ast_errors
stringlengths 0
3.2k
| d_id
int64 44
121k
| id
int64 70
338k
| n_whitespaces
int64 3
14k
| path
stringlengths 8
134
| n_words
int64 4
4.82k
| n_identifiers
int64 1
131
| random_cut
stringlengths 16
15.8k
| commit_message
stringlengths 2
15.3k
| fun_name
stringlengths 1
84
| commit_id
stringlengths 40
40
| repo
stringlengths 3
28
| file_name
stringlengths 5
79
| ast_levels
int64 6
31
| nloc
int64 1
548
| url
stringlengths 31
59
| complexity
int64 1
66
| token_counts
int64 6
2.13k
| n_ast_errors
int64 0
28
| vocab_size
int64 4
1.11k
| n_ast_nodes
int64 15
19.2k
| language
stringclasses 1
value | documentation
dict | code
stringlengths 101
62.2k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
@serializable
@register | 53,110 | 211,506 | 881 | ppdet/modeling/losses/probiou_loss.py | 181 | 46 | def probiou_loss(pred, target, eps=1e-3, mode='l1'):
gbboxes1 = gbb_form(pred)
gbboxes2 = gbb_form(target)
x1, y1, a1_, b1_, c1_ = gbboxes1[:,
| add fcosr model (#6765)
* add fcosr
* fix some problem
* add docs for fcosr
* modify code
* modify focsr reader
* finish tensorrt deployment with dynamic shape
* modify according to review comment
Co-authored-by: wangxinxin08 <> | probiou_loss | 92078713cced4f0d9450a6fc80a449fa75fd8c10 | PaddleDetection | probiou_loss.py | 17 | 32 | https://github.com/PaddlePaddle/PaddleDetection.git | 3 | 383 | 1 | 95 | 553 | Python | {
"docstring": "\n pred -> a matrix [N,5](x,y,w,h,angle - in radians) containing ours predicted box ;in case of HBB angle == 0\n target -> a matrix [N,5](x,y,w,h,angle - in radians) containing ours target box ;in case of HBB angle == 0\n eps -> threshold to avoid infinite values\n mode -> ('l1' in [0,1] or 'l2' in [0,inf]) metrics according our paper\n\n ",
"language": "en",
"n_whitespaces": 104,
"n_words": 58,
"vocab_size": 36
} | def probiou_loss(pred, target, eps=1e-3, mode='l1'):
gbboxes1 = gbb_form(pred)
gbboxes2 = gbb_form(target)
x1, y1, a1_, b1_, c1_ = gbboxes1[:,
0], gbboxes1[:,
1], gbboxes1[:,
2], gbboxes1[:,
3], gbboxes1[:,
4]
x2, y2, a2_, b2_, c2_ = gbboxes2[:,
0], gbboxes2[:,
1], gbboxes2[:,
2], gbboxes2[:,
3], gbboxes2[:,
4]
a1, b1, c1 = rotated_form(a1_, b1_, c1_)
a2, b2, c2 = rotated_form(a2_, b2_, c2_)
t1 = 0.25 * ((a1 + a2) * (paddle.pow(y1 - y2, 2)) + (b1 + b2) * (paddle.pow(x1 - x2, 2))) + \
0.5 * ((c1+c2)*(x2-x1)*(y1-y2))
t2 = (a1 + a2) * (b1 + b2) - paddle.pow(c1 + c2, 2)
t3_ = (a1 * b1 - c1 * c1) * (a2 * b2 - c2 * c2)
t3 = 0.5 * paddle.log(t2 / (4 * paddle.sqrt(F.relu(t3_)) + eps))
B_d = (t1 / t2) + t3
# B_d = t1 + t2 + t3
B_d = paddle.clip(B_d, min=eps, max=100.0)
l1 = paddle.sqrt(1.0 - paddle.exp(-B_d) + eps)
l_i = paddle.pow(l1, 2.0)
l2 = -paddle.log(1.0 - l_i + eps)
if mode == 'l1':
probiou = l1
if mode == 'l2':
probiou = l2
return probiou
@serializable
@register |
42,834 | 178,818 | 20 | nuitka/Options.py | 11 | 3 | def mayDisableConsoleWindow():
# TODO: What about | Standalone: Added support for requiring modes
* For wx on macOS, console must be disabled, avoid the trap.
