_overwritten_by_related_object(self):
queryset = House.objects.only('name').prefetch_related(
Prefetch('rooms', queryset=Room.objects.prefetch_related(
Prefetch('house', queryset=House.objects.only('address')),
)),
)
with self.assertNumQueries(3):
house = queryset.first()
self.assertIs( | Fixed #32511 -- Corrected handling prefetched nested reverse relationships.
When prefetching a set of child objects related to a set of parent
objects, we usually want to populate the relationship back from the
child to the parent to avoid a query when accessing that relationship
attribute. However, there's an edge case where the child queryset
itself specifies a prefetch back to the parent. In that case, we want
to use the prefetched relationship rather than populating the reverse
relationship from the parent. | test_nested_prefetch_is_not_overwritten_by_related_object | f5233dce309543c826224be9dfa9c9f4f855f73c | django | tests.py | 19 | 11 | https://github.com/django/django.git | 1 | 102 | 0 | 19 | 175 | Python | {
"docstring": "\n The prefetched relationship is used rather than populating the reverse\n relationship from the parent, when prefetching a set of child objects\n related to a set of parent objects and the child queryset itself\n specifies a prefetch back to the parent.\n ",
"language": "en",
"n_whitespaces": 76,
"n_words": 40,
"vocab_size": 29
} | def test_nested_prefetch_is_not_overwritten_by_related_object(self):
queryset = House.objects.only('name').prefetch_related(
Prefetch('rooms', queryset=Room.objects.prefetch_related(
Prefetch('house', queryset=House.objects.only('address')),
)),
)
with self.assertNumQueries(3):
house = queryset.first()
self.assertIs(Room.house.is_cached(self.room), True)
with self.assertNumQueries(0):
house.rooms.first().house.address
|
|
49,612 | 200,382 | 147 | sympy/combinatorics/permutations.py | 51 | 13 | def apply(self, i):
r
i = _sympify(i)
if i.is_integer is False:
raise NotImplementedError("{} should be an integer.".format(i))
n = self.size
if (i < 0) == True or (i >= n) == True:
raise NotImplementedError(
"{} should be an integer between 0 and {}".format(i, n-1))
if i.is_Integer:
return Integer(self._array_form[i])
retur | Fix various typos
Found via `codespell -q 3 -L aboves,aline,ans,aother,arithmetics,assum,atleast,braket,clen,declar,declars,dorder,dum,enew,fo,fro,inout,iself,ist,ket,lamda,lightyear,lightyears,nd,numer,numers,orderd,ot,pring,rcall,rever,ro,ser,siz,splitted,sring,supercedes,te,tht,unequality,upto,vas,versin,whet` | apply | 24f1e7730119fe958cc8e28411f790c9a5ec04eb | sympy | permutations.py | 12 | 46 | https://github.com/sympy/sympy.git | 5 | 90 | 0 | 41 | 144 | Python | {
"docstring": "Apply the permutation to an expression.\n\n Parameters\n ==========\n\n i : Expr\n It should be an integer between $0$ and $n-1$ where $n$\n is the size of the permutation.\n\n If it is a symbol or a symbolic expression that can\n have integer values, an ``AppliedPermutation`` object\n will be returned which can represent an unevaluated\n function.\n\n Notes\n =====\n\n Any permutation can be defined as a bijective function\n $\\sigma : \\{ 0, 1, \\dots, n-1 \\} \\rightarrow \\{ 0, 1, \\dots, n-1 \\}$\n where $n$ denotes the size of the permutation.\n\n The definition may even be extended for any set with distinctive\n elements, such that the permutation can even be applied for\n real numbers or such, however, it is not implemented for now for\n computational reasons and the integrity with the group theory\n module.\n\n This function is similar to the ``__call__`` magic, however,\n ``__call__`` magic already has some other applications like\n permuting an array or attaching new cycles, which would\n not always be mathematically consistent.\n\n This also guarantees that the return type is a SymPy integer,\n which guarantees the safety to use assumptions.\n ",
"language": "en",
"n_whitespaces": 386,
"n_words": 180,
"vocab_size": 116
} | def apply(self, i):
r
i = _sympify(i)
if i.is_integer is False:
raise NotImplementedError("{} should be an integer.".format(i))
n = self.size
if (i < 0) == True or (i >= n) == True:
raise NotImplementedError(
"{} should be an integer between 0 and {}".format(i, n-1))
if i.is_Integer:
return Integer(self._array_form[i])
return AppliedPermutation(self, i)
|
|
23,670 | 109,611 | 355 | lib/matplotlib/collections.py | 112 | 27 | def _convert_mesh_to_triangles(self, coordinates):
if isinstance(coordinates, np.ma.MaskedArray):
p = coordinates.data
else:
p = coordinates
p_a = p[:-1, :-1]
p_b = p[:-1, 1:]
p_c = p[1:, 1:]
p_d = p[1:, :-1]
p_center = (p_a + p_ | Deprecate draw_gouraud_triangle (#23824)
* Deprecate draw_gouraud_triangle
* DOC: minor rewording
Co-authored-by: Elliott Sales de Andrade <quantum.analyst@gmail.com>
Co-authored-by: Thomas A Caswell <tcaswell@gmail.com>
Co-authored-by: Elliott Sales de Andrade <quantum.analyst@gmail.com> | _convert_mesh_to_triangles | 4a5d09cba5f4a20e14553cebd8f70c1f34d20d35 | matplotlib | collections.py | 12 | 29 | https://github.com/matplotlib/matplotlib.git | 2 | 273 | 0 | 56 | 390 | Python | {
"docstring": "\n Convert a given mesh into a sequence of triangles, each point\n with its own color. The result can be used to construct a call to\n `~.RendererBase.draw_gouraud_triangles`.\n ",
"language": "en",
"n_whitespaces": 56,
"n_words": 26,
"vocab_size": 23
} | def _convert_mesh_to_triangles(self, coordinates):
if isinstance(coordinates, np.ma.MaskedArray):
p = coordinates.data
else:
p = coordinates
p_a = p[:-1, :-1]
p_b = p[:-1, 1:]
p_c = p[1:, 1:]
p_d = p[1:, :-1]
p_center = (p_a + p_b + p_c + p_d) / 4.0
triangles = np.concatenate([
p_a, p_b, p_center,
p_b, p_c, p_center,
p_c, p_d, p_center,
p_d, p_a, p_center,
], axis=2).reshape((-1, 3, 2))
c = self.get_facecolor().reshape((*coordinates.shape[:2], 4))
c_a = c[:-1, :-1]
c_b = c[:-1, 1:]
c_c = c[1:, 1:]
c_d = c[1:, :-1]
c_center = (c_a + c_b + c_c + c_d) / 4.0
colors = np.concatenate([
c_a, c_b, c_center,
c_b, c_c, c_center,
c_c, c_d, c_center,
c_d, c_a, c_center,
], axis=2).reshape((-1, 3, 4))
return triangles, colors
|
|
39,415 | 163,270 | 419 | pandas/core/series.py | 126 | 40 | def count(self, level=None):
if level is None:
return notna(self._values).sum().astype("int64")
else:
warnings.warn(
"Using the level keyword in DataFrame and Series aggregations is "
"deprecated and will be removed in a future version. Use groupby "
"instead. ser.count(level=1) should use ser.groupby(level=1).count().",
FutureWarning,
stacklevel=find_stack_level(),
)
if not isinstance(self.index, MultiIndex):
raise ValueError("Series.count level is only valid with a MultiIndex")
index = self.index
assert isinstance(index, MultiIndex) # for mypy
if isinstance(level, str):
level = index._get_level_number(level)
lev = index.levels[level]
level_codes = np.array(index.codes[level], subok=False, copy=True)
mask = level_codes == -1
if mask.any():
level_codes[mask] = cnt = len(lev)
lev = lev.insert(cnt, lev._na_value)
obs = level_codes[notna(self._values)] | TYP: Ignore numpy related issues (#45244) | count | d603d43df2057ecdf74010d9dadc735e37f8f7b5 | pandas | series.py | 14 | 28 | https://github.com/pandas-dev/pandas.git | 6 | 211 | 0 | 98 | 343 | Python | {
"docstring": "\n Return number of non-NA/null observations in the Series.\n\n Parameters\n ----------\n level : int or level name, default None\n If the axis is a MultiIndex (hierarchical), count along a\n particular level, collapsing into a smaller Series.\n\n Returns\n -------\n int or Series (if level specified)\n Number of non-null values in the Series.\n\n See Also\n --------\n DataFrame.count : Count non-NA cells for each column or row.\n\n Examples\n --------\n >>> s = pd.Series([0.0, 1.0, np.nan])\n >>> s.count()\n 2\n ",
"language": "en",
"n_whitespaces": 220,
"n_words": 74,
"vocab_size": 58
} | def count(self, level=None):
if level is None:
return notna(self._values).sum().astype("int64")
else:
warnings.warn(
"Using the level keyword in DataFrame and Series aggregations is "
"deprecated and will be removed in a future version. Use groupby "
"instead. ser.count(level=1) should use ser.groupby(level=1).count().",
FutureWarning,
stacklevel=find_stack_level(),
)
if not isinstance(self.index, MultiIndex):
raise ValueError("Series.count level is only valid with a MultiIndex")
index = self.index
assert isinstance(index, MultiIndex) # for mypy
if isinstance(level, str):
level = index._get_level_number(level)
lev = index.levels[level]
level_codes = np.array(index.codes[level], subok=False, copy=True)
mask = level_codes == -1
if mask.any():
level_codes[mask] = cnt = len(lev)
lev = lev.insert(cnt, lev._na_value)
obs = level_codes[notna(self._values)]
# Argument "minlength" to "bincount" has incompatible type "Optional[int]";
# expected "SupportsIndex" [arg-type]
out = np.bincount(obs, minlength=len(lev) or None) # type: ignore[arg-type]
return self._constructor(out, index=lev, dtype="int64").__finalize__(
self, method="count"
)
|
|
55,704 | 219,678 | 951 | python3.10.4/Lib/_pydecimal.py | 350 | 31 | def __format__(self, specifier, context=None, _localeconv=None):
# Note: PEP 3101 says that if the type is not present then
# there should be at least one digit after the decimal point.
# We take the liberty of ignoring this requirement for
# Decimal---it's presumably there to make sure that
# format(float, '') behaves similarly to str(float).
if context is None:
context = getcontext()
spec = _parse_format_specifier(specifier, _localeconv=_localeconv)
# special values don't care about the type or precision
if self._is_special:
sign = _format_sign(self._sign, spec)
body = str(self.copy_abs())
if spec['type'] == '%':
body += '%'
return _format_align(sign, body, spec)
# a type of None defaults to 'g' or 'G', depending on context
if spec['type'] is None:
spec['type'] = ['g', 'G'][context.capitals]
# if type is '%', adjust exponent of self accordingly
if spec['type'] == '%':
self = _dec_from_triple(self._sign, self._int, self._exp+2)
# round if necessary, taking rounding mode from the context
rounding = context.rounding
precision = spec['precision']
if precision is not None:
if spec['type'] in 'eE':
self = self._round(precision+1, rounding)
elif spec['type'] in 'fF%':
self = self._rescale(-precision, rounding)
elif spec['type'] in 'gG' and len(self._int) > precision:
self = self._round(precision, rounding)
# special case: zeros with a positive exponent can't be
# represented in fixed point; rescale them to 0e0.
if not self and self._exp > 0 and spec['type'] in 'fF%':
self = self._rescale(0, rounding)
# figure out placement of the decimal point
leftdigits = self._exp + len(self._int)
if spec['type'] in 'eE':
if not self and precision is not None:
dotplace = 1 - precision
else:
dotplace = 1
elif spec['type'] in 'fF%':
dotplace = leftdigits
elif spec['type'] in 'gG':
if self._exp <= 0 and leftdigits > -6:
dotplace = leftdigits
else:
dotplace = | add python 3.10.4 for windows | __format__ | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | _pydecimal.py | 16 | 49 | https://github.com/XX-net/XX-Net.git | 24 | 411 | 0 | 171 | 704 | Python | {
"docstring": "Format a Decimal instance according to the given specifier.\n\n The specifier should be a standard format specifier, with the\n form described in PEP 3101. Formatting types 'e', 'E', 'f',\n 'F', 'g', 'G', 'n' and '%' are supported. If the formatting\n type is omitted it defaults to 'g' or 'G', depending on the\n value of context.capitals.\n ",
"language": "en",
"n_whitespaces": 99,
"n_words": 55,
"vocab_size": 49
} | def __format__(self, specifier, context=None, _localeconv=None):
# Note: PEP 3101 says that if the type is not present then
# there should be at least one digit after the decimal point.
# We take the liberty of ignoring this requirement for
# Decimal---it's presumably there to make sure that
# format(float, '') behaves similarly to str(float).
if context is None:
context = getcontext()
spec = _parse_format_specifier(specifier, _localeconv=_localeconv)
# special values don't care about the type or precision
if self._is_special:
sign = _format_sign(self._sign, spec)
body = str(self.copy_abs())
if spec['type'] == '%':
body += '%'
return _format_align(sign, body, spec)
# a type of None defaults to 'g' or 'G', depending on context
if spec['type'] is None:
spec['type'] = ['g', 'G'][context.capitals]
# if type is '%', adjust exponent of self accordingly
if spec['type'] == '%':
self = _dec_from_triple(self._sign, self._int, self._exp+2)
# round if necessary, taking rounding mode from the context
rounding = context.rounding
precision = spec['precision']
if precision is not None:
if spec['type'] in 'eE':
self = self._round(precision+1, rounding)
elif spec['type'] in 'fF%':
self = self._rescale(-precision, rounding)
elif spec['type'] in 'gG' and len(self._int) > precision:
self = self._round(precision, rounding)
# special case: zeros with a positive exponent can't be
# represented in fixed point; rescale them to 0e0.
if not self and self._exp > 0 and spec['type'] in 'fF%':
self = self._rescale(0, rounding)
# figure out placement of the decimal point
leftdigits = self._exp + len(self._int)
if spec['type'] in 'eE':
if not self and precision is not None:
dotplace = 1 - precision
else:
dotplace = 1
elif spec['type'] in 'fF%':
dotplace = leftdigits
elif spec['type'] in 'gG':
if self._exp <= 0 and leftdigits > -6:
dotplace = leftdigits
else:
dotplace = 1
# find digits before and after decimal point, and get exponent
if dotplace < 0:
intpart = '0'
fracpart = '0'*(-dotplace) + self._int
elif dotplace > len(self._int):
intpart = self._int + '0'*(dotplace-len(self._int))
fracpart = ''
else:
intpart = self._int[:dotplace] or '0'
fracpart = self._int[dotplace:]
exp = leftdigits-dotplace
# done with the decimal-specific stuff; hand over the rest
# of the formatting to the _format_number function
return _format_number(self._sign, intpart, fracpart, exp, spec)
|
|
75,368 | 258,694 | 30 | sklearn/tests/test_base.py | 15 | 13 | def test_feature_names_in():
pd = pytest.importorskip("pandas")
iris = datasets.load_iris()
X_np = iris.data
df = pd.DataFrame(X_np, columns=iris.feature_names)
| TST Better info when checking for no warnings in tests (#22362) | test_feature_names_in | 9f85c9d44965b764f40169ef2917e5f7a798684f | scikit-learn | test_base.py | 10 | 47 | https://github.com/scikit-learn/scikit-learn.git | 4 | 339 | 0 | 12 | 68 | Python | {
"docstring": "Check that feature_name_in are recorded by `_validate_data`",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | def test_feature_names_in():
pd = pytest.importorskip("pandas")
iris = datasets.load_iris()
X_np = iris.data
df = pd.DataFrame(X_np, columns=iris.feature_names)
|
|
69,642 | 241,658 | 200 | pytorch_lightning/trainer/connectors/accelerator_connector.py | 67 | 12 | def check_interactive_compatibility(self):
from pytorch_lightning.utilities import _IS_INTERACTIVE
if _IS_INTERACTIVE and self._strategy_type is not None and not self._strategy_type.is_interactive_compatible():
raise MisconfigurationException(
f"`Trainer(strategy={self._strategy_type.value!r})` or"
f" `Trainer(accelerator={self._strategy_type.value!r})` is not compatible with an interactive"
" environment. Run your code as a script, or choose one of the compatible backends:"
f" {', '.join(_StrategyType.interactive_compatible_types())}."
" In case you are spaw | Rename `_distrib_type` to `_strategy_type` (#11328)
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> | check_interactive_compatibility | e15579a4f32ee3c08318a466583f4a0a8517d654 | lightning | accelerator_connector.py | 16 | 11 | https://github.com/Lightning-AI/lightning.git | 4 | 44 | 0 | 56 | 121 | Python | {
"docstring": "Raises a `MisconfigurationException` if the accelerator and/or plugin is not compatible with an\n interactive environment.",
"language": "en",
"n_whitespaces": 21,
"n_words": 15,
"vocab_size": 15
} | def check_interactive_compatibility(self):
from pytorch_lightning.utilities import _IS_INTERACTIVE
if _IS_INTERACTIVE and self._strategy_type is not None and not self._strategy_type.is_interactive_compatible():
raise MisconfigurationException(
f"`Trainer(strategy={self._strategy_type.value!r})` or"
f" `Trainer(accelerator={self._strategy_type.value!r})` is not compatible with an interactive"
" environment. Run your code as a script, or choose one of the compatible backends:"
f" {', '.join(_StrategyType.interactive_compatible_types())}."