* For the PySide2, on macOS the --onefile must be used when the
application bundle is built or else signing has issues.
* Recommend to use new option --disable-console for PySide2, PySide6
and wx on non-macOS | mayDisableConsoleWindow | 613c31d98f20bdd9a4e5884c99826a06a3328438 | Nuitka | Options.py | 8 | 2 | https://github.com/Nuitka/Nuitka.git | 2 | 13 | 0 | 11 | 27 | Python | {
"docstring": ":returns: bool derived from platform support of disabling the console,",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | def mayDisableConsoleWindow():
# TODO: What about MSYS2?
return isWin32Windows() or isMacOS()
|
|
70,277 | 244,197 | 34 | mmdet/utils/compat_config.py | 16 | 7 | def compat_cfg(cfg):
cfg = copy.deepcopy(cfg)
cfg = compat_imgs_per_gpu(cfg)
cfg = compat_loader_args(cfg)
cfg = compat_runner_args(cfg)
return cf | [Feature] Support set dataloader args in config and and add function to handle config compatibility (#7668)
* add cfg_compatibility and support loader args
* resolve comments
* add unitest
* resolve comments
* delete all warning | compat_cfg | dc14675f79681b88ce2c5a3ca3c69901b415ffe4 | mmdetection | compat_config.py | 8 | 6 | https://github.com/open-mmlab/mmdetection.git | 1 | 34 | 0 | 9 | 59 | Python | {
"docstring": "This function would modify some filed to keep the compatibility of\n config.\n\n For example, it will move some args which will be deprecated to the correct\n fields.\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 27,
"vocab_size": 23
} | def compat_cfg(cfg):
cfg = copy.deepcopy(cfg)
cfg = compat_imgs_per_gpu(cfg)
cfg = compat_loader_args(cfg)
cfg = compat_runner_args(cfg)
return cfg
|
|
55,293 | 218,412 | 93 | python3.10.4/Lib/inspect.py | 44 | 13 | def getsourcelines(object):
object = unwrap(object)
lines, lnum = findsource(object)
if istraceback(object):
object = object.tb_frame
# for module or frame that corresponds to module, return all source lines
if (ismodule(object) or
| add python 3.10.4 for windows | getsourcelines | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | inspect.py | 13 | 10 | https://github.com/XX-net/XX-Net.git | 5 | 73 | 0 | 35 | 123 | Python | {
"docstring": "Return a list of source lines and starting line number for an object.\n\n The argument may be a module, class, method, function, traceback, frame,\n or code object. The source code is returned as a list of the lines\n corresponding to the object and the line number indicates where in the\n original source file the first line of code was found. An OSError is\n raised if the source code cannot be retrieved.",
"language": "en",
"n_whitespaces": 87,
"n_words": 71,
"vocab_size": 46
} | def getsourcelines(object):
object = unwrap(object)
lines, lnum = findsource(object)
if istraceback(object):
object = object.tb_frame
# for module or frame that corresponds to module, return all source lines
if (ismodule(object) or
(isframe(object) and object.f_code.co_name == "<module>")):
return lines, 0
else:
return getblock(lines[lnum:]), lnum + 1
|
|
51,131 | 205,453 | 155 | django/db/models/deletion.py | 39 | 16 | def get_del_batches(self, objs, fields):
| Refs #33476 -- Reformatted code with Black. | get_del_batches | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | deletion.py | 13 | 12 | https://github.com/django/django.git | 4 | 82 | 0 | 34 | 123 | Python | {
"docstring": "\n Return the objs in suitably sized batches for the used connection.\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 11,
"vocab_size": 10
} | def get_del_batches(self, objs, fields):
field_names = [field.name for field in fields]
conn_batch_size = max(
connections[self.using].ops.bulk_batch_size(field_names, objs), 1
)
if len(objs) > conn_batch_size:
return [
objs[i : i + conn_batch_size]
for i in range(0, len(objs), conn_batch_size)
]
else:
return [objs]
|
|
1,048 | 6,670 | 47 | ludwig/utils/checkpoint_utils.py | 12 | 11 | def save(self, global_step):
save_path = osp.join(s | Add file lock on training checkpoints to prevent race condition (#1938) | save | 44356d2d07370b7044640a068ace95842d5ce98c | ludwig | checkpoint_utils.py | 11 | 5 | https://github.com/ludwig-ai/ludwig.git | 1 | 42 | 0 | 10 | 75 | Python | {
"docstring": "Create a new checkpoint.\n\n Args:\n global_step (int): The iteration number which will be used\n to name the checkpoint.\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 18,
"vocab_size": 17
} | def save(self, global_step):
save_path = osp.join(self.directory, f"{global_step:09d}.ckpt")
self.checkpoint.save(save_path)
self.latest_checkpoint = save_path
self.queue.put(True)
|
|
47,301 | 195,586 | 156 | versioneer.py | 52 | 16 | def versions_from_file(filename):
try:
with open(filename) as f:
contents = f.read()
except OSError:
raise NotThisMethod("unable to read _version.py")
mo = re.search(r"version_json = # END | add auto tag | versions_from_file | f0194812568c83585ff09488fe7f67df300938cc | rembg | versioneer.py | 12 | 14 | https://github.com/danielgatis/rembg.git | 4 | 94 | 0 | 34 | 159 | Python | {
"docstring": "Try to determine the version from _version.py if present.\\n(.*)\\r\\n(.*)",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | def versions_from_file(filename):
try:
with open(filename) as f:
contents = f.read()
except OSError:
raise NotThisMethod("unable to read _version.py")
mo = re.search(r"version_json = # END VERSION_JSON",
contents, re.M | re.S)
if not mo:
mo = re.search(r"version_json = # END VERSION_JSON",
contents, re.M | re.S)
if not mo:
raise NotThisMethod("no version_json in _version.py")
return json.loads(mo.group(1))
|
|
13,724 | 64,798 | 3 | erpnext/accounts/doctype/bank_transaction/bank_transaction.py | 9 | 7 | def get_total_allocated_amount(payment_entry):
return frappe.db.sql(
,
(payment_entry.p | style: format code with black | get_total_allocated_amount | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | bank_transaction.py | 9 | 19 | https://github.com/frappe/erpnext.git | 1 | 29 | 0 | 9 | 44 | Python | {
"docstring": "\n\t\tSELECT\n\t\t\tSUM(btp.allocated_amount) as allocated_amount,\n\t\t\tbt.name\n\t\tFROM\n\t\t\t`tabBank Transaction Payments` as btp\n\t\tLEFT JOIN\n\t\t\t`tabBank Transaction` bt ON bt.name=btp.parent\n\t\tWHERE\n\t\t\tbtp.payment_document = %s\n\t\tAND\n\t\t\tbtp.payment_entry = %s\n\t\tAND\n\t\t\tbt.docstatus = 1",
"language": "en",
"n_whitespaces": 17,
"n_words": 30,
"vocab_size": 24
} | def get_total_allocated_amount(payment_entry):
return frappe.db.sql(
,
(payment_entry.payment_document, payment_entry.payment_entry),
as_dict=True,
)
|
|
@not_implemented_for("multigraph")
@not_implemented_for("directed") | 41,855 | 176,369 | 82 | networkx/algorithms/matching.py | 53 | 21 | def min_weight_matching(G, maxcardinality=False, weight="weight"):
if len(G.edges) == 0:
return max_weight_matching(G, maxcardinality, weight)
G_edges = G.edges(data=weight, default=1)
min_weight = min(w for _, _, w in G_edges)
InvG = nx.Graph()
edges = ((u, v, 1 / (1 + w - min_weight)) for u, v, w in G_edges)
InvG.add_weighted_edges_from(e | Update matching functions for error validation and speed (#4897)
* First steps to update matching functions for #4644
Expand tests
Change API to raise NetworkXError when matching involves nodes not in G
Update is_*_matching to 100+ times faster.