" In case you are spawning processes yourself, make sure to include the Trainer"
" creation inside the worker function."
)
|
|
53,522 | 212,929 | 256 | PySimpleGUI.py | 76 | 10 | def theme_global(new_theme=None):
if new_theme is not None:
if new_theme not in theme_list():
popup_error_with_traceback('Cannot use custom themes with theme_global call',
'Your request to use theme {} cannot be performed.'.format(new_theme),
'The PySimpleGUI Global User Se | Better error checking/reporting in theme_global. NEW THEME DarkGrey15 | theme_global | dfad2e3b7671b7128895c8a0e29fff38d7efe6e9 | PySimpleGUI | PySimpleGUI.py | 14 | 13 | https://github.com/PySimpleGUI/PySimpleGUI.git | 3 | 71 | 0 | 59 | 125 | Python | {
"docstring": "\n Sets / Gets the global PySimpleGUI Theme. If none is specified then returns the global theme from user settings.\n Note the theme must be a standard, built-in PySimpleGUI theme... not a user-created theme.\n\n :param new_theme: the new theme name to use\n :type new_theme: (str)\n :return: the currently selected theme\n :rtype: (str)\n ",
"language": "en",
"n_whitespaces": 94,
"n_words": 51,
"vocab_size": 39
} | def theme_global(new_theme=None):
if new_theme is not None:
if new_theme not in theme_list():
popup_error_with_traceback('Cannot use custom themes with theme_global call',
'Your request to use theme {} cannot be performed.'.format(new_theme),
'The PySimpleGUI Global User Settings are meant for PySimpleGUI standard items, not user config items',
'You can use any of the many built-in themes instead or use your own UserSettings file to store your custom theme')
return pysimplegui_user_settings.get('-theme-', CURRENT_LOOK_AND_FEEL)
pysimplegui_user_settings.set('-theme-', new_theme)
theme(new_theme)
return new_theme
else:
return pysimplegui_user_settings.get('-theme-', CURRENT_LOOK_AND_FEEL)
|
|
57,796 | 226,116 | 141 | packages/python/chart-studio/chart_studio/plotly/chunked_requests/chunked_request.py | 45 | 11 | def close(self): | switch to black .22 | close | 43e3a4011080911901176aab919c0ecf5046ddd3 | plotly.py | chunked_request.py | 12 | 8 | https://github.com/plotly/plotly.py.git | 2 | 46 | 0 | 41 | 95 | Python | {
"docstring": "Close the connection to server.\n\n If available, return a http_client.HTTPResponse object.\n\n Closing the connection involves sending the\n Transfer-Encoding terminating bytes.\n ",
"language": "en",
"n_whitespaces": 48,
"n_words": 20,
"vocab_size": 17
} | def close(self):
self._reset_retries()
self._closed = True
# Chunked-encoded posts are terminated with '0\r\n\r\n'
# For some reason, either Python or node.js seems to
# require an extra \r\n.
try:
self._conn.send("\r\n0\r\n\r\n".encode("utf-8"))
except http_client.socket.error:
# In case the socket has already been closed
return ""
return self._getresponse()
|
|
54,636 | 216,555 | 381 | salt/modules/runit.py | 164 | 25 | def _get_svc_path(name="*", status=None):
# This is the core routine to work with services, called by many
# other functions of this module.
#
# The name of a service is the "apparent" folder's name that contains its
# "run" script. If its "folder" is a symlink, the service is an "alias" of
# the targeted service.
if not SERVICE_DIR:
raise CommandExecutionError("Could not find service directory.")
# path list of enabled services as /AVAIL_SVR_DIRS/$service,
# taking care of any service aliases (do not use os.path.realpath()).
| fix runit module failing on non-symlinked service | _get_svc_path | 5bf2904e7ac79d438ce03a673aa9a5c99f4e8e0f | salt | runit.py | 15 | 24 | https://github.com/saltstack/salt.git | 10 | 175 | 0 | 95 | 304 | Python | {
"docstring": "\n Return a list of paths to services with ``name`` that have the specified ``status``\n\n name\n a glob for service name. default is '*'\n\n status\n None : all services (no filter, default choice)\n 'DISABLED' : available service(s) that is not enabled\n 'ENABLED' : enabled service (whether started on boot or not)\n ",
"language": "en",
"n_whitespaces": 98,
"n_words": 50,
"vocab_size": 41
} | def _get_svc_path(name="*", status=None):
# This is the core routine to work with services, called by many
# other functions of this module.
#
# The name of a service is the "apparent" folder's name that contains its
# "run" script. If its "folder" is a symlink, the service is an "alias" of
# the targeted service.
if not SERVICE_DIR:
raise CommandExecutionError("Could not find service directory.")
# path list of enabled services as /AVAIL_SVR_DIRS/$service,
# taking care of any service aliases (do not use os.path.realpath()).
ena = set()
for el in glob.glob(os.path.join(SERVICE_DIR, name)):
if _is_svc(el):
if os.path.islink(el):
ena.add(os.readlink(el))
else:
ena.add(el)
log.trace("found enabled service path: %s", el)
if status == "ENABLED":
return sorted(ena)
# path list of available services as /AVAIL_SVR_DIRS/$service
ava = set()
for d in AVAIL_SVR_DIRS:
for el in glob.glob(os.path.join(d, name)):
if _is_svc(el):
ava.add(el)
log.trace("found available service path: %s", el)
if status == "DISABLED":
# service available but not enabled
ret = ava.difference(ena)
else:
# default: return available services
ret = ava.union(ena)
return sorted(ret)
|
|
@RunIf(min_gpus=2) | 69,688 | 241,761 | 70 | tests/checkpointing/test_torch_saving.py | 34 | 22 | def test_model_torch_save_ddp_cpu(tmpdir):
model = BoringModel()
num_epochs = 1
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=num_epochs, strategy="ddp_spawn", accelerator="cpu", devices=2, logger=False
)
temp_path = os.path.jo | Update `tests/checkpointing/*.py` to use `devices` instead of `gpus` or `ipus` (#11408)
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> | test_model_torch_save_ddp_cpu | d2d284fd6e3e8f53e9a44ab233771850af1e4dab | lightning | test_torch_saving.py | 10 | 10 | https://github.com/Lightning-AI/lightning.git | 1 | 78 | 1 | 30 | 139 | Python | {
"docstring": "Test to ensure torch save does not fail for model and trainer using cpu ddp.",
"language": "en",
"n_whitespaces": 14,
"n_words": 15,
"vocab_size": 15
} | def test_model_torch_save_ddp_cpu(tmpdir):
model = BoringModel()
num_epochs = 1
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=num_epochs, strategy="ddp_spawn", accelerator="cpu", devices=2, logger=False
)
temp_path = os.path.join(tmpdir, "temp.pt")
trainer.fit(model)
# Ensure these do not fail
torch.save(trainer.model, temp_path)
torch.save(trainer, temp_path)
@RunIf(min_gpus=2) |
6,562 | 36,020 | 38 | src/transformers/onnx/config.py | 17 | 5 | def default_batch_size(self) -> int:
# Using 2 avoid ONNX making assumption about single sample batch
return On | Add ONNX export for ViT (#15658)
* Add ONNX support for ViT
* Refactor to use generic preprocessor
* Add vision dep to tests
* Extend ONNX slow tests to ViT
* Add dummy image generator
* Use model_type to determine modality
* Add deprecation warnings for tokenizer argument
* Add warning when overwriting the preprocessor
* Add optional args to docstrings
* Add minimum PyTorch version to OnnxConfig
* Refactor OnnxConfig class variables from CONSTANT_NAME to snake_case
* Add reasonable value for default atol
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> | default_batch_size | 50dd314d939a86f3a81e19af01459f449fbaeeca | transformers | config.py | 6 | 8 | https://github.com/huggingface/transformers.git | 1 | 12 | 0 | 17 | 23 | Python | {
"docstring": "\n The default batch size to use if no other indication\n\n Returns:\n Integer > 0\n ",
"language": "en",
"n_whitespaces": 47,
"n_words": 14,
"vocab_size": 14
} | def default_batch_size(self) -> int:
# Using 2 avoid ONNX making assumption about single sample batch
return OnnxConfig.default_fixed_batch
|
|
42,870 | 178,942 | 156 | nuitka/utils/Signing.py | 32 | 16 | def addMacOSCodeSignature(filenames):
# Weak signing.
identity = getMacOSSigningIdentity()
command = [
"codesign",
"-s",
identity,
"--force",
"--deep",
"--preserve-metadata=entitlements",
]
assert type(filenames) is not str
command.extend(filenam | macOS: Add support for specifying signing identity and access to protected resources. | addMacOSCodeSignature | 51ca460bd8c382cc165cbb1325e7cb65895d1a0b | Nuitka | Signing.py | 10 | 19 | https://github.com/Nuitka/Nuitka.git | 1 | 66 | 0 | 31 | 112 | Python | {
"docstring": "Remove the code signature from a filename.\n\n Args:\n filenames - The files to be signed.\n\n Returns:\n None\n\n Notes:\n This is macOS specific.\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 22,
"vocab_size": 22
} | def addMacOSCodeSignature(filenames):
# Weak signing.
identity = getMacOSSigningIdentity()
command = [
"codesign",
"-s",
identity,
"--force",
"--deep",
"--preserve-metadata=entitlements",
]
assert type(filenames) is not str
command.extend(filenames)
with withMadeWritableFileMode(filenames):
executeToolChecked(
logger=postprocessing_logger,
command=command,
absence_message=macos_codesign_usage,
stderr_filter=_filterSigntoolErrorOutput,
)
|
|
9,566 | 48,680 | 178 | rest_framework/views.py | 56 | 22 | def exception_handler(exc, context):
if isinstance(exc, Http | Preserve exception messages for wrapped Django exceptions (#8051)
* Preserve messages for wrapped Django exceptions
* Fix the test
* Update test_generics.py
* Update test_generics.py
Co-authored-by: Tom Christie <tom@tomchristie.com> | exception_handler | 56946fac8f29aa44ce84391f138d63c4c8a2a285 | django-rest-framework | views.py | 14 | 18 | https://github.com/encode/django-rest-framework.git | 7 | 152 | 0 | 39 | 246 | Python | {
"docstring": "\n Returns the response that should be used for any given exception.\n\n By default we handle the REST framework `APIException`, and also\n Django's built-in `Http404` and `PermissionDenied` exceptions.\n\n Any unhandled exceptions may return `None`, which will cause a 500 error\n to be raised.\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 42,
"vocab_size": 39
} | def exception_handler(exc, context):
if isinstance(exc, Http404):
exc = exceptions.NotFound(*(exc.args))
elif isinstance(exc, PermissionDenied):
exc = exceptions.PermissionDenied(*(exc.args))
if isinstance(exc, exceptions.APIException):
headers = {}
if getattr(exc, 'auth_header', None):
headers['WWW-Authenticate'] = exc.auth_header
if getattr(exc, 'wait', None):
headers['Retry-After'] = '%d' % exc.wait
if isinstance(exc.detail, (list, dict)):
data = exc.detail
else:
data = {'detail': exc.detail}
set_rollback()
return Response(data, status=exc.status_code, headers=headers)
return None
|
|
7,156 | 39,239 | 107 | recommenders/models/sar/sar_singlenode.py | 25 | 22 | def compute_cooccurrence_matrix(self, df):
u | Remove drop_duplicates() from SAR method fix #1464 (#1588)
* Remove drop_duplicates() from SAR method fix #1464
* flake is complaining
* Typos
* Define self.unity_user_affinity inside __init__()
* Remove drop_duplicates() from SAR method
* Remove duplicates in testing data
* Remove duplicates in test data for recommend_k_items
* Allow duplicates in score data
Co-authored-by: miguelgfierro <miguelgfierro@users.noreply.github.com>
Co-authored-by: Andreas Argyriou <anargyri@users.noreply.github.com>
Co-authored-by: Simon Zhao <43029286+simonzhaoms@users.noreply.github.com> | compute_cooccurrence_matrix | 96b5053fa688bec79a729f9ea238e5f916bced01 | recommenders | sar_singlenode.py | 15 | 10 | https://github.com/microsoft/recommenders.git | 1 | 101 | 0 | 21 | 153 | Python | {
"docstring": "Co-occurrence matrix.\n\n The co-occurrence matrix is defined as :math:`C = U^T * U`\n\n where U is the user_affinity matrix with 1's as values (instead of ratings).\n\n Args:\n df (pandas.DataFrame): DataFrame of users and items\n\n Returns:\n numpy.ndarray: Co-occurrence matrix\n ",
"language": "en",
"n_whitespaces": 95,
"n_words": 38,
"vocab_size": 32
} | def compute_cooccurrence_matrix(self, df):
user_item_hits = sparse.coo_matrix(
(np.repeat(1, df.shape[0]), (df[self.col_user_id], df[self.col_item_id])),
shape=(self.n_users, self.n_items),
).tocsr()
item_cooccurrence = user_item_hits.transpose().dot(user_item_hits)
item_cooccurrence = item_cooccurrence.multiply(
item_cooccurrence >= self.threshold
)
return item_cooccurrence.astype(df[self.col_rating].dtype)
|
|
3,452 | 20,609 | 615 | pipenv/patched/notpip/_vendor/pyparsing/helpers.py | 164 | 48 | def _makeTags(tagStr, xml, suppress_LT=Suppress("<"), suppress_GT=Suppress(">")):
if isinstance(tagStr, str_type):
resname = tagStr
tagStr = Keyword(tagStr, caseless=not xml)
else:
resname = tagStr.name
tagAttrName = Word(alphas, alphanums + "_-:")
if xml:
tagAttrValue = dbl_quoted_string.copy().set_parse_action(remove_quotes)
openTag = (
suppress_LT
+ tagStr("tag")
+ Dict(ZeroOrMore(Group(tagAttrName + Suppress("=") + tagAttrValue)))
+ Opt("/", default=[False])("empty").set_parse_action(
lambda s, l, t: t[0] == "/"
)
+ suppress_GT
)
else:
tagAttrValue = quoted_string.copy().set_parse_action(remove_quotes) | Word(
printables, exclude_chars=">"
)
openTag = (
suppress_LT
+ tagStr("tag")
+ Dict(
ZeroOrMore(
Group(
tagAttrName.set_parse_action(lambda t: t[0].lower())
+ Opt(Suppress("=") + tagAttrValue)
)
)
)
+ Opt("/", default=[False])("empty").set_parse_action(
lambda s, l, t: t[0] == "/"
)
+ suppress_GT
)
closeTag = Combine(Literal("</") + tagStr + ">", adjacent=False)
openTag.set_name("<%s>" % resname)
# add start<tagname> results name in parse action now that ungrouped names are not reported at two levels
openTag.add_parse_action(
lambda t: t.__setitem__(
"start" + "".join(resname.replace(":", " ").title().split()), t.copy()
)
| check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | _makeTags | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | helpers.py | 26 | 53 | https://github.com/pypa/pipenv.git | 3 | 365 | 0 | 96 | 627 | Python | {
"docstring": "Internal helper to construct opening and closing tag expressions, given a tag name",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 12
} | def _makeTags(tagStr, xml, suppress_LT=Suppress("<"), suppress_GT=Suppress(">")):
if isinstance(tagStr, str_type):
resname = tagStr
tagStr = Keyword(tagStr, caseless=not xml)
else:
resname = tagStr.name
tagAttrName = Word(alphas, alphanums + "_-:")
if xml:
tagAttrValue = dbl_quoted_string.copy().set_parse_action(remove_quotes)
openTag = (
suppress_LT
+ tagStr("tag")
+ Dict(ZeroOrMore(Group(tagAttrName + Suppress("=") + tagAttrValue)))
+ Opt("/", default=[False])("empty").set_parse_action(
lambda s, l, t: t[0] == "/"
)
+ suppress_GT
)
else:
tagAttrValue = quoted_string.copy().set_parse_action(remove_quotes) | Word(
printables, exclude_chars=">"
)
openTag = (
suppress_LT
+ tagStr("tag")
+ Dict(
ZeroOrMore(
Group(
tagAttrName.set_parse_action(lambda t: t[0].lower())
+ Opt(Suppress("=") + tagAttrValue)
)
)
)
+ Opt("/", default=[False])("empty").set_parse_action(
lambda s, l, t: t[0] == "/"
)
+ suppress_GT
)
closeTag = Combine(Literal("</") + tagStr + ">", adjacent=False)
openTag.set_name("<%s>" % resname)
# add start<tagname> results name in parse action now that ungrouped names are not reported at two levels
openTag.add_parse_action(
lambda t: t.__setitem__(
"start" + "".join(resname.replace(":", " ").title().split()), t.copy()
)
)
closeTag = closeTag(
"end" + "".join(resname.replace(":", " ").title().split())
).set_name("</%s>" % resname)
openTag.tag = resname
closeTag.tag = resname
openTag.tag_body = SkipTo(closeTag())
return openTag, closeTag
|
|
80,398 | 270,135 | 208 | keras/datasets/cifar100.py | 88 | 24 | def load_data(label_mode="fine"):
if label_mode not in ["fine", "coarse"]:
raise ValueError(
'`label_mode` must be one of `"fine"`, `"coarse"`. '
f"Received: label_mode= | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | load_data | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | cifar100.py | 12 | 24 | https://github.com/keras-team/keras.git | 3 | 185 | 0 | 64 | 303 | Python | {
"docstring": "Loads the CIFAR100 dataset.\n\n This is a dataset of 50,000 32x32 color training images and\n 10,000 test images, labeled over 100 fine-grained classes that are\n grouped into 20 coarse-grained classes. See more info at the\n [CIFAR homepage](https://www.cs.toronto.edu/~kriz/cifar.html).\n\n Args:\n label_mode: one of \"fine\", \"coarse\". If it is \"fine\" the category labels\n are the fine-grained labels, if it is \"coarse\" the output labels are the\n coarse-grained superclasses.\n\n Returns:\n Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`.\n\n **x_train**: uint8 NumPy array of grayscale image data with shapes\n `(50000, 32, 32, 3)`, containing the training data. Pixel values range\n from 0 to 255.\n\n **y_train**: uint8 NumPy array of labels (integers in range 0-99)\n with shape `(50000, 1)` for the training data.\n\n **x_test**: uint8 NumPy array of grayscale image data with shapes\n `(10000, 32, 32, 3)`, containing the test data. Pixel values range\n from 0 to 255.\n\n **y_test**: uint8 NumPy array of labels (integers in range 0-99)\n with shape `(10000, 1)` for the test data.\n\n Example:\n\n ```python\n (x_train, y_train), (x_test, y_test) = keras.datasets.cifar100.load_data()\n assert x_train.shape == (50000, 32, 32, 3)\n assert x_test.shape == (10000, 32, 32, 3)\n assert y_train.shape == (50000, 1)\n assert y_test.shape == (10000, 1)\n ```\n ",
"language": "en",
"n_whitespaces": 304,
"n_words": 193,
"vocab_size": 106
} | def load_data(label_mode="fine"):
if label_mode not in ["fine", "coarse"]:
raise ValueError(
'`label_mode` must be one of `"fine"`, `"coarse"`. '
f"Received: label_mode={label_mode}."