* improve matching_dict_to_set and docs for min_weight_matching
* fix sphinx error | min_weight_matching | 28b3014d68d2b4e40d3e02219770296a827bd55c | networkx | matching.py | 12 | 9 | https://github.com/networkx/networkx.git | 4 | 114 | 1 | 40 | 191 | Python | {
"docstring": "Computing a minimum-weight maximal matching of G.\n\n Use reciprocal edge weights with the maximum-weight algorithm.\n\n A matching is a subset of edges in which no node occurs more than once.\n The weight of a matching is the sum of the weights of its edges.\n A maximal matching cannot add more edges and still be a matching.\n The cardinality of a matching is the number of matched edges.\n\n This method replaces the weights with their reciprocal and\n then runs :func:`max_weight_matching`.\n Read the documentation of max_weight_matching for more information.\n\n Parameters\n ----------\n G : NetworkX graph\n Undirected graph\n\n maxcardinality: bool, optional (default=False)\n If maxcardinality is True, compute the maximum-cardinality matching\n with minimum weight among all maximum-cardinality matchings.\n\n weight: string, optional (default='weight')\n Edge data key corresponding to the edge weight.\n If key not found, uses 1 as weight.\n\n Returns\n -------\n matching : set\n A minimal weight matching of the graph.\n ",
"language": "en",
"n_whitespaces": 233,
"n_words": 146,
"vocab_size": 92
} | def min_weight_matching(G, maxcardinality=False, weight="weight"):
if len(G.edges) == 0:
return max_weight_matching(G, maxcardinality, weight)
G_edges = G.edges(data=weight, default=1)
min_weight = min(w for _, _, w in G_edges)
InvG = nx.Graph()
edges = ((u, v, 1 / (1 + w - min_weight)) for u, v, w in G_edges)
InvG.add_weighted_edges_from(edges, weight=weight)
return max_weight_matching(InvG, maxcardinality, weight)
@not_implemented_for("multigraph")
@not_implemented_for("directed") |
3,270 | 20,218 | 20 | pipenv/patched/notpip/_vendor/platformdirs/macos.py | 6 | 4 | def site_config_dir(self) -> str:
return self._append_app_name_and_version("/Libr | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | site_config_dir | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | macos.py | 8 | 3 | https://github.com/pypa/pipenv.git | 1 | 15 | 0 | 6 | 29 | Python | {
"docstring": ":return: config directory shared by the users, e.g. ``/Library/Preferences/$appname``",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | def site_config_dir(self) -> str:
return self._append_app_name_and_version("/Library/Preferences")
|
|
36,095 | 154,585 | 310 | modin/experimental/core/execution/native/implementations/hdk_on_native/expr.py | 99 | 18 | def _cmp_op(self, other, op_name):
lhs_dtype_class = self._get_dtype_cmp_class(self._dtype)
rhs_dtype_class = self._get_dtype_cmp_class(other._dtype)
res_dtype = get_dtype(bool)
# In HDK comparison with NULL always results in NULL,
# but in pandas it is True for 'ne' comparison and False
# for others.
# Also pandas allows 'eq' and 'ne' comparison for value | FEAT-#4946: Replace OmniSci with HDK (#4947)
Co-authored-by: Iaroslav Igoshev <Poolliver868@mail.ru>
Signed-off-by: Andrey Pavlenko <andrey.a.pavlenko@gmail.com> | _cmp_op | e5b1888cd932909e49194d58035da34b210b91c4 | modin | expr.py | 15 | 16 | https://github.com/modin-project/modin.git | 4 | 106 | 0 | 70 | 192 | Python | {
"docstring": "\n Build a comparison expression.\n\n Parameters\n ----------\n other : BaseExpr\n A value to compare with.\n op_name : str\n The comparison operation name.\n\n Returns\n -------\n BaseExpr\n The resulting comparison expression.\n ",
"language": "en",
"n_whitespaces": 125,
"n_words": 28,
"vocab_size": 22
} | def _cmp_op(self, other, op_name):
lhs_dtype_class = self._get_dtype_cmp_class(self._dtype)
rhs_dtype_class = self._get_dtype_cmp_class(other._dtype)
res_dtype = get_dtype(bool)