)
dirname = "cifar-100-python"
origin = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
path = get_file(
dirname,
origin=origin,
untar=True,
file_hash="85cd44d02ba6437773c5bbd22e183051d648de2e7d6b014e1ef29b855ba677a7",
)
fpath = os.path.join(path, "train")
x_train, y_train = load_batch(fpath, label_key=label_mode + "_labels")
fpath = os.path.join(path, "test")
x_test, y_test = load_batch(fpath, label_key=label_mode + "_labels")
y_train = np.reshape(y_train, (len(y_train), 1))
y_test = np.reshape(y_test, (len(y_test), 1))
if backend.image_data_format() == "channels_last":
x_train = x_train.transpose(0, 2, 3, 1)
x_test = x_test.transpose(0, 2, 3, 1)
return (x_train, y_train), (x_test, y_test)
|
|
8,993 | 46,789 | 194 | dev/breeze/src/airflow_breeze/utils/path_utils.py | 114 | 27 | def find_airflow_sources_root() -> Path:
default_airflow_sources_root = Path.cwd()
# Try to find airflow sources in current working dir
airflow_sources_root = search_upwards_for_airflow_sources_root(Path.cwd())
if not airflow_sources_root:
# Or if it fails, find it in parents of the directory where the ./breeze.py is.
airflow_sources_root = search_upwards_for_airflow_sources_root(Path(__file__).resolve().parent)
if airflow_sources_root:
os.chdir(airflow_sources_root)
return Path(airflow_sources_root)
else:
console.print(
f"\n[bright_yellow]Could not find Airflow sources location. "
f"Assuming {default_airflow_sources_root}"
)
os.chdir(default_airflow_sources_root)
return Path(default_airflow_sources_root)
AIRFLOW_SOURCES_ROOT = find_airflow_sources_root()
BUILD_CACHE_DIR = AIRFLOW_SOURCES_ROOT / '.build'
FILES_DIR = AIRFLOW | Prepare Breeze2 for prime time :) (#22713)
This is a review and clean-up for all the parameters and
commands for Breeze2 in order to prepare it for being
used by the contribugors.
There are various small fixes here and there, removal
of duplicated code, refactoring and moving code around
as well as cleanup and review all the parameters used
for all implemented commands.
The parameters, default values and their behaviours were
updated to match "new" life of Breeze rather than old
one.
Some improvements are made to the autocomplete and
click help messages printed. Full list of choices is
always displayed, parameters are groups according to
their target audience, and they were sorted according
to importance and frequency of use.
Various messages have been colourised according to their
meaning - warnings as yellow, errors as red and
informational messages as bright_blue.
The `dry-run` option has been added to just show what
would have been run without actually running some
potentially "write" commands (read commands are still
executed) so that you can easily verify and manually
copy and execute the commands with option to modify
them before. The `dry_run` and `verbose` options are
now used for all commands.
The "main" command now runs "shell" by default similarly
as the original Breeze.
All "shortcut" parameters have been standardized - i.e
common options (verbose/dry run/help) have one and all
common flags that are likely to be used often have an
assigned shortcute.
The "stop" and "cleanup" command have been added
as they are necessary for average user to complete the
regular usage cycle.
Documentation for all the important methods have been
updated. | find_airflow_sources_root | 4ffd4f09532fceb67675fce4c1f5cd383eff992e | airflow | path_utils.py | 15 | 26 | https://github.com/apache/airflow.git | 3 | 79 | 0 | 71 | 267 | Python | {
"docstring": "\n Find the root of airflow sources. When Breeze is run from sources, it is easy, but this one also\n has to handle the case when Breeze is installed via `pipx` so it searches upwards of the current\n directory to find the right root of airflow directory.\n\n If not found, current directory is returned (this handles the case when Breeze is run from the local\n directory.\n\n :return: Path for the found sources.\n\n ",
"language": "en",
"n_whitespaces": 93,
"n_words": 71,
"vocab_size": 45
} | def find_airflow_sources_root() -> Path:
default_airflow_sources_root = Path.cwd()
# Try to find airflow sources in current working dir
airflow_sources_root = search_upwards_for_airflow_sources_root(Path.cwd())
if not airflow_sources_root:
# Or if it fails, find it in parents of the directory where the ./breeze.py is.
airflow_sources_root = search_upwards_for_airflow_sources_root(Path(__file__).resolve().parent)
if airflow_sources_root:
os.chdir(airflow_sources_root)
return Path(airflow_sources_root)
else:
console.print(
f"\n[bright_yellow]Could not find Airflow sources location. "
f"Assuming {default_airflow_sources_root}"
)
os.chdir(default_airflow_sources_root)
return Path(default_airflow_sources_root)
AIRFLOW_SOURCES_ROOT = find_airflow_sources_root()
BUILD_CACHE_DIR = AIRFLOW_SOURCES_ROOT / '.build'
FILES_DIR = AIRFLOW_SOURCES_ROOT / 'files'
MSSQL_DATA_VOLUME = AIRFLOW_SOURCES_ROOT / 'tmp_mssql_volume'
MYPY_CACHE_DIR = AIRFLOW_SOURCES_ROOT / '.mypy_cache'
LOGS_DIR = AIRFLOW_SOURCES_ROOT / 'logs'
DIST_DIR = AIRFLOW_SOURCES_ROOT / 'dist'
SCRIPTS_CI_DIR = AIRFLOW_SOURCES_ROOT / 'scripts' / 'ci'
DOCKER_CONTEXT_DIR = AIRFLOW_SOURCES_ROOT / 'docker-context-files'
CACHE_TMP_FILE_DIR = tempfile.TemporaryDirectory()
OUTPUT_LOG = Path(CACHE_TMP_FILE_DIR.name, 'out.log')
|
|
117,527 | 321,097 | 346 | qutebrowser/browser/network/pac.py | 94 | 19 | def _parse_proxy_entry(proxy_str):
config = [c.strip() for c in proxy_str.split(' ') if c]
if not config:
raise ParseProxyError("Empty proxy entry")
if config[0] == "DIRECT":
if len(config) != 1:
raise ParseProxyError("Invalid number of parameters for " +
"DIRECT")
return QNetworkProxy(QNetworkProxy.ProxyType.NoProxy)
elif config[0] == "PROXY":
if len(config) != 2:
raise ParseProxyError("Invalid number of parameters for PROXY")
host, port = PACResolver._parse_proxy_host(config[1])
return QNetworkProxy(QNetworkProxy.ProxyType.HttpProxy, host, port)
elif config[0] in ["SOCKS", "SOCKS5"]:
if len(config) != 2:
raise ParseProxyError("Invalid number of parameters for SOCKS")
host, port = PACResol | Run scripts/dev/rewrite_enums.py | _parse_proxy_entry | 0877fb0d78635692e481c8bde224fac5ad0dd430 | qutebrowser | pac.py | 13 | 22 | https://github.com/qutebrowser/qutebrowser.git | 10 | 183 | 0 | 52 | 307 | Python | {
"docstring": "Parse one proxy string entry, as described in PAC specification.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | def _parse_proxy_entry(proxy_str):
config = [c.strip() for c in proxy_str.split(' ') if c]
if not config:
raise ParseProxyError("Empty proxy entry")
if config[0] == "DIRECT":
if len(config) != 1:
raise ParseProxyError("Invalid number of parameters for " +
"DIRECT")
return QNetworkProxy(QNetworkProxy.ProxyType.NoProxy)
elif config[0] == "PROXY":
if len(config) != 2:
raise ParseProxyError("Invalid number of parameters for PROXY")
host, port = PACResolver._parse_proxy_host(config[1])
return QNetworkProxy(QNetworkProxy.ProxyType.HttpProxy, host, port)
elif config[0] in ["SOCKS", "SOCKS5"]:
if len(config) != 2:
raise ParseProxyError("Invalid number of parameters for SOCKS")
host, port = PACResolver._parse_proxy_host(config[1])
return QNetworkProxy(QNetworkProxy.ProxyType.Socks5Proxy, host, port)
else:
err = "Unknown proxy type: {}"
raise ParseProxyError(err.format(config[0]))
|
|
38,505 | 160,133 | 81 | numpy/f2py/tests/test_f2py2e.py | 37 | 19 | def test_gen_pyf(capfd, hello_world_f90, monkeypatch):
ipath = Path(hello_world_f90)
opath = Path(hello_world_f90).stem + ".pyf"
monkeypatch.setattr(sys, | TST: Initialize f2py2e tests of the F2PY CLI (#20668)
Increases F2PY coverage by around 15 percent. For the CLI itself it covers the major features (around 70 percent), with the exception of mostly numpy.distutils stuff.
More importantly, sets the groundwork for #20056, in that passing the same testsuite should indicate feature parity. | test_gen_pyf | 729ad4f92420231e2a7009b3223c6c7620b8b808 | numpy | test_f2py2e.py | 13 | 9 | https://github.com/numpy/numpy.git | 1 | 77 | 0 | 34 | 147 | Python | {
"docstring": "Ensures that a signature file is generated via the CLI\n CLI :: -h\n ",
"language": "en",
"n_whitespaces": 19,
"n_words": 13,
"vocab_size": 12
} | def test_gen_pyf(capfd, hello_world_f90, monkeypatch):
ipath = Path(hello_world_f90)
opath = Path(hello_world_f90).stem + ".pyf"
monkeypatch.setattr(sys, "argv", f'f2py -h {opath} {ipath}'.split())
with util.switchdir(ipath.parent):
f2pycli() # Generate wrappers
out, _ = capfd.readouterr()
assert "Saving signatures to file" in out
assert Path(f'{opath}').exists()
|
|
12,237 | 60,671 | 100 | .venv/lib/python3.8/site-packages/pip/_internal/configuration.py | 34 | 7 | def _dictionary(self):
# type: () -> Dict[str, Any]
# NOTE: Dictionaries are not populated if not loaded. So, conditionals
# are not needed here.
retval = {}
for variant in OVERRIDE_ORDER: | upd; format | _dictionary | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | transferlearning | configuration.py | 11 | 5 | https://github.com/jindongwang/transferlearning.git | 2 | 28 | 0 | 28 | 50 | Python | {
"docstring": "A dictionary representing the loaded configuration.\n ",
"language": "en",
"n_whitespaces": 13,
"n_words": 6,
"vocab_size": 6
} | def _dictionary(self):
# type: () -> Dict[str, Any]
# NOTE: Dictionaries are not populated if not loaded. So, conditionals
# are not needed here.
retval = {}
for variant in OVERRIDE_ORDER:
retval.update(self._config[variant])
return retval
|
|
51,204 | 205,770 | 99 | django/db/models/query.py | 12 | 10 | def using(self, alias):
return RawQuerySet(
self.raw_query,
model=self.model,
query=self.query.chain(using=alias),
params=self.params,
translations=self.translations,
using=alias,
)
| Refs #33476 -- Reformatted code with Black. | using | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | query.py | 11 | 9 | https://github.com/django/django.git | 1 | 51 | 0 | 12 | 75 | Python | {
"docstring": "Select the database this RawQuerySet should execute against.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | def using(self, alias):
return RawQuerySet(
self.raw_query,
model=self.model,
query=self.query.chain(using=alias),
params=self.params,
translations=self.translations,
using=alias,
)
|
|
81,394 | 275,492 | 39 | keras/optimizers/optimizer_v2/optimizer_v2.py | 15 | 6 | def get_weights(self):
params = self.we | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | get_weights | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | optimizer_v2.py | 7 | 3 | https://github.com/keras-team/keras.git | 1 | 18 | 0 | 15 | 33 | Python | {
"docstring": "Returns the current weights of the optimizer.\n\n The weights of an optimizer are its state (ie, variables).\n This function returns the weight values associated with this\n optimizer as a list of Numpy arrays. The first value is always the\n iterations count of the optimizer, followed by the optimizer's state\n variables in the order they were created. The returned list can in turn\n be used to load state into similarly parameterized optimizers.\n\n For example, the RMSprop optimizer for this simple model returns a list of\n three values-- the iteration count, followed by the root-mean-square value\n of the kernel and bias of the single Dense layer:\n\n >>> opt = tf.keras.optimizers.RMSprop()\n >>> m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])\n >>> m.compile(opt, loss='mse')\n >>> data = np.arange(100).reshape(5, 20)\n >>> labels = np.zeros(5)\n >>> results = m.fit(data, labels) # Training.\n >>> len(opt.get_weights())\n 3\n\n Returns:\n Weights values as a list of numpy arrays.\n ",
"language": "en",
"n_whitespaces": 288,
"n_words": 143,
"vocab_size": 94
} | def get_weights(self):
params = self.weights
return backend.batch_get_value(params)
# TODO(tanzheny): Maybe share this logic with base_layer. |
|
70,202 | 244,030 | 108 | mmdet/core/bbox/match_costs/match_cost.py | 44 | 14 | def _focal_loss_cost(self, cls_pred, gt_labels):
cls_pred = cls_pred.sigmoid()
neg_cost = -(1 - cls_pred + self.eps).log() * (
1 - self.alpha) * cls_pred.pow(self.gamma)
pos_cost = -(cls_pred + sel | [Feature] Add Maskformer to mmdet (#7212)
* first commit
* add README
* move model description from config to readme
add description for binary_input
add description for dice loss
add a independent panoptic gt processing function
add a independent panoptic gt processing function
remove compatibility of pretrain in maskformer
* update comments in maskformer_head
* update docs format | _focal_loss_cost | cac356380d505bf15587f07c0529218cc36b9652 | mmdetection | match_cost.py | 14 | 8 | https://github.com/open-mmlab/mmdetection.git | 1 | 102 | 0 | 27 | 161 | Python | {
"docstring": "\n Args:\n cls_pred (Tensor): Predicted classification logits, shape\n (num_query, num_class).\n gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,).\n\n Returns:\n torch.Tensor: cls_cost value with weight\n ",
"language": "en",
"n_whitespaces": 92,
"n_words": 22,
"vocab_size": 20
} | def _focal_loss_cost(self, cls_pred, gt_labels):
cls_pred = cls_pred.sigmoid()
neg_cost = -(1 - cls_pred + self.eps).log() * (
1 - self.alpha) * cls_pred.pow(self.gamma)
pos_cost = -(cls_pred + self.eps).log() * self.alpha * (
1 - cls_pred).pow(self.gamma)
cls_cost = pos_cost[:, gt_labels] - neg_cost[:, gt_labels]
return cls_cost * self.weight
|
|
50,958 | 204,887 | 47 | django/db/backends/base/operations.py | 15 | 5 | def date_extract_sql(self, lookup_type, field_name):
raise NotImplementedError(
"subclasses of BaseDatabaseOperations may require a date_extract_sq | Refs #33476 -- Reformatted code with Black. | date_extract_sql | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | operations.py | 8 | 4 | https://github.com/django/django.git | 1 | 15 | 0 | 15 | 27 | Python | {
"docstring": "\n Given a lookup_type of 'year', 'month', or 'day', return the SQL that\n extracts a value from the given date field field_name.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 21,
"vocab_size": 19
} | def date_extract_sql(self, lookup_type, field_name):
raise NotImplementedError(
"subclasses of BaseDatabaseOperations may require a date_extract_sql() method"
)
|
|
72,349 | 248,557 | 714 | tests/rest/client/test_rooms.py | 227 | 36 | def test_threepid_invite_spamcheck(self) -> None:
# Mock a few functions to prevent the test from failing due to failing to talk to
# a remote IS. We keep the mock for make_and_store_3pid_invite around so we
# can check its call_count later on during the test.
make_invite_mock = Mock(return_value=make_awaitable(0))
self.hs.get_room_member_handler()._make_and_store_3pid_invite = make_invite_mock
self.hs.get_identity_handler().lookup_3pid = Mock(
return_value=make_awaitable(None),
)