# In HDK comparison with NULL always results in NULL,
# but in pandas it is True for 'ne' comparison and False
# for others.
# Also pandas allows 'eq' and 'ne' comparison for values
# of incompatible types which doesn't work in HDK.
if lhs_dtype_class != rhs_dtype_class:
if op_name == "eq" or op_name == "ne":
return LiteralExpr(op_name == "ne")
else:
raise TypeError(
f"Invalid comparison between {self._dtype} and {other._dtype}"
)
else:
cmp = OpExpr(self.binary_operations[op_name], [self, other], res_dtype)
return build_if_then_else(
self.is_null(), LiteralExpr(op_name == "ne"), cmp, res_dtype
)
|
|
23,965 | 110,191 | 249 | lib/matplotlib/widgets.py | 47 | 27 | def set_active(self, index):
if index not in range(len(self.labels)):
raise ValueError(f'Invalid CheckButton index: {index}')
if colors.same_color(
self._ | Use scatter for check boxes instead of Rectangle
With the current implementation, the boxes get stretched into rectangles
if the aspect ratio is not maintained. To overcome this, the boxes are
now created using scatter instead to maintain their shapes. | set_active | 723cd86d7d7bdc14a4d3fc0e08c3a01e72d310b6 | matplotlib | widgets.py | 17 | 18 | https://github.com/matplotlib/matplotlib.git | 8 | 174 | 0 | 37 | 295 | Python | {
"docstring": "\n Toggle (activate or deactivate) a check button by index.\n\n Callbacks will be triggered if :attr:`eventson` is True.\n\n Parameters\n ----------\n index : int\n Index of the check button to toggle.\n\n Raises\n ------\n ValueError\n If *index* is invalid.\n ",
"language": "en",
"n_whitespaces": 122,
"n_words": 36,
"vocab_size": 33
} | def set_active(self, index):
if index not in range(len(self.labels)):
raise ValueError(f'Invalid CheckButton index: {index}')
if colors.same_color(
self._crosses.get_facecolor()[index], colors.to_rgba("none")
):
self._crosses.get_facecolor()[index] = colors.to_rgba("k")
else:
self._crosses.get_facecolor()[index] = colors.to_rgba("none")
if hasattr(self, "_rectangles"):
for i, p in enumerate(self._rectangles):
p.set_facecolor("k" if colors.same_color(
p.get_facecolor(), colors.to_rgba("none"))
else "none")
if self.drawon:
self.ax.figure.canvas.draw()
if self.eventson:
self._observers.process('clicked', self.labels[index].get_text())
|
|
103,215 | 304,408 | 75 | homeassistant/components/ebox/sensor.py | 17 | 8 | async def async_update(self) -> None:
await s | Improve entity type hints [e] (#77041) | async_update | 3a3f41f3df932368791d3ee3f5fbae5fb3b38bfe | core | sensor.py | 13 | 7 | https://github.com/home-assistant/core.git | 2 | 50 | 0 | 17 | 82 | Python | {
"docstring": "Get the latest data from EBox and update the state.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | async def async_update(self) -> None:
await self.ebox_data.async_update()
if self.entity_description.key in self.ebox_data.data:
self._attr_native_value = round(
self.ebox_data.data[self.entity_description.key], 2
)
|
|
70,312 | 244,297 | 474 | tools/analysis_tools/analyze_results.py | 102 | 49 | def panoptic_evaluate(self, dataset, results, topk=20):
# image to annotations
gt_json = dataset.coco.img_ann_map
result_files, tmp_dir = dataset.format_results(results)
pred_json = mmcv.load(result_files['panoptic'])['annotations']
pred_folder = osp.join(tmp_dir.name, 'panoptic')
gt_folder = dataset.seg_prefix
pqs = {}
prog_bar = mmcv.ProgressBar(len(results))
for i in range(len(results)):
data_info = dataset.prepare_train_img(i)
image_id = data_info['img_info']['id']
gt_ann = {
'image_id': image_id,
'segments_info': gt_json[image_id],