# Add a mock to the spamchecker callbacks for user_may_send_3pid_invite. Make it
# allow everything for now.
# `spec` argument is needed for this function mock to have `__qualname__`, which
# is needed for `Measure` metrics buried in SpamChecker.
mock = Mock(
return_value=make_awaitable(synapse.module_api.NOT_SPAM),
spec=lambda *x: None,
)
self.hs.get_spam_checker()._user_may_send_3pid_invite_callbacks.append(mock)
# Send a 3PID invite into the room and check that it succeeded.
email_to_invite = "teresa@example.com"
channel = self.make_request(
method="POST",
path="/rooms/" + self.room_id + "/invite",
content={
"id_server": "example.com",
"id_access_token": "sometoken",
"medium": "email",
"address": | Uniformize spam-checker API, part 4: port other spam-checker callbacks to return `Union[Allow, Codes]`. (#12857)
Co-authored-by: Brendan Abolivier <babolivier@matrix.org> | test_threepid_invite_spamcheck | a164a46038b0e51142781619db0e6dec8e0c2aaa | synapse | test_rooms.py | 13 | 44 | https://github.com/matrix-org/synapse.git | 1 | 243 | 0 | 131 | 424 | Python | {
"docstring": "\n Test allowing/blocking threepid invites with a spam-check module.\n\n In this test, we use the more recent API in which callbacks return a `Union[Codes, Literal[\"NOT_SPAM\"]]`.",
"language": "en",
"n_whitespaces": 38,
"n_words": 24,
"vocab_size": 23
} | def test_threepid_invite_spamcheck(self) -> None:
# Mock a few functions to prevent the test from failing due to failing to talk to
# a remote IS. We keep the mock for make_and_store_3pid_invite around so we
# can check its call_count later on during the test.
make_invite_mock = Mock(return_value=make_awaitable(0))
self.hs.get_room_member_handler()._make_and_store_3pid_invite = make_invite_mock
self.hs.get_identity_handler().lookup_3pid = Mock(
return_value=make_awaitable(None),
)
# Add a mock to the spamchecker callbacks for user_may_send_3pid_invite. Make it
# allow everything for now.
# `spec` argument is needed for this function mock to have `__qualname__`, which
# is needed for `Measure` metrics buried in SpamChecker.
mock = Mock(
return_value=make_awaitable(synapse.module_api.NOT_SPAM),
spec=lambda *x: None,
)
self.hs.get_spam_checker()._user_may_send_3pid_invite_callbacks.append(mock)
# Send a 3PID invite into the room and check that it succeeded.
email_to_invite = "teresa@example.com"
channel = self.make_request(
method="POST",
path="/rooms/" + self.room_id + "/invite",
content={
"id_server": "example.com",
"id_access_token": "sometoken",
"medium": "email",
"address": email_to_invite,
},
access_token=self.tok,
)
self.assertEqual(channel.code, 200)
# Check that the callback was called with the right params.
mock.assert_called_with(self.user_id, "email", email_to_invite, self.room_id)
# Check that the call to send the invite was made.
make_invite_mock.assert_called_once()
# Now change the return value of the callback to deny any invite and test that
# we can't send the invite.
mock.return_value = make_awaitable(Codes.CONSENT_NOT_GIVEN)
channel = self.make_request(
method="POST",
path="/rooms/" + self.room_id + "/invite",
content={
"id_server": "example.com",
"id_access_token": "sometoken",
"medium": "email",
"address": email_to_invite,
},
access_token=self.tok,
)
self.assertEqual(channel.code, 403)
# Also check that it stopped before calling _make_and_store_3pid_invite.
make_invite_mock.assert_called_once()
|
|
@pytest.mark.parametrize(
"constraint",
[
_ArrayLikes,
_Callables,
_InstancesOf,
_NoneConstraint,
_RandomStates,
_SparseMatrices,
],
) | 76,095 | 260,155 | 79 | sklearn/utils/tests/test_param_validation.py | 17 | 14 | def test_generate_invalid_param_val_all_valid(constraints):
with pytest.raises(NotImplementedError):
generate_invalid_param_val(constraints[0], constraints=constraints)
@pytest.mark.parametrize(
"constraint",
[
_ArrayLikes,
_Callables,
_InstancesOf,
_NoneConstraint,
_RandomStates,
| FIX Param validation: fix generating invalid param when 2 interval constraints (#23513)
Co-authored-by: Julien Jerphanion <git@jjerphan.xyz>
Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> | test_generate_invalid_param_val_all_valid | 02cbe01e67165d7d38e5e441cfccd6b57b2207b6 | scikit-learn | test_param_validation.py | 10 | 3 | https://github.com/scikit-learn/scikit-learn.git | 1 | 25 | 1 | 17 | 78 | Python | {
"docstring": "Check that the function raises NotImplementedError when there's no invalid value\n for the constraint.\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 14,
"vocab_size": 13
} | def test_generate_invalid_param_val_all_valid(constraints):
with pytest.raises(NotImplementedError):
generate_invalid_param_val(constraints[0], constraints=constraints)
@pytest.mark.parametrize(
"constraint",
[
_ArrayLikes,
_Callables,
_InstancesOf,
_NoneConstraint,
_RandomStates,
_SparseMatrices,
],
) |
34,607 | 149,953 | 163 | freqtrade/freqai/data_drawer.py | 47 | 16 | def load_drawer_from_disk(self):
exists = Path(se | rehaul of backend data management - increasing performance by holding history in memory, reducing load on the ratelimit by only pinging exchange once per candle. Improve code readability. | load_drawer_from_disk | 16b4a5b71ff140f5de31e5d5572f1f193457cf6b | freqtrade | data_drawer.py | 16 | 11 | https://github.com/freqtrade/freqtrade.git | 3 | 81 | 0 | 41 | 156 | Python | {
"docstring": "\n Locate and load a previously saved data drawer full of all pair model metadata in\n present model folder.\n :returns:\n exists: bool = whether or not the drawer was located\n ",
"language": "en",
"n_whitespaces": 65,
"n_words": 29,
"vocab_size": 27
} | def load_drawer_from_disk(self):
exists = Path(self.full_path / str('pair_dictionary.json')).resolve().exists()
if exists:
with open(self.full_path / str('pair_dictionary.json'), "r") as fp:
self.pair_dict = json.load(fp)
elif not self.follow_mode:
logger.info("Could not find existing datadrawer, starting from scratch")
else:
logger.warning(f'Follower could not find pair_dictionary at {self.full_path} '
'sending null values back to strategy')
return exists
|
|
55,356 | 218,510 | 658 | python3.10.4/Lib/ipaddress.py | 157 | 16 | def address_exclude(self, other):
if not self._version == other._version:
raise TypeError("%s and %s are not of the same version" % (
self, other))
if not isinstance(other, _BaseNetwork):
| add python 3.10.4 for windows | address_exclude | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | ipaddress.py | 15 | 32 | https://github.com/XX-net/XX-Net.git | 11 | 191 | 0 | 77 | 324 | Python | {
"docstring": "Remove an address from a larger block.\n\n For example:\n\n addr1 = ip_network('192.0.2.0/28')\n addr2 = ip_network('192.0.2.1/32')\n list(addr1.address_exclude(addr2)) =\n [IPv4Network('192.0.2.0/32'), IPv4Network('192.0.2.2/31'),\n IPv4Network('192.0.2.4/30'), IPv4Network('192.0.2.8/29')]\n\n or IPv6:\n\n addr1 = ip_network('2001:db8::1/32')\n addr2 = ip_network('2001:db8::1/128')\n list(addr1.address_exclude(addr2)) =\n [ip_network('2001:db8::1/128'),\n ip_network('2001:db8::2/127'),\n ip_network('2001:db8::4/126'),\n ip_network('2001:db8::8/125'),\n ...\n ip_network('2001:db8:8000::/33')]\n\n Args:\n other: An IPv4Network or IPv6Network object of the same type.\n\n Returns:\n An iterator of the IPv(4|6)Network objects which is self\n minus other.\n\n Raises:\n TypeError: If self and other are of differing address\n versions, or if other is not a network object.\n ValueError: If other is not completely contained by self.\n\n ",
"language": "en",
"n_whitespaces": 390,
"n_words": 88,
"vocab_size": 65
} | def address_exclude(self, other):
if not self._version == other._version:
raise TypeError("%s and %s are not of the same version" % (
self, other))
if not isinstance(other, _BaseNetwork):
raise TypeError("%s is not a network object" % other)
if not other.subnet_of(self):
raise ValueError('%s not contained in %s' % (other, self))
if other == self:
return
# Make sure we're comparing the network of other.
other = other.__class__('%s/%s' % (other.network_address,
other.prefixlen))
s1, s2 = self.subnets()
while s1 != other and s2 != other:
if other.subnet_of(s1):
yield s2
s1, s2 = s1.subnets()
elif other.subnet_of(s2):
yield s1
s1, s2 = s2.subnets()
else:
# If we got here, there's a bug somewhere.
raise AssertionError('Error performing exclusion: '
's1: %s s2: %s other: %s' %
(s1, s2, other))
if s1 == other:
yield s2
elif s2 == other:
yield s1
else:
# If we got here, there's a bug somewhere.
raise AssertionError('Error performing exclusion: '
's1: %s s2: %s other: %s' %
(s1, s2, other))
|
|
7,232 | 39,440 | 28 | recommenders/utils/python_utils.py | 12 | 11 | def mutual_information(cooccurrence):
with np.errstate(invalid="ignore", divide="ignore"):
result = np.log2(cooccurrence.shape[0] * lift(cooccurrence))
return np.array(result)
| Add new item similarity metrics for SAR (#1754)
* Add mutual information similarity in SAR
* Add lexicographers mutual information similarity for SAR
* Add cosine similarity for SAR
* Add inclusion index for SAR
* Typos
* Change SARSingleNode to SAR
* Convert item similarity matrix to np.array
* Update
* Update SAR tests
* Remove unused imports
* Add explanations for new similarity metrics | mutual_information | 1d7341e93d1f03387699fb3c6ae0b6c0e464296f | recommenders | python_utils.py | 13 | 4 | https://github.com/microsoft/recommenders.git | 1 | 45 | 0 | 12 | 79 | Python | {
"docstring": "Helper method to calculate the Mutual Information of a matrix of\n co-occurrences.\n\n Mutual information is a measurement of the amount of information\n explained by the i-th j-th item column vector.\n\n Args:\n cooccurrence (numpy.ndarray): The symmetric matrix of co-occurrences of items.\n\n Returns:\n numpy.ndarray: The matrix of mutual information between any two items.\n\n ",
"language": "en",
"n_whitespaces": 83,
"n_words": 51,
"vocab_size": 35
} | def mutual_information(cooccurrence):
with np.errstate(invalid="ignore", divide="ignore"):
result = np.log2(cooccurrence.shape[0] * lift(cooccurrence))
return np.array(result)
|
|
3,612 | 20,908 | 72 | pipenv/patched/notpip/_vendor/typing_extensions.py | 49 | 5 | def _is_dunder(name):
return len(name) > 4 and name.startswith('__') and name.endswith('__ | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | _is_dunder | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | typing_extensions.py | 10 | 2 | https://github.com/pypa/pipenv.git | 3 | 27 | 0 | 44 | 53 | Python | {
"docstring": "Returns True if name is a __dunder_variable_name__.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | def _is_dunder(name):
return len(name) > 4 and name.startswith('__') and name.endswith('__')
# Prior to Python 3.7 types did not have `copy_with`. A lot of the equality
# checks, argument expansion etc. are done on the _subs_tre. As a result we
# can't provide a get_type_hints function that strips out annotations.
|
|
75,949 | 259,851 | 615 | sklearn/neighbors/_kde.py | 133 | 36 | def fit(self, X, y=None, sample_weight=None):
algorithm = self._choose_algorithm(self.algorithm, self.metric)
if isinstance(self.bandwidth, str):
methods_supported = ("scott", "silvermann")
if self.bandwidth not in methods_supported:
raise ValueError(
"When `bandwidth` is a string, it should be one of: "
f"{', '.join(methods_supported)}. Got {self.bandwidth!r} instead."
)
if self.bandwidth == "scott":
self.bandwidth_ = X.shape[0] ** (-1 / (X.shape[1] + 4))
elif self.bandwidth == "silvermann":
self.bandwidth_ = (X.shape[0] * (X.shape[1] + 2) / 4) ** (
-1 / (X.shape[1] + 4)
)
else:
check_scalar(
self.bandwidth,
"bandwidth",
target_type=numbers.Real,
min_val=0,
include_boundaries="neither",
)
self.bandwidth_ = self.bandwidth
if self.kernel not in VALID_KERNELS:
raise ValueError("invalid kernel: '{0}'".format(self.kernel))
X = self._validate_data(X, order="C", dtype=DTYP | FEA Added Kernel Density bandwidth estimation and test (#22993)
Co-authored-by: STOJANOVIC Jovan <jovan.stojanovic@inria.fr>
Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com> | fit | dedaa8f25f136e954941d15151bbbc88150789fc | scikit-learn | _kde.py | 19 | 42 | https://github.com/scikit-learn/scikit-learn.git | 8 | 278 | 0 | 89 | 454 | Python | {
"docstring": "Fit the Kernel Density model on the data.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n List of n_features-dimensional data points. Each row\n corresponds to a single data point.\n\n y : None\n Ignored. This parameter exists only for compatibility with\n :class:`~sklearn.pipeline.Pipeline`.\n\n sample_weight : array-like of shape (n_samples,), default=None\n List of sample weights attached to the data X.\n\n .. versionadded:: 0.20\n\n Returns\n -------\n self : object\n Returns the instance itself.\n ",
"language": "en",
"n_whitespaces": 211,
"n_words": 70,
"vocab_size": 54
} | def fit(self, X, y=None, sample_weight=None):
algorithm = self._choose_algorithm(self.algorithm, self.metric)
if isinstance(self.bandwidth, str):
methods_supported = ("scott", "silvermann")
if self.bandwidth not in methods_supported:
raise ValueError(
"When `bandwidth` is a string, it should be one of: "
f"{', '.join(methods_supported)}. Got {self.bandwidth!r} instead."
)
if self.bandwidth == "scott":
self.bandwidth_ = X.shape[0] ** (-1 / (X.shape[1] + 4))
elif self.bandwidth == "silvermann":
self.bandwidth_ = (X.shape[0] * (X.shape[1] + 2) / 4) ** (
-1 / (X.shape[1] + 4)
)
else:
check_scalar(
self.bandwidth,
"bandwidth",
target_type=numbers.Real,
min_val=0,
include_boundaries="neither",
)
self.bandwidth_ = self.bandwidth
if self.kernel not in VALID_KERNELS:
raise ValueError("invalid kernel: '{0}'".format(self.kernel))
X = self._validate_data(X, order="C", dtype=DTYPE)
if sample_weight is not None:
sample_weight = _check_sample_weight(
sample_weight, X, DTYPE, only_non_negative=True
)
kwargs = self.metric_params
if kwargs is None:
kwargs = {}
self.tree_ = TREE_DICT[algorithm](
X,
metric=self.metric,
leaf_size=self.leaf_size,
sample_weight=sample_weight,
**kwargs,
)
return self
|
|
70,117 | 243,767 | 61 | src/PIL/ImageMorph.py | 18 | 9 | def get_on_pixels(self, image):
| Improve exception traceback readability | get_on_pixels | 2ae55ccbdad9c842929fb238ea1eb81d1f999024 | Pillow | ImageMorph.py | 9 | 5 | https://github.com/python-pillow/Pillow.git | 2 | 34 | 0 | 18 | 60 | Python | {
"docstring": "Get a list of all turned on pixels in a binary image\n\n Returns a list of tuples of (x,y) coordinates\n of all matching pixels. See :ref:`coordinate-system`.",
"language": "en",
"n_whitespaces": 39,
"n_words": 26,
"vocab_size": 19
} | def get_on_pixels(self, image):
if image.mode != "L":
msg = "Image mode must be L"
raise ValueError(msg)
return _imagingmorph.get_on_pixels(image.im.id)
|
|
48,420 | 197,273 | 109 | sympy/parsing/ast_parser.py | 21 | 14 | def visit_Num(self, node):
if isinstance(node.n, int):
return fix_missing_locations(Call(func=Name('Integer', Load( | Inserted the `visit_Num` function back in.
This was required to keep SymPy compatible with Python 3.7. | visit_Num | e95d725680aab772037848628471a31f03a13901 | sympy | ast_parser.py | 17 | 8 | https://github.com/sympy/sympy.git | 3 | 86 | 0 | 15 | 136 | Python | {
"docstring": "This function exists for backwards compatibility with Python 3.7.\n It should be removed when SymPy removes support for Python 3.7.",
"language": "en",
"n_whitespaces": 29,
"n_words": 20,
"vocab_size": 17
} | def visit_Num(self, node):
if isinstance(node.n, int):
return fix_missing_locations(Call(func=Name('Integer', Load()),
args=[node], keywords=[]))
elif isinstance(node.n, float):
return fix_missing_locations(Call(func=Name('Float', Load()),
args=[node], keywords=[]))
return node
|
|
56,343 | 221,318 | 42 | python3.10.4/Lib/cgitb.py | 11 | 8 | def enable(display=1, logdir=None, context=5, format="html"):
sys.excepthook = Hook(display=display, logdir=logdir,
context=context, format=format | add python 3.10.4 for windows | enable | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | cgitb.py | 9 | 3 | https://github.com/XX-net/XX-Net.git | 1 | 42 | 0 | 11 | 64 | Python | {
"docstring": "Install an exception handler that formats tracebacks as HTML.\n\n The optional argument 'display' can be set to 0 to suppress sending the\n traceback to the browser, and 'logdir' can be set to a directory to cause\n tracebacks to be written to files there.",
"language": "en",
"n_whitespaces": 51,
"n_words": 43,
"vocab_size": 31
} | def enable(display=1, logdir=None, context=5, format="html"):
sys.excepthook = Hook(display=display, logdir=logdir,
context=context, format=format)
|
|
13,455 | 63,660 | 63 | .venv/lib/python3.8/site-packages/pip/_vendor/requests/utils.py | 27 | 7 | def parse_list_header(value):
result = []
for item in | upd; format | parse_list_header | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | transferlearning | utils.py | 15 | 7 | https://github.com/jindongwang/transferlearning.git | 3 | 54 | 0 | 23 | 91 | Python | {
"docstring": "Parse lists as described by RFC 2068 Section 2.\n\n In particular, parse comma-separated lists where the elements of\n the list may include quoted-strings. A quoted-string could\n contain a comma. A non-quoted string could have quotes in the\n middle. Quotes are removed automatically after parsing.\n\n It basically works like :func:`parse_set_header` just that items\n may appear multiple times and case sensitivity is preserved.\n\n The return value is a standard :class:`list`:\n\n >>> parse_list_header('token, \"quoted value\"')\n ['token', 'quoted value']\n\n To create a header from the :class:`list` again, use the\n :func:`dump_header` function.\n\n :param value: a string with a list header.\n :return: :class:`list`\n :rtype: list\n ",
"language": "en",
"n_whitespaces": 147,
"n_words": 99,
"vocab_size": 82
} | def parse_list_header(value):
result = []
for item in _parse_list_header(value):
if item[:1] == item[-1:] == '"':
item = unquote_header_value(item[1:-1])
result.append(item)
return result
# From mitsuhiko/werkzeug (used with permission). |
|
105,628 | 306,845 | 46 | homeassistant/components/apple_tv/media_player.py | 14 | 8 | def media_series_title(self) -> str | None:
if self._playing and self._is_feature_available(FeatureName.SeriesName):
return self | Improve type hints in apple_tv media player (#77940) | media_series_title | 5276d849ec497ccd0cecf3cb6a8dacae4fa6f845 | core | media_player.py | 9 | 5 | https://github.com/home-assistant/core.git | 3 | 32 | 0 | 13 | 53 | Python | {
"docstring": "Title of series of current playing media, TV show only.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | def media_series_title(self) -> str | None:
if self._playing and self._is_feature_available(FeatureName.SeriesName):
return self._playing.series_name
return None
|
|
57,244 | 224,209 | 221 | mkdocs/commands/build.py | 116 | 18 | def _build_template(name, template, files, config, nav):
# Run `pre_template` plugin events.
template = config['plugins'].run_event(
'pre_template', template, template_name=name, config=config
)
if utils.is_error_template(name):
# Force absolute URLs in the nav of error pages and account for the
# possibility that the docs root might be different than the server root.
# See https://github.com/mkdocs/mkdocs/issues/77.
# However, if site_url is not set, assume the docs root and server root
# are the same. See https://github.com/mkdocs/mkdocs/issues/1598.
base_url = urlsplit(config['site_url'] or '/').path
else:
base_url = utils.get_relative_url('.', name)
context = get_contex | Format code with `black -l100 --skip-string-normalization` | _build_template | dca7cbb43fcd6ea7c677c98ba585395b070d387b | mkdocs | build.py | 14 | 15 | https://github.com/mkdocs/mkdocs.git | 3 | 134 | 0 | 73 | 221 | Python | {
"docstring": "\n Return rendered output for given template as a string.\n ",
"language": "en",
"n_whitespaces": 16,
"n_words": 9,
"vocab_size": 9
} | def _build_template(name, template, files, config, nav):
# Run `pre_template` plugin events.
template = config['plugins'].run_event(
'pre_template', template, template_name=name, config=config
)
if utils.is_error_template(name):
# Force absolute URLs in the nav of error pages and account for the
# possibility that the docs root might be different than the server root.
# See https://github.com/mkdocs/mkdocs/issues/77.
# However, if site_url is not set, assume the docs root and server root
# are the same. See https://github.com/mkdocs/mkdocs/issues/1598.
base_url = urlsplit(config['site_url'] or '/').path
else:
base_url = utils.get_relative_url('.', name)
context = get_context(nav, files, config, base_url=base_url)
# Run `template_context` plugin events.
context = config['plugins'].run_event(
'template_context', context, template_name=name, config=config
)
output = template.render(context)
# Run `post_template` plugin events.
output = config['plugins'].run_event('post_template', output, template_name=name, config=config)
return output
|
|
48,951 | 198,467 | 375 | sympy/core/basic.py | 88 | 18 | def matches(self, expr, repl_dict=None, old=False):
expr = sympify(expr)
if not isinstance(expr, self.__class__):
return None
if repl_dict is None:
repl_dict = {}
else:
repl_dict = repl_dict.copy()
if self == expr:
| Code cleanup | matches | 9d58006fc0a23afcba38f641c9472917c436428a | sympy | basic.py | 16 | 26 | https://github.com/sympy/sympy.git | 10 | 164 | 0 | 52 | 260 | Python | {
"docstring": "\n Helper method for match() that looks for a match between Wild symbols\n in self and expressions in expr.\n\n Examples\n ========\n\n >>> from sympy import symbols, Wild, Basic\n >>> a, b, c = symbols('a b c')\n >>> x = Wild('x')\n >>> Basic(a + x, x).matches(Basic(a + b, c)) is None\n True\n >>> Basic(a + x, x).matches(Basic(a + b + c, b + c))\n {x_: b + c}\n ",
"language": "en",
"n_whitespaces": 151,
"n_words": 66,
"vocab_size": 45
} | def matches(self, expr, repl_dict=None, old=False):
expr = sympify(expr)
if not isinstance(expr, self.__class__):
return None
if repl_dict is None:
repl_dict = {}
else:
repl_dict = repl_dict.copy()
if self == expr:
return repl_dict
if len(self.args) != len(expr.args):
return None
d = repl_dict # already a copy
for arg, other_arg in zip(self.args, expr.args):
if arg == other_arg:
continue
if arg.is_Relational:
try:
d = arg.xreplace(d).matches(other_arg, d, old=old)
except TypeError: # Should be InvalidComparisonError when introduced
d = None
else:
d = arg.xreplace(d).matches(other_arg, d, old=old)
if d is None:
return None
return d
|
|
30,006 | 133,393 | 376 | python/ray/util/sgd/torch/worker_group.py | 85 | 26 | def _create_placement_group(self, num_workers):
pg = get_current_placement_group()
if pg is None:
bundle = {"CPU": self._num_cpus_per_worker, "GPU": int(self._use_gpu)}
bundles = [bundle] * num_workers
pg = ray.util.placement_group(bundles, strategy="SPREAD")
logger.debug("Waiting for placement group to start.")
ready, _ = ray.wait([pg.ready()], timeout=SGD_PLACEMENT_GROUP_TIMEOUT_S)
if ready:
logger.debug("Placement group has started.")
| [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | _create_placement_group | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ray | worker_group.py | 16 | 21 | https://github.com/ray-project/ray.git | 3 | 121 | 0 | 67 | 212 | Python | {
"docstring": "Creates a placement group for the workers.\n\n If this worker is already in a placement group then a new one will\n not be created. This is primarily for when Tune is the upstream and\n will allocate resources for SGD workers.\n\n If this worker is not in a placement group, a new one will be created\n and set. The placement group will have a single bundle for each worker\n and use the SPREAD strategy for an even distribution.\n ",
"language": "en",
"n_whitespaces": 126,
"n_words": 77,
"vocab_size": 43
} | def _create_placement_group(self, num_workers):
pg = get_current_placement_group()
if pg is None:
bundle = {"CPU": self._num_cpus_per_worker, "GPU": int(self._use_gpu)}
bundles = [bundle] * num_workers
pg = ray.util.placement_group(bundles, strategy="SPREAD")
logger.debug("Waiting for placement group to start.")
ready, _ = ray.wait([pg.ready()], timeout=SGD_PLACEMENT_GROUP_TIMEOUT_S)
if ready:
logger.debug("Placement group has started.")
else:
raise TimeoutError(
"Placement group creation timed out. Make sure "
"your cluster either has enough resources or use "
"an autoscaling cluster. Current resources "
"available: {}, resources requested by the "
"placement group: {}".format(
ray.available_resources(), pg.bundle_specs
)
)
self._worker_placement_group = pg
|
|
14,679 | 67,953 | 30 | erpnext/stock/report/warehouse_wise_item_balance_age_and_value/warehouse_wise_item_balance_age_and_value.py | 48 | 16 | def get_warehouse_list(filters):
from frappe.core.doctype.user_permission.user_permission import get_permitted_documents
condition = ""
user_permitted_warehouse = get_permitted_documents("Warehouse")
value = ()
if user_permitted_warehouse:
condition = "and name in %s"
value = set( | style: format code with black | get_warehouse_list | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | warehouse_wise_item_balance_age_and_value.py | 12 | 20 | https://github.com/frappe/erpnext.git | 4 | 87 | 0 | 33 | 149 | Python | {
"docstring": "select name\n\t\tfrom `tabWarehouse` where is_group = 0\n\t\t{condition}",
"language": "en",
"n_whitespaces": 6,
"n_words": 9,
"vocab_size": 9
} | def get_warehouse_list(filters):
from frappe.core.doctype.user_permission.user_permission import get_permitted_documents
condition = ""
user_permitted_warehouse = get_permitted_documents("Warehouse")
value = ()
if user_permitted_warehouse:
condition = "and name in %s"
value = set(user_permitted_warehouse)
elif not user_permitted_warehouse and filters.get("warehouse"):
condition = "and name = %s"
value = filters.get("warehouse")
return frappe.db.sql(
.format(
condition=condition
),
value,
as_dict=1,
)
|
|
8,684 | 45,743 | 94 | airflow/models/mappedoperator.py | 30 | 10 | def unmap(self) -> "BaseOperator":
dag = self.dag
if not dag:
| More explicit mapped argument validation (#21933)
* More explicit mapped argument validation
Instead of always using MagicMock to validate mapped arguments, this
implements a more sophisticated protocol that allows an operator to
implement a 'validate_mapped_arguments' to provide custom validation
logic. If an operator just wants to use __init__ for validation,
however, they can set a flag 'mapped_arguments_validated_by_init' to get
the behavior easily. (This does *not* use MagicMock, however, since any
custom validation logic should be able to handle those on its own).
The 'validate_mapped_arguments' flag is currently only set on
PythonOperator. It can likely be used on a lot more operators down the
road.
* Add flag to distinguish a validation-only init
There's just too much magic during a task's initialization that tries to
add it into the dependency graph. This flag is needed to work around all
that, I think. | unmap | b65e52205a7045eb08d471289b85abda587442b7 | airflow | mappedoperator.py | 10 | 9 | https://github.com/apache/airflow.git | 3 | 57 | 0 | 24 | 101 | Python | {
"docstring": "Get the \"normal\" Operator after applying the current mapping.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 8
} | def unmap(self) -> "BaseOperator":
dag = self.dag
if not dag:
raise RuntimeError("Cannot unmap a task without a DAG")
dag._remove_task(self.task_id)
if isinstance(self.operator_class, str):
raise RuntimeError("Cannot unmap a deserialized operator")
return self.operator_class(**self._get_unmap_kwargs())
|
|
121,034 | 337,338 | 35 | src/accelerate/test_utils/testing.py | 12 | 5 | def require_tensorflow(test_case):
if not is_tensorflow_available():
return unittest.skip( | Add logging capabilities (#293)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
- Added experiment tracking API, and support for Weights and Biases, TensorBoard, and CometML + Tests
- Added `tensorflow` to a new dependency list to be used during tests
- Added three new functions in `Accelerator` to interact with the API | require_tensorflow | 5668270de74a09e5bff15891054f73ddbb1176ac | accelerate | testing.py | 11 | 5 | https://github.com/huggingface/accelerate.git | 2 | 26 | 0 | 11 | 49 | Python | {
"docstring": "\n Decorator marking a test that requires TensorFlow installed. These tests are skipped when TensorFlow isn't\n installed\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 16,
"vocab_size": 15
} | def require_tensorflow(test_case):
if not is_tensorflow_available():
return unittest.skip("test requires TensorFlow")(test_case)
else:
return test_case
|
|
56,433 | 221,571 | 595 | python3.10.4/Lib/concurrent/futures/_base.py | 125 | 36 | def as_completed(fs, timeout=None):
if timeout is not None:
end_time = timeout + time.monotonic()
fs = set(fs)
total_futures = len(fs)
with _AcquireFutures(fs):
finished = set(
f for f in fs
if f._state in [CANCELLED_AND_NOTIFIED, FINISHED])
pending = fs - finished
waiter = _create_and_install_waiters(fs, _AS_COMPLETED)
finished = list(finished)
try:
yield from _yield_finished_futures(finished, waiter,
ref_collect=(fs,))
while pending:
if timeout is None:
wait_timeout = None
else:
wait_timeout = end_time - time.monotonic()
if wait_timeout < 0:
raise TimeoutError(
'%d (of %d) futures unfinished' % (
len(pending), total_futures))
waiter.event.wait(wait_timeout)
with waiter.lock:
finished = waiter.finished_futures
waiter.finished_futures = []
wai | add python 3.10.4 for windows | as_completed | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | _base.py | 20 | 36 | https://github.com/XX-net/XX-Net.git | 9 | 212 | 0 | 81 | 365 | Python | {
"docstring": "An iterator over the given futures that yields each as it completes.\n\n Args:\n fs: The sequence of Futures (possibly created by different Executors) to\n iterate over.\n timeout: The maximum number of seconds to wait. If None, then there\n is no limit on the wait time.\n\n Returns:\n An iterator that yields the given Futures as they complete (finished or\n cancelled). If any given Futures are duplicated, they will be returned\n once.\n\n Raises:\n TimeoutError: If the entire result iterator could not be generated\n before the given timeout.\n ",
"language": "en",
"n_whitespaces": 172,
"n_words": 85,
"vocab_size": 63
} | def as_completed(fs, timeout=None):
if timeout is not None:
end_time = timeout + time.monotonic()
fs = set(fs)
total_futures = len(fs)
with _AcquireFutures(fs):
finished = set(
f for f in fs
if f._state in [CANCELLED_AND_NOTIFIED, FINISHED])
pending = fs - finished
waiter = _create_and_install_waiters(fs, _AS_COMPLETED)
finished = list(finished)
try:
yield from _yield_finished_futures(finished, waiter,
ref_collect=(fs,))
while pending:
if timeout is None:
wait_timeout = None
else:
wait_timeout = end_time - time.monotonic()
if wait_timeout < 0:
raise TimeoutError(
'%d (of %d) futures unfinished' % (
len(pending), total_futures))
waiter.event.wait(wait_timeout)
with waiter.lock:
finished = waiter.finished_futures
waiter.finished_futures = []
waiter.event.clear()
# reverse to keep finishing order
finished.reverse()
yield from _yield_finished_futures(finished, waiter,
ref_collect=(fs, pending))
finally:
# Remove waiter from unfinished futures
for f in fs:
with f._condition:
f._waiters.remove(waiter)
DoneAndNotDoneFutures = collections.namedtuple(
'DoneAndNotDoneFutures', 'done not_done') |
|
35,150 | 151,842 | 139 | freqtrade/freqai/RL/BaseReinforcementLearningModel.py | 27 | 15 | def pack_env_dict(self) -> Dict[str, Any]:
env_info = {"window_size": self.CONV_WIDTH,
"reward_kwargs": self.reward_params,
"config": self.config,
"live": self.live}
if self.data_provider:
env_info["fee"] = self.data_pr | use a dictionary to make code more readable | pack_env_dict | 7b4abd5ef50f3c6f84c6604fc1f79ff4b92c2575 | freqtrade | BaseReinforcementLearningModel.py | 15 | 12 | https://github.com/freqtrade/freqtrade.git | 2 | 74 | 0 | 25 | 122 | Python | {
"docstring": "\n Create dictionary of environment arguments\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 5,
"vocab_size": 5
} | def pack_env_dict(self) -> Dict[str, Any]:
env_info = {"window_size": self.CONV_WIDTH,
"reward_kwargs": self.reward_params,
"config": self.config,
"live": self.live}
if self.data_provider:
env_info["fee"] = self.data_provider._exchange \
.get_fee(symbol=self.data_provider.current_whitelist()[0]) # type: ignore
return env_info
|
|
31,780 | 139,820 | 734 | rllib/evaluation/rollout_worker.py | 184 | 41 | def sample(self) -> SampleBatchType:
if self.fake_sampler and self.last_batch is not None:
return self.last_batch
elif self.input_reader is None:
raise ValueError(
"RolloutWorker has no `input_reader` object! "
"Cannot call `sample()`. You can try setting "
"`create_env_on_driver` to True."
)
if log_once("sample_start"):
logger.info(
"Generating sample batch of size {}".format(
self.rollout_fragment_length
)
)
batches = [self.input_reader.next()]
steps_so_far = (
batches[0].count
if self.count_steps_by == "env_steps"
else batches[0].agent_steps()
)
# In truncate_episodes mode, never pull more than 1 batch per env.
# This avoids over-running the target batch size.
if self.batch_mode == "truncate_episodes":
max_batches = self.num_envs
else:
max_batches = float("inf")
while (
steps_so_far < self.rollout_fragment_length and len(batches) < max_batches
):
batch = self.input_reader.next()
steps_so_far += (
batch.count
if self.count_steps_by == "env_steps"
else batch.agent_steps()
)
batches.append(batch)
batch = batches[0].concat_samples(batches) if len(batches) > 1 else batches[0]
self.callbacks.on_sample_end(worker=self, samples=batch)
# Always do writes prior to compression for consistency and to allow
# for better compression inside the writer.
self.output_writer.write(batch)
# Do off-policy estimation, if needed.
if self.reward_estimators:
for sub_batch in batch.split_by_episode():
for estimator in self.reward_estimators:
estimator.process(sub_batch)
if log_once("sample_end"):
logger.info("Completed sample batch:\n\n{}\n".format(summarize(batch)))
if self.compress_observations:
batch.compress(bulk=self.compress_observations == "bulk")
if self.fake_sampler:
self.last_batch = batch
| [RLlib] Agents to algos: DQN w/o Apex and R2D2, DDPG/TD3, SAC, SlateQ, QMIX, PG, Bandits (#24896) | sample | 3815e52a61b6afe44b883d7d745fa00b599f66ca | ray | rollout_worker.py | 13 | 66 | https://github.com/ray-project/ray.git | 17 | 284 | 0 | 119 | 481 | Python | {
"docstring": "Returns a batch of experience sampled from this worker.\n\n This method must be implemented by subclasses.\n\n Returns:\n A columnar batch of experiences (e.g., tensors).\n\n Examples:\n >>> import gym\n >>> from ray.rllib.evaluation.rollout_worker import RolloutWorker\n >>> from ray.rllib.algorithms.pg.pg_tf_policy import PGTFPolicy\n >>> worker = RolloutWorker( # doctest: +SKIP\n ... env_creator=lambda _: gym.make(\"CartPole-v0\"), # doctest: +SKIP\n ... policy_spec=PGTFPolicy) # doctest: +SKIP\n >>> print(worker.sample()) # doctest: +SKIP\n SampleBatch({\"obs\": [...], \"action\": [...], ...})\n ",
"language": "en",
"n_whitespaces": 198,
"n_words": 67,
"vocab_size": 46
} | def sample(self) -> SampleBatchType:
if self.fake_sampler and self.last_batch is not None:
return self.last_batch
elif self.input_reader is None:
raise ValueError(
"RolloutWorker has no `input_reader` object! "
"Cannot call `sample()`. You can try setting "
"`create_env_on_driver` to True."
)
if log_once("sample_start"):
logger.info(
"Generating sample batch of size {}".format(
self.rollout_fragment_length
)
)
batches = [self.input_reader.next()]
steps_so_far = (
batches[0].count
if self.count_steps_by == "env_steps"
else batches[0].agent_steps()
)
# In truncate_episodes mode, never pull more than 1 batch per env.
# This avoids over-running the target batch size.
if self.batch_mode == "truncate_episodes":
max_batches = self.num_envs
else:
max_batches = float("inf")
while (
steps_so_far < self.rollout_fragment_length and len(batches) < max_batches
):
batch = self.input_reader.next()
steps_so_far += (
batch.count
if self.count_steps_by == "env_steps"
else batch.agent_steps()
)
batches.append(batch)
batch = batches[0].concat_samples(batches) if len(batches) > 1 else batches[0]
self.callbacks.on_sample_end(worker=self, samples=batch)
# Always do writes prior to compression for consistency and to allow
# for better compression inside the writer.
self.output_writer.write(batch)
# Do off-policy estimation, if needed.
if self.reward_estimators:
for sub_batch in batch.split_by_episode():
for estimator in self.reward_estimators:
estimator.process(sub_batch)
if log_once("sample_end"):
logger.info("Completed sample batch:\n\n{}\n".format(summarize(batch)))
if self.compress_observations:
batch.compress(bulk=self.compress_observations == "bulk")
if self.fake_sampler:
self.last_batch = batch
return batch
|
|
51,828 | 206,994 | 152 | tests/admin_changelist/tests.py | 47 | 26 | def test_no_duplicates_for_non_unique_related_object_in_list_filter(self):
parent = Parent.objects.create(name="Mary")
# Two children with the same name
Child.objects.create(parent=parent, name="Daniel")
Child.objects.create(parent=parent, name="Daniel")
m = ParentAdmin(Parent, custom_site)
| Refs #33476 -- Reformatted code with Black. | test_no_duplicates_for_non_unique_related_object_in_list_filter | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | tests.py | 12 | 12 | https://github.com/django/django.git | 1 | 136 | 0 | 38 | 229 | Python | {
"docstring": "\n Regressions tests for #15819: If a field listed in list_filters is a\n non-unique related object, results shouldn't appear more than once.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 21,
"vocab_size": 20
} | def test_no_duplicates_for_non_unique_related_object_in_list_filter(self):
parent = Parent.objects.create(name="Mary")
# Two children with the same name
Child.objects.create(parent=parent, name="Daniel")
Child.objects.create(parent=parent, name="Daniel")
m = ParentAdmin(Parent, custom_site)
request = self.factory.get("/parent/", data={"child__name": "Daniel"})
request.user = self.superuser
cl = m.get_changelist_instance(request)
# Exists() is applied.
self.assertEqual(cl.queryset.count(), 1)
# Queryset must be deletable.
self.assertIs(cl.queryset.query.distinct, False)
cl.queryset.delete()
self.assertEqual(cl.queryset.count(), 0)
|
|
5,158 | 28,140 | 48 | saleor/plugins/webhook/utils.py | 11 | 10 | def get_current_tax_app() -> Optional[App]:
return (
App.objects.order_by("pk")
.for_event_type(WebhookEventSyncType.CHECKOUT_CALCULATE_TAXES)
| Add support for calculating taxes in Saleor Apps (#9526)
* Squash previouse PR in taxes by Sync webhooks
* Adjust incoming communication form tax app in order calculation
* Change return type for base_checkout_total to Money
* Fix cratign order lines for checkout lines
* Remove not needed args
* Fix order discount recalculation
* Fix order discounts events amount calculation
* Fix order calculation tests
* Use base price in checkout line serializer
* Use base shipping price in checkout tax payload
* Use base total in checkout tax payload
* Tax app interface should recive tax rate as decimal
* Tax app interface should recive tax rate as decimal
* Clear migrations
* Add descriptions to webhook events enums
* Update changelog
* Drop not required changes from plugin interface
* Fix review remarks | get_current_tax_app | 3e06a6462559498c6ad09c0591e648a7943ac0c6 | saleor | utils.py | 15 | 8 | https://github.com/saleor/saleor.git | 1 | 39 | 0 | 11 | 67 | Python | {
"docstring": "Return currently used tax app or None, if there aren't any.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | def get_current_tax_app() -> Optional[App]:
return (
App.objects.order_by("pk")
.for_event_type(WebhookEventSyncType.CHECKOUT_CALCULATE_TAXES)
.for_event_type(WebhookEventSyncType.ORDER_CALCULATE_TAXES)
.last()
)
|
|
73,173 | 249,857 | 315 | tests/util/caches/test_deferred_cache.py | 140 | 20 | def test_callbacks(self) -> None:
cache: DeferredCache[str, int] = DeferredCache("test")
callbacks = set()
# start with an entry, with a callba | Add missing type hints to test.util.caches (#14529) | test_callbacks | 4ae967cf6308e80b03da749f0cbaed36988e235e | synapse | test_deferred_cache.py | 13 | 16 | https://github.com/matrix-org/synapse.git | 1 | 171 | 0 | 100 | 300 | Python | {
"docstring": "Invalidation callbacks are called at the right time",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | def test_callbacks(self) -> None:
cache: DeferredCache[str, int] = DeferredCache("test")
callbacks = set()
# start with an entry, with a callback
cache.prefill("k1", 10, callback=lambda: callbacks.add("prefill"))
# now replace that entry with a pending result
origin_d: "defer.Deferred[int]" = defer.Deferred()
set_d = cache.set("k1", origin_d, callback=lambda: callbacks.add("set"))
# ... and also make a get request
get_d = cache.get("k1", callback=lambda: callbacks.add("get"))
# we don't expect the invalidation callback for the original value to have
# been called yet, even though get() will now return a different result.
# I'm not sure if that is by design or not.
self.assertEqual(callbacks, set())
# now fire off all the deferreds
origin_d.callback(20)
self.assertEqual(self.successResultOf(set_d), 20)
self.assertEqual(self.successResultOf(get_d), 20)
# now the original invalidation callback should have been called, but none of
# the others
self.assertEqual(callbacks, {"prefill"})
callbacks.clear()
# another update should invalidate both the previous results
cache.prefill("k1", 30)
self.assertEqual(callbacks, {"set", "get"})
|
|
50,845 | 204,710 | 68 | django/core/management/sql.py | 18 | 11 | def sql_flush(style, connection, reset_sequences=True, allow_cascade=False):
tables = connection.in | Refs #33476 -- Reformatted code with Black. | sql_flush | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | sql.py | 9 | 10 | https://github.com/django/django.git | 1 | 52 | 0 | 17 | 76 | Python | {
"docstring": "\n Return a list of the SQL statements used to flush the database.\n ",
"language": "en",
"n_whitespaces": 19,
"n_words": 12,
"vocab_size": 11
} | def sql_flush(style, connection, reset_sequences=True, allow_cascade=False):
tables = connection.introspection.django_table_names(
only_existing=True, include_views=False
)
return connection.ops.sql_flush(
style,
tables,
reset_sequences=reset_sequences,
allow_cascade=allow_cascade,
)
|
|
69,920 | 242,777 | 316 | src/PIL/ImageFilter.py | 88 | 18 | def generate(cls, size, callback, channels=3, target_mode=None):
size_1d, size_2d, size_3d = cls._check_size(size)
if channels not in (3, 4):
raise ValueError("Only 3 or 4 output channels are supported")
table = [0] * (size_1d * size_2d * size_3d * channels)
idx_out = 0
for b in range(size_3d) | Variable in function should be snake_case | generate | d3c9a6504e84f87379554b6b671a1fb6c66a449e | Pillow | ImageFilter.py | 17 | 20 | https://github.com/python-pillow/Pillow.git | 5 | 151 | 0 | 61 | 222 | Python | {
"docstring": "Generates new LUT using provided callback.\n\n :param size: Size of the table. Passed to the constructor.\n :param callback: Function with three parameters which correspond\n three color channels. Will be called ``size**3``\n times with values from 0.0 to 1.0 and should return\n a tuple with ``channels`` elements.\n :param channels: The number of channels which should return callback.\n :param target_mode: Passed to the constructor of the resulting\n lookup table.\n ",
"language": "en",
"n_whitespaces": 201,
"n_words": 67,
"vocab_size": 48
} | def generate(cls, size, callback, channels=3, target_mode=None):
size_1d, size_2d, size_3d = cls._check_size(size)
if channels not in (3, 4):
raise ValueError("Only 3 or 4 output channels are supported")
table = [0] * (size_1d * size_2d * size_3d * channels)
idx_out = 0
for b in range(size_3d):
for g in range(size_2d):
for r in range(size_1d):
table[idx_out : idx_out + channels] = callback(
r / (size_1d - 1), g / (size_2d - 1), b / (size_3d - 1)
)
idx_out += channels
return cls(
(size_1d, size_2d, size_3d),
table,
channels=channels,
target_mode=target_mode,
_copy_table=False,
)
|
|
50,951 | 204,878 | 46 | django/db/backends/base/operations.py | 14 | 4 | def regex_lookup(self, lookup_type):
raise NotImplementedError(
"subclasses of BaseDatabaseOperations may require a regex_lookup() method"
| Refs #33476 -- Reformatted code with Black. | regex_lookup | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | operations.py | 8 | 4 | https://github.com/django/django.git | 1 | 13 | 0 | 14 | 25 | Python | {
"docstring": "\n Return the string to use in a query when performing regular expression\n lookups (using \"regex\" or \"iregex\"). It should contain a '%s'\n placeholder for the column being searched against.\n\n If the feature is not supported (or part of it is not supported), raise\n NotImplementedError.\n ",
"language": "en",
"n_whitespaces": 87,
"n_words": 44,
"vocab_size": 39
} | def regex_lookup(self, lookup_type):
raise NotImplementedError(
"subclasses of BaseDatabaseOperations may require a regex_lookup() method"
)
|
|
14,712 | 68,062 | 35 | erpnext/telephony/doctype/call_log/call_log.py | 55 | 32 | def link_existing_conversations(doc, state):
if doc.doctype != "Contact":
return
try:
numbers = [d.phone for d in doc.phone_nos]
for number in numbers:
number = strip_number(number)
if not number:
continue
logs = frappe.db.sql_list(
,
dict(phone_number="%{}".format(number), docname=doc.name, doctype=doc.doctype),
)
for log in logs:
call_log = frappe.get_doc("Call Log", log)
call_log.add_link(link_ | style: format code with black | link_existing_conversations | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | call_log.py | 18 | 33 | https://github.com/frappe/erpnext.git | 7 | 142 | 0 | 46 | 232 | Python | {
"docstring": "\n\tCalled from hooks on creation of Contact or Lead to link all the existing conversations.\n\t\n\t\t\t\tSELECT cl.name FROM `tabCall Log` cl\n\t\t\t\tLEFT JOIN `tabDynamic Link` dl\n\t\t\t\tON cl.name = dl.parent\n\t\t\t\tWHERE (cl.`from` like %(phone_number)s or cl.`to` like %(phone_number)s)\n\t\t\t\tGROUP BY cl.name\n\t\t\t\tHAVING SUM(\n\t\t\t\t\tCASE\n\t\t\t\t\t\tWHEN dl.link_doctype = %(doctype)s AND dl.link_name = %(docname)s\n\t\t\t\t\t\tTHEN 1\n\t\t\t\t\t\tELSE 0\n\t\t\t\t\tEND\n\t\t\t\t)=0\n\t\t\t",
"language": "en",
"n_whitespaces": 45,
"n_words": 58,
"vocab_size": 52
} | def link_existing_conversations(doc, state):
if doc.doctype != "Contact":
return
try:
numbers = [d.phone for d in doc.phone_nos]
for number in numbers:
number = strip_number(number)
if not number:
continue
logs = frappe.db.sql_list(
,
dict(phone_number="%{}".format(number), docname=doc.name, doctype=doc.doctype),
)
for log in logs:
call_log = frappe.get_doc("Call Log", log)
call_log.add_link(link_type=doc.doctype, link_name=doc.name)
call_log.save(ignore_permissions=True)
frappe.db.commit()
except Exception:
frappe.log_error(title=_("Error during caller information update"))
|
|
89,517 | 290,401 | 125 | homeassistant/components/media_player/__init__.py | 31 | 12 | async def async_volume_up(self) -> None:
if hasattr(self, "volume_up"):
await | Update mypy to 0.990 (#81783)
* Update mypy to 0.990
* Remove type ignore - overriding attr with property (13475)
* Remove type ignores - hasattr (13544)
* Adjust type ignore - assignment (13549)
* New error code - type-abstract (13785)
* Disable annotation-unchecked (13851) | async_volume_up | 0c8eeaa6436b04ba6da46bccab8b11523f314d9b | core | __init__.py | 14 | 14 | https://github.com/home-assistant/core.git | 5 | 70 | 0 | 26 | 112 | Python | {
"docstring": "Turn volume up for media player.\n\n This method is a coroutine.\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 11,
"vocab_size": 11
} | async def async_volume_up(self) -> None:
if hasattr(self, "volume_up"):
await self.hass.async_add_executor_job(self.volume_up)
return
if (
self.volume_level is not None
and self.volume_level < 1
and self.supported_features & MediaPlayerEntityFeature.VOLUME_SET
):
await self.async_set_volume_level(min(1, self.volume_level + 0.1))
|
|
39,981 | 167,374 | 62 | pandas/io/pytables.py | 16 | 6 | def infer_axes(self) -> bool:
s = self.storable
if s is None:
return False
self.get_attrs()
return True
| TYP: some return annotations in pytables.py (#47512) | infer_axes | 7d2f9b8d59908fbf57c6453bc41891efbfe981a6 | pandas | pytables.py | 7 | 10 | https://github.com/pandas-dev/pandas.git | 2 | 27 | 0 | 14 | 47 | Python | {
"docstring": "\n infer the axes of my storer\n return a boolean indicating if we have a valid storer or not\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 18,
"vocab_size": 16
} | def infer_axes(self) -> bool:
s = self.storable
if s is None:
return False
self.get_attrs()
return True
|
|
35,351 | 153,296 | 130 | modin/core/dataframe/pandas/dataframe/dataframe.py | 36 | 9 | def _validate_set_axis(self, new_labels, old_labels):
new_labels = ensure_index(new_labels)
old_len = len(old_labels)
new_len = len(new_labels)
if old_len != new_len:
raise ValueError(
f"Length mismatch: Expected axis has {old_len} elements, "
+ "new values have {new_len} elements"
)
return new_labels
| REFACTOR-#3900: add flake8-no-implicit-concat plugin and refactor flake8 error codes (#3901)
Signed-off-by: jeffreykennethli <jkli@ponder.io> | _validate_set_axis | e5e9634357e60925a5a70e56a1d4882d269f533a | modin | dataframe.py | 12 | 10 | https://github.com/modin-project/modin.git | 2 | 43 | 0 | 32 | 77 | Python | {
"docstring": "\n Validate the possibility of replacement of old labels with the new labels.\n\n Parameters\n ----------\n new_labels : list-like\n The labels to replace with.\n old_labels : list-like\n The labels to replace.\n\n Returns\n -------\n list-like\n The validated labels.\n ",
"language": "en",
"n_whitespaces": 132,
"n_words": 35,
"vocab_size": 24
} | def _validate_set_axis(self, new_labels, old_labels):
new_labels = ensure_index(new_labels)
old_len = len(old_labels)
new_len = len(new_labels)
if old_len != new_len:
raise ValueError(
f"Length mismatch: Expected axis has {old_len} elements, "
+ "new values have {new_len} elements"
)
return new_labels
|
|
18,225 | 87,117 | 55 | src/sentry/snuba/discover.py | 32 | 8 | def transform_data(result, translated_columns, query_builder) -> EventsResponse:
final_result: EventsResponse = {"data": result["data"], "meta": result["meta"]}
for col in final_result["meta"]:
# Translate back column names that were converted to snuba format
col["name"] = translated_columns.get(col["name"], col["name"])
| feat(discover): Only transform when ordering project (#39468)
- This updates the querybuilder with a orderby resolver so we can
implement more custom orderbys(orderbies?) in the future
- This changes the project field to just select the project_id only,
which results in needing a new post-processing capability to the
querybuilder
- This is done via the `value_resolver_map` and the `meta_resolver_map`
- Removed the snuba_filter param from transform_results since we no
longer use it
- Removes the old discover 1 query since it shouldn't be supported and
no longer is being used
- Needed to update ds code too since it relied on the old project
behaviour but doesn't use `discover.query` | transform_data | bf416f7ad23d7537a84c9727cfe1c0a7effd27bb | sentry | discover.py | 12 | 13 | https://github.com/getsentry/sentry.git | 3 | 80 | 0 | 31 | 102 | Python | {
"docstring": "\n Transform internal names back to the public schema ones.\n\n When getting timeseries results via rollup, this function will\n zerofill the output results.\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 22,
"vocab_size": 21
} | def transform_data(result, translated_columns, query_builder) -> EventsResponse:
final_result: EventsResponse = {"data": result["data"], "meta": result["meta"]}
for col in final_result["meta"]:
# Translate back column names that were converted to snuba format
col["name"] = translated_columns.get(col["name"], col["name"])
|
|
48,627 | 197,550 | 81 | sympy/plotting/plot.py | 43 | 17 | def plot_contour(*args, show=True, **kwargs):
args = list(map(sympify, args))
plot_expr = check_arguments(args, 1, 2)
series = [ContourSeries(*arg) for arg | Improve documentation | plot_contour | eb20cbe9b89917786a10d50b785b4f21230f04be | sympy | plot.py | 10 | 10 | https://github.com/sympy/sympy.git | 4 | 86 | 0 | 36 | 138 | Python | {
"docstring": "\n Draws contour plot of a function\n\n Usage\n =====\n\n Single plot\n\n ``plot_contour(expr, range_x, range_y, **kwargs)``\n\n If the ranges are not specified, then a default range of (-10, 10) is used.\n\n Multiple plot with the same range.\n\n ``plot_contour(expr1, expr2, range_x, range_y, **kwargs)``\n\n If the ranges are not specified, then a default range of (-10, 10) is used.\n\n Multiple plots with different ranges.\n\n ``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``\n\n Ranges have to be specified for every expression.\n\n Default range may change in the future if a more advanced default range\n detection algorithm is implemented.\n\n Arguments\n =========\n\n expr : Expression representing the function along x.\n\n range_x : (:class:`Symbol`, float, float)\n A 3-tuple denoting the range of the x variable, e.g. (x, 0, 5).\n\n range_y : (:class:`Symbol`, float, float)\n A 3-tuple denoting the range of the y variable, e.g. (y, 0, 5).\n\n Keyword Arguments\n =================\n\n Arguments for ``ContourSeries`` class:\n\n nb_of_points_x : int\n The x range is sampled uniformly at ``nb_of_points_x`` of points.\n\n nb_of_points_y : int\n The y range is sampled uniformly at ``nb_of_points_y`` of points.\n\n Aesthetics:\n\n surface_color : Function which returns a float\n Specifies the color for the surface of the plot. See\n :class:`sympy.plotting.Plot` for more details.\n\n If there are multiple plots, then the same series arguments are applied to\n all the plots. If you want to set these options separately, you can index\n the returned ``Plot`` object and set it.\n\n Arguments for ``Plot`` class:\n\n title : str\n Title of the plot.\n\n size : (float, float), optional\n A tuple in the form (width, height) in inches to specify the size of\n the overall figure. The default value is set to ``None``, meaning\n the size will be set by the default backend.\n\n See Also\n ========\n\n Plot, ContourSeries\n\n ",
"language": "en",
"n_whitespaces": 462,
"n_words": 283,
"vocab_size": 155
} | def plot_contour(*args, show=True, **kwargs):
args = list(map(sympify, args))
plot_expr = check_arguments(args, 1, 2)
series = [ContourSeries(*arg) for arg in plot_expr]
plot_contours = Plot(*series, **kwargs)
if len(plot_expr[0].free_symbols) > 2:
raise ValueError('Contour Plot cannot Plot for more than two variables.')
if show:
plot_contours.show()
return plot_contours
|
|
56,263 | 221,193 | 73 | python3.10.4/Lib/bz2.py | 31 | 5 | def peek(self, n=0):
self._check_can_read()
# Relies on the u | add python 3.10.4 for windows | peek | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | bz2.py | 8 | 3 | https://github.com/XX-net/XX-Net.git | 1 | 24 | 0 | 26 | 44 | Python | {
"docstring": "Return buffered data without advancing the file position.\n\n Always returns at least one byte of data, unless at EOF.\n The exact number of bytes returned is unspecified.\n ",
"language": "en",
"n_whitespaces": 48,
"n_words": 27,
"vocab_size": 25
} | def peek(self, n=0):
self._check_can_read()
# Relies on the undocumented fact that BufferedReader.peek()
# always returns at least one byte (except at EOF), independent
# of the value of n
return self._buffer.peek(n)
|
|
20,701 | 101,282 | 55 | lib/training/cache.py | 12 | 5 | def cache_full(self) -> bool:
if self._cache_ | Data Augmentation update (#1263)
- lib.detected_face
- Subclass Masks for Landmark based masks
- Add training mask propery + methods to DetectedFace
- lib.training_training
- subclass TrainingDataGenerator for training and preview data
- Split cache into own module
- Reduce thread count to 1 to prevent image corruption + data re-use
- Process on largest model input/output size rather than stored image size
- Size and crop masks during caching stage
- Implement ring buffer for data flow
- Fix preview reload bug
- augmentation
- typing
- switch color aug order
- better initialization
- Fix warp + landmark warp to correctly apply at different image scales
- Slightly improved warp caching
- Don't store whether image is_preview. Handle all data as training images implicitly
- plugins.trainer: Typing and fixes to work with trainingdata refactor | cache_full | 2beceffad9b15c1fd78f06b9b272563321c5a41e | faceswap | cache.py | 9 | 7 | https://github.com/deepfakes/faceswap.git | 2 | 35 | 0 | 10 | 64 | Python | {
"docstring": "bool: ``True`` if the cache has been fully populated. ``False`` if there are items still\n to be cached. ",
"language": "en",
"n_whitespaces": 25,
"n_words": 18,
"vocab_size": 17
} | def cache_full(self) -> bool:
if self._cache_info["cache_full"]:
return self._cache_info["cache_full"]
with self._lock:
return self._cache_info["cache_full"]
|
|
78,245 | 265,914 | 102 | netbox/netbox/views/generic/base.py | 29 | 8 | def get_queryset(self, request):
if self.queryset is None:
raise ImproperlyConfigured(
f"{self.__class__.__name__} does not define a queryset. Set queryset on the class or "
f"override its get_queryset() method."
| Closes #10739: Introduce get_queryset() method on generic views | get_queryset | b2e2e3be35f3922ecee945b97279c50725c0b7fa | netbox | base.py | 14 | 7 | https://github.com/netbox-community/netbox.git | 2 | 31 | 0 | 29 | 63 | Python | {
"docstring": "\n Return the base queryset for the view. By default, this returns self.queryset.all().\n\n Args:\n request: The current request\n ",
"language": "en",
"n_whitespaces": 50,
"n_words": 17,
"vocab_size": 16
} | def get_queryset(self, request):
if self.queryset is None:
raise ImproperlyConfigured(
f"{self.__class__.__name__} does not define a queryset. Set queryset on the class or "
f"override its get_queryset() method."
)
return self.queryset.all()
|
|
118,085 | 322,190 | 117 | paddlenlp/taskflow/knowledge_mining.py | 46 | 9 | def _preprocess(self, inputs):
inputs = self._check_input_text(inputs)
self._max_cls_len = 5
num_workers = self.kwargs[
'num_workers'] if 'num_workers' in self.kwargs else 0
lazy_load = self.kwargs[
'lazy_load'] if 'lazy_load' in self.kwargs else False
# Prompt template: input_text + "是" + "[MASK]" * cls_seq_length
prompt_template = ["是"] + ["[MASK]"] * self._max_cls_len
| Update neural search readme and Add Paddle Serving Support (#1558)
* add recall inference similarity
* update examples
* updatea readme
* update dir name
* update neural search readme
* update milvus readme
* update domain adaptive pretraining readme
* fix the mistakes
* update readme
* add recall Paddle Serving Support
* update readme
* update readme and format the code
* reformat the files
* move the files
* reformat the code
* remove redundant code
Co-authored-by: Zeyu Chen <chenzeyu01@baidu.com>
Co-authored-by: tianxin <tianxin04@baidu.com> | _preprocess | 621357338437ee420eabbbf5ab19065bc85e73a5 | PaddleNLP | knowledge_mining.py | 10 | 26 | https://github.com/PaddlePaddle/PaddleNLP.git | 3 | 168 | 0 | 33 | 115 | Python | {
"docstring": "\n Create the dataset and dataloader for the predict.\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 8,
"vocab_size": 7
} | def _preprocess(self, inputs):
inputs = self._check_input_text(inputs)
self._max_cls_len = 5
num_workers = self.kwargs[
'num_workers'] if 'num_workers' in self.kwargs else 0
lazy_load = self.kwargs[
'lazy_load'] if 'lazy_load' in self.kwargs else False
# Prompt template: input_text + "是" + "[MASK]" * cls_seq_length
prompt_template = ["是"] + ["[MASK]"] * self._max_cls_len
|
|
54,151 | 215,757 | 257 | salt/modules/consul.py | 86 | 16 | def session_destroy(consul_url=None, token=None, session=None, **kwargs):
ret = {}
if not consul_url:
consul_url = _get_config()
if not consul_url:
log.error("No Consul URL found.")
ret["me | [merge jam] Master port 49261 - consul modules (#58101)
* add consul states and acl function present/absent
* add consul to states doc index
* refact/fix consul states
* fix doc, fix states
* fix name parameter for acl_changes
* fixing pylint errors
* small changes after review by @rallytime
* fix header count
* Update consul.py
* fix acl_exists description, fix when both id and name are missing
* Adding some tests for consul module and consul state module. Some additional fixes in the consul module.
* Fixing tests.
* Fixing failing tests on Windows.
* Adding changelog.
* Adding some tests for consul module and consul state module. Some additional fixes in the consul module.
* moving tests to pytest.
* manual black changes.
* One more manual black change.
* fixing formatting. Adding versionadded for state module.
Co-authored-by: Rémi Jouannet <remi.jouannet@outscale.com>
Co-authored-by: Mike Place <mp@saltstack.com>
Co-authored-by: Daniel Wozniak <dwozniak@saltstack.com>
Co-authored-by: Wayne Werner <wwerner@vmware.com> | session_destroy | fb825aa760fa0585a2c8fdafc6e62be8aec8cecf | salt | consul.py | 12 | 29 | https://github.com/saltstack/salt.git | 6 | 160 | 0 | 56 | 283 | Python | {
"docstring": "\n Destroy session\n\n :param consul_url: The Consul server URL.\n :param session: The ID of the session to destroy.\n :param dc: By default, the datacenter of the agent is queried;\n however, the dc can be provided using the \"dc\" parameter.\n :return: Boolean & message of success or failure.\n\n CLI Example:\n\n .. code-block:: bash\n\n salt '*' consul.session_destroy session='c1c4d223-91cb-3d1f-1ee8-f2af9e7b6716'\n\n ",
"language": "en",
"n_whitespaces": 101,
"n_words": 55,
"vocab_size": 45
} | def session_destroy(consul_url=None, token=None, session=None, **kwargs):
ret = {}
if not consul_url:
consul_url = _get_config()
if not consul_url:
log.error("No Consul URL found.")
ret["message"] = "No Consul URL found."
ret["res"] = False
return ret
if not session:
raise SaltInvocationError('Required argument "session" is missing.')
query_params = {}
if "dc" in kwargs:
query_params["dc"] = kwargs["dc"]
function = "session/destroy/{}".format(session)
res = _query(
consul_url=consul_url,
function=function,
token=token,
method="PUT",
query_params=query_params,
)
if res["res"]:
ret["res"] = True
ret["message"] = "Destroyed Session {}.".format(session)
else:
ret["res"] = False
ret["message"] = "Unable to destroy session {}.".format(session)
return ret
|
|
5,242 | 29,623 | 31 | saleor/graphql/product/mutations/collection/collection_update.py | 10 | 10 | def post_save_action(cls, info, instance, cleaned_input):
manager = load_plugin_manager(info.context | Split product types and mutations (#11259)
* Split product types file
* Split product/mutations/products.py file | post_save_action | 74d1c8d8504dbdd339865ff97ca4ac9bd30a8faf | saleor | collection_update.py | 9 | 3 | https://github.com/saleor/saleor.git | 1 | 30 | 0 | 10 | 47 | Python | {
"docstring": "Override this method with `pass` to avoid triggering product webhook.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | def post_save_action(cls, info, instance, cleaned_input):
manager = load_plugin_manager(info.context)
cls.call_event(manager.collection_updated, instance)
|
|
81,600 | 276,242 | 91 | keras/saving/saving_utils.py | 47 | 6 | def _deserialize_metric(metric_config):
from keras import (
metrics as metrics_module,
) # pylint:disable=g-import-not-at-top
if metric_config in ["accuracy", "acc", "crossentropy", "ce"]:
# Do not deserialize accuracy and cross-entropy strings as we have special
# case handling for these | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | _deserialize_metric | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | saving_utils.py | 8 | 7 | https://github.com/keras-team/keras.git | 2 | 37 | 0 | 41 | 68 | Python | {
"docstring": "Deserialize metrics, leaving special strings untouched.",
"language": "en",
"n_whitespaces": 5,
"n_words": 6,
"vocab_size": 6
} | def _deserialize_metric(metric_config):
from keras import (
metrics as metrics_module,
) # pylint:disable=g-import-not-at-top
if metric_config in ["accuracy", "acc", "crossentropy", "ce"]:
# Do not deserialize accuracy and cross-entropy strings as we have special
# case handling for these in compile, based on model output shape.
return metric_config
return metrics_module.deserialize(metric_config)
|
|
@keras_export("keras.activations.swish")
@tf.__internal__.dispatch.add_dispatch_support | 80,026 | 269,312 | 10 | keras/activations.py | 6 | 8 | def softsign(x):
return tf.math.softsign(x)
@keras_export("keras.activations.swish")
@tf.__internal__.dispatch.add_dispatch_support | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | softsign | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | activations.py | 8 | 2 | https://github.com/keras-team/keras.git | 1 | 15 | 1 | 6 | 50 | Python | {
"docstring": "Softsign activation function, `softsign(x) = x / (abs(x) + 1)`.\n\n Example Usage:\n\n >>> a = tf.constant([-1.0, 0.0, 1.0], dtype = tf.float32)\n >>> b = tf.keras.activations.softsign(a)\n >>> b.numpy()\n array([-0.5, 0. , 0.5], dtype=float32)\n\n Args:\n x: Input tensor.\n\n Returns:\n The softsign activation: `x / (abs(x) + 1)`.\n ",
"language": "en",
"n_whitespaces": 85,
"n_words": 45,
"vocab_size": 36
} | def softsign(x):
return tf.math.softsign(x)
@keras_export("keras.activations.swish")
@tf.__internal__.dispatch.add_dispatch_support |
34,894 | 150,952 | 708 | freqtrade/freqai/data_kitchen.py | 145 | 59 | def compute_inlier_metric(self) -> None:
import scipy.stats as ss
nmb_previous_points = self.data['InlierMetric_nmb_points']
weibull_percentile = self.data['InlierMetric_weib_perc']
train_ft_df = self.data_dictionary['train_features']
train_ft_df_reindexed = train_ft_df.reindex(
index=np.flip(train_ft_df.index)
)
pairwise = pd.DataFrame(
np.triu(
pairwise_distances(train_ft_df_reindexed, n_jobs=self.thread_count)
),
columns=train_ft_df_reindexed.index,
index=train_ft_df_reindexed.index
)
pairwise = pairwise.round(5)
column_labels = [
'{}{}'.format('d', i) for i in range(1, nmb_previous_points+1)
]
distances = pd.DataFrame(
columns=column_labels, index=train_ft_df.index
)
for index in train_ft_df.index[nmb_previous_points]:
current_row = pairwise.loc[[index]]
current_row_no_zeros = current_row.loc[
:, (current_row!=0).any(axis=0)
]
distances.loc[[index]] = current_row_no_zeros.iloc[
:, :nmb_previous_points
]
distances = distances.replace([np.inf, -np.inf], np.nan)
drop_index = pd.isnull(distances).any(1)
distances = distances[drop_index==0]
inliers = pd.DataFrame(index=distances.index)
for key in distances.keys():
current_distances = distances[key].dropna()
fit_params = ss.weibull_min.fit(current_distances)
cutoff = ss.weibull_min.ppf(weibull_percentile, *fit_params)
is_inlier = np.where(
current_distances<=cutoff, 1, 0
)
df_inlier = pd.DataFrame(
{key+'_IsInlier':is_inlier}, index=distances.index
)
inliers = pd.concat(
[inliers, df_inlier], axis=1
)
self.data_dictionary['train_features'] = pd.DataFrame(
data=inliers.sum(axis=1)/nmb_previous_points,
col | Add inlier metric computation | compute_inlier_metric | d3cb211283ced68d082cfdbdac12f3d2ab90d63b | freqtrade | data_kitchen.py | 16 | 64 | https://github.com/freqtrade/freqtrade.git | 4 | 417 | 0 | 98 | 653 | Python | {
"docstring": "\n \n Compute inlier metric from backwards distance distributions. \n This metric defines how well features from a timepoint fit \n into previous timepoints.\n ",
"language": "en",
"n_whitespaces": 59,
"n_words": 20,
"vocab_size": 18
} | def compute_inlier_metric(self) -> None:
import scipy.stats as ss
nmb_previous_points = self.data['InlierMetric_nmb_points']
weibull_percentile = self.data['InlierMetric_weib_perc']
train_ft_df = self.data_dictionary['train_features']
train_ft_df_reindexed = train_ft_df.reindex(
index=np.flip(train_ft_df.index)
)
pairwise = pd.DataFrame(
np.triu(
pairwise_distances(train_ft_df_reindexed, n_jobs=self.thread_count)
),
columns=train_ft_df_reindexed.index,
index=train_ft_df_reindexed.index
)
pairwise = pairwise.round(5)
column_labels = [
'{}{}'.format('d', i) for i in range(1, nmb_previous_points+1)
]
distances = pd.DataFrame(
columns=column_labels, index=train_ft_df.index
)
for index in train_ft_df.index[nmb_previous_points]:
current_row = pairwise.loc[[index]]
current_row_no_zeros = current_row.loc[
:, (current_row!=0).any(axis=0)
]
distances.loc[[index]] = current_row_no_zeros.iloc[
:, :nmb_previous_points
]
distances = distances.replace([np.inf, -np.inf], np.nan)
drop_index = pd.isnull(distances).any(1)
distances = distances[drop_index==0]
inliers = pd.DataFrame(index=distances.index)
for key in distances.keys():
current_distances = distances[key].dropna()
fit_params = ss.weibull_min.fit(current_distances)
cutoff = ss.weibull_min.ppf(weibull_percentile, *fit_params)
is_inlier = np.where(
current_distances<=cutoff, 1, 0
)
df_inlier = pd.DataFrame(
{key+'_IsInlier':is_inlier}, index=distances.index
)
inliers = pd.concat(
[inliers, df_inlier], axis=1
)
self.data_dictionary['train_features'] = pd.DataFrame(
data=inliers.sum(axis=1)/nmb_previous_points,
columns=['inlier_metric'],
index = train_ft_df.index
)
percent_outliers = np.round(
100*(1-self.data_dictionary['iniler_metric'].sum()/
len(train_ft_df.index)), 2
)
logger.info('{percent_outliers}%% of data points were identified as outliers')
return None
|
|
55,942 | 220,224 | 70 | python3.10.4/Lib/ast.py | 16 | 7 | def items_view(self, traverser, items):
if len(items) == 1:
traverser(items[0])
self.write(",")
else:
self.interleave(lambda: self.write(", "), tra | add python 3.10.4 for windows | items_view | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | ast.py | 14 | 6 | https://github.com/XX-net/XX-Net.git | 2 | 50 | 0 | 15 | 84 | Python | {
"docstring": "Traverse and separate the given *items* with a comma and append it to\n the buffer. If *items* is a single item sequence, a trailing comma\n will be added.",
"language": "en",
"n_whitespaces": 41,
"n_words": 28,
"vocab_size": 22
} | def items_view(self, traverser, items):
if len(items) == 1:
traverser(items[0])
self.write(",")
else:
self.interleave(lambda: self.write(", "), traverser, items)
|
|
72,195 | 248,296 | 62 | synapse/metrics/jemalloc.py | 19 | 9 | def refresh_stats(self) -> None:
try:
self._mallctl("epoch", read=False, write=1)
except Exception as e:
logger.warning("Failed to reload jemalloc stats: %s | Add config flags to allow for cache auto-tuning (#12701) | refresh_stats | cde8af9a495cbc7f3d0207e3f17c37eddaee34e1 | synapse | jemalloc.py | 11 | 9 | https://github.com/matrix-org/synapse.git | 2 | 37 | 0 | 19 | 65 | Python | {
"docstring": "Request that jemalloc updates its internal statistics. This needs to\n be called before querying for stats, otherwise it will return stale\n values.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 22,
"vocab_size": 22
} | def refresh_stats(self) -> None:
try:
self._mallctl("epoch", read=False, write=1)
except Exception as e:
logger.warning("Failed to reload jemalloc stats: %s", e)
|
|
41,791 | 176,247 | 77 | networkx/tests/test_convert_numpy.py | 43 | 18 | def test_to_numpy_array_multiweight_reduction(func, expected):
G = nx.MultiDiGraph()
weights = [-1, 2, 10.0]
for w in weights:
G.add_edge(0, 1, weight=w)
A = nx.to_numpy_array(G, multigraph_weight=func, dtype=float)
| Refactor `to_numpy_array` with advanced indexing (#5250)
* WIP: try approach based on advanced indexing.
* WIP: Fix some tests and support multigraphs.
* Rm test for limiting reductions to nanfunctions.
* Catch edgeless graph cornercase.
* Cleanups.
* Update networkx/convert_matrix.py
Comments from review
Co-authored-by: Dan Schult <dschult@colgate.edu>
* Only subgraph if necessary
and copy if so, for performance reasons
Co-authored-by: Dan Schult <dschult@colgate.edu>
* Split multigraph and graph cases for performance.
* Add tests for to_numpy_array with complex dtype.
Co-authored-by: Andras Deak <deak.andris@gmail.com>
* Add test for object weights.
* Add test for more multiweight reduction functions.
Include arbitrary functions beyond the original set of
nanmin, nanmax, and nansum.
* Update docstring.
Co-authored-by: Dan Schult <dschult@colgate.edu>
Co-authored-by: Andras Deak <deak.andris@gmail.com> | test_to_numpy_array_multiweight_reduction | 0cc70051fa0a979b1f1eab4af5b6587a6ebf8334 | networkx | test_convert_numpy.py | 10 | 9 | https://github.com/networkx/networkx.git | 2 | 122 | 0 | 32 | 175 | Python | {
"docstring": "Test various functions for reducing multiedge weights.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | def test_to_numpy_array_multiweight_reduction(func, expected):
G = nx.MultiDiGraph()
weights = [-1, 2, 10.0]
for w in weights:
G.add_edge(0, 1, weight=w)
A = nx.to_numpy_array(G, multigraph_weight=func, dtype=float)
assert np.allclose(A, [[0, expected], [0, 0]])
# Undirected case
A = nx.to_numpy_array(G.to_undirected(), multigraph_weight=func, dtype=float)
assert np.allclose(A, [[0, expected], [expected, 0]])
|
|
28,018 | 125,896 | 669 | rllib/connectors/tests/test_agent.py | 152 | 36 | def test_vr_connector_causal_slice(self):
view_rq_dict = {
"state": ViewRequirement("obs"),
# shift array should be [-2, -1, 0]
"prev_states": ViewRequirement("obs", shift="-2:0"),
# shift array should be [-4, -2, 0]
"prev_strided_states_even": ViewRequirement("obs", shift="-4:0:2"),
# shift array should be [-3, -1]
"prev_strided_states_odd": ViewRequirement("obs", shift="-3:0:2"),
}
obs_arrs = np.arange(10)[:, None] + 1
config = PPOConfig().to_dict()
ctx = ConnectorContext(
view_requirements=view_rq_dict, config=config, is_policy_recurrent=True
)
c = ViewRequirementAgentConnector(ctx)
# keep a queue of observations
obs_list = []
for t, obs in enumerate(obs_arrs):
# t=0 is the next state of t=-1
data = AgentConnectorDataType(
0, 1, {SampleBatch.NEXT_OBS: obs, SampleBatch.T: t - 1}
)
processed = c([data])
for_action = processed[0].data.for_action
if t == | [RLlib] Implemented ViewRequirementConnector (#26998) | test_vr_connector_causal_slice | 8ddcf89096e5631c6b6e0d04dc094b458a15c9f9 | ray | test_agent.py | 15 | 38 | https://github.com/ray-project/ray.git | 4 | 300 | 0 | 105 | 491 | Python | {
"docstring": "Test that the ViewRequirementConnector can handle slice shifts correctly.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | def test_vr_connector_causal_slice(self):
view_rq_dict = {
"state": ViewRequirement("obs"),
# shift array should be [-2, -1, 0]
"prev_states": ViewRequirement("obs", shift="-2:0"),
# shift array should be [-4, -2, 0]
"prev_strided_states_even": ViewRequirement("obs", shift="-4:0:2"),
# shift array should be [-3, -1]
"prev_strided_states_odd": ViewRequirement("obs", shift="-3:0:2"),
}
obs_arrs = np.arange(10)[:, None] + 1
config = PPOConfig().to_dict()
ctx = ConnectorContext(
view_requirements=view_rq_dict, config=config, is_policy_recurrent=True
)
c = ViewRequirementAgentConnector(ctx)
# keep a queue of observations
obs_list = []
for t, obs in enumerate(obs_arrs):
# t=0 is the next state of t=-1
data = AgentConnectorDataType(
0, 1, {SampleBatch.NEXT_OBS: obs, SampleBatch.T: t - 1}
)
processed = c([data])
for_action = processed[0].data.for_action
if t == 0:
obs_list.extend([obs for _ in range(5)])
else:
# remove the first obs and add the current obs to the end
obs_list.pop(0)
obs_list.append(obs)
# check state
check(for_action["state"], obs[None])
# check prev_states
check(
for_action["prev_states"],
np.stack(obs_list)[np.array([-3, -2, -1])][None],
)
# check prev_strided_states_even
check(
for_action["prev_strided_states_even"],
np.stack(obs_list)[np.array([-5, -3, -1])][None],
)
check(
for_action["prev_strided_states_odd"],
np.stack(obs_list)[np.array([-4, -2])][None],
)
|
|
44,269 | 183,607 | 68 | examples/calculator.py | 14 | 10 | def render(self) -> RenderableType:
return Padding(
Align.right(FigletText(self.value), vertical="middle"),
(0, 1),
style="white o | more docs | render | 6bfc26c1ec37262b9cd4bbab35d15907dc6742bf | textual | calculator.py | 12 | 7 | https://github.com/Textualize/textual.git | 1 | 38 | 0 | 14 | 62 | Python | {
"docstring": "Build a Rich renderable to render the calculator display.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | def render(self) -> RenderableType:
return Padding(
Align.right(FigletText(self.value), vertical="middle"),
(0, 1),
style="white on rgb(51,51,51)",
)
|
|
@keras_export("keras.__internal__.models.clone_and_build_model", v1=[]) | 82,432 | 278,255 | 253 | keras/models/cloning.py | 101 | 18 | def in_place_subclassed_model_state_restoration(model):
assert not model._is_graph_network
# Restore layers and build attributes
if (
hasattr(model, "_original_attributes_cache")
and model._original_attributes_cache is not None
):
# Models have sticky attribute assignment, so we want to be careful to
# add back the previous attributes and track Layers by their original
# names without adding dependencies on "utility" attributes which Models
# exempt when they're constructed.
setattr_tracking = model._setattr_tracking
model._setattr_tracking = False
model._self_tracked_trackables = []
for name, value in model._original_attributes_cache.items():
setattr(model, name, value)
if isinstance(value, Layer):
model._self_tracked_trackables.append(value)
model._original_attributes_cache = None
model._setattr_tracking = setattr_tracking
else:
# Res | resolve line-too-long in models | in_place_subclassed_model_state_restoration | f0fc6f798937a7a5fdab469c0f16bdde7cfc4ccd | keras | cloning.py | 14 | 17 | https://github.com/keras-team/keras.git | 5 | 97 | 1 | 75 | 181 | Python | {
"docstring": "Restores the original state of a model after it was \"reset\".\n\n This undoes this action of `_in_place_subclassed_model_reset`, which is\n called in `clone_and_build_model` if `in_place_reset` is set to True.\n\n Args:\n model: Instance of a Keras model created via subclassing, on which\n `_in_place_subclassed_model_reset` was previously called.\n ",
"language": "en",
"n_whitespaces": 68,
"n_words": 44,
"vocab_size": 37
} | def in_place_subclassed_model_state_restoration(model):
assert not model._is_graph_network
# Restore layers and build attributes
if (
hasattr(model, "_original_attributes_cache")
and model._original_attributes_cache is not None
):
# Models have sticky attribute assignment, so we want to be careful to
# add back the previous attributes and track Layers by their original
# names without adding dependencies on "utility" attributes which Models
# exempt when they're constructed.
setattr_tracking = model._setattr_tracking
model._setattr_tracking = False
model._self_tracked_trackables = []
for name, value in model._original_attributes_cache.items():
setattr(model, name, value)
if isinstance(value, Layer):
model._self_tracked_trackables.append(value)
model._original_attributes_cache = None
model._setattr_tracking = setattr_tracking
else:
# Restore to the state of a never-called model.
_reset_build_compile_trackers(model)
@keras_export("keras.__internal__.models.clone_and_build_model", v1=[]) |