'file_name': data_info['img_info']['segm_file']
}
pred_ann = pred_json[i]
pq_stat = pq_compute_single_core(
i, [(gt_ann, pred_ann)],
gt_folder, | [Feature] Support panoptic segmentation result analysis (#7922)
* support analyze panoptic segmentation result
* fix lint
* update docstring
* update docstring
* set print_log=False by default
* update
* fix bug 8035 | panoptic_evaluate | f3a451abab8fc89810b317ca0a88ee9fd12cb0c2 | mmdetection | analyze_results.py | 13 | 34 | https://github.com/open-mmlab/mmdetection.git | 3 | 248 | 0 | 80 | 399 | Python | {
"docstring": "Evaluation for panoptic segmentation.\n\n Args:\n dataset (Dataset): A PyTorch dataset.\n results (list): Panoptic segmentation results from test\n results pkl file.\n topk (int): Number of the highest topk and\n lowest topk after evaluation index sorting. Default: 20.\n\n Returns:\n tuple: A tuple contains good samples and bad samples.\n good_pqs (dict[int, float]): A dict contains good\n samples's indices in dataset and model's\n performance on them.\n bad_pqs (dict[int, float]): A dict contains bad\n samples's indices in dataset and model's\n performance on them.\n ",
"language": "en",
"n_whitespaces": 279,
"n_words": 78,
"vocab_size": 52
} | def panoptic_evaluate(self, dataset, results, topk=20):
# image to annotations
gt_json = dataset.coco.img_ann_map
result_files, tmp_dir = dataset.format_results(results)
pred_json = mmcv.load(result_files['panoptic'])['annotations']
pred_folder = osp.join(tmp_dir.name, 'panoptic')
gt_folder = dataset.seg_prefix
pqs = {}
prog_bar = mmcv.ProgressBar(len(results))
for i in range(len(results)):
data_info = dataset.prepare_train_img(i)
image_id = data_info['img_info']['id']
gt_ann = {
'image_id': image_id,
'segments_info': gt_json[image_id],
'file_name': data_info['img_info']['segm_file']
}
pred_ann = pred_json[i]
pq_stat = pq_compute_single_core(
i, [(gt_ann, pred_ann)],
gt_folder,
pred_folder,
dataset.categories,
dataset.file_client,
print_log=False)
pq_results, classwise_results = pq_stat.pq_average(
dataset.categories, isthing=None)
pqs[i] = pq_results['pq']
prog_bar.update()
if tmp_dir is not None:
tmp_dir.cleanup()
# descending select topk image
pqs = list(sorted(pqs.items(), key=lambda kv: kv[1]))
good_pqs = pqs[-topk:]
bad_pqs = pqs[:topk]
return good_pqs, bad_pqs
|
|
76,702 | 261,234 | 298 | sklearn/feature_selection/_mutual_info.py | 113 | 37 | def _compute_mi_cd(c, d, n_neighbors):
n_samples = c.shape[0]
c = c.reshape((-1, 1))
radius = np.empty(n_samples)
label_counts = np.empty(n_samples)
k_all = np.empty(n_samples)
nn = NearestNeighbors()
for label in np.unique(d):
mask = d == label
count = np.sum(mask)
if count > 1:
k = min(n_neighbors, count - 1)
nn.set_params(n_neighbors=k)
nn.fit(c[mask])
r = nn.kneighbors()[0]
radius[mask] = np.nextafter(r[:, -1], 0)
k_all[mask] = k
label_counts[mask] = count
# Ignore points with un | CLN Remove unnecessary operation in mutual_info (#24569) | _compute_mi_cd | c22be1defcf3e59ebd79ed3e479ada8ea558f601 | scikit-learn | _mutual_info.py | 14 | 34 | https://github.com/scikit-learn/scikit-learn.git | 3 | 270 | 0 | 69 | 422 | Python | {
"docstring": "Compute mutual information between continuous and discrete variables.\n\n Parameters\n ----------\n c : ndarray, shape (n_samples,)\n Samples of a continuous random variable.\n\n d : ndarray, shape (n_samples,)\n Samples of a discrete random variable.\n\n n_neighbors : int\n Number of nearest neighbors to search for each point, see [1]_.\n\n Returns\n -------\n mi : float\n Estimated mutual information. If it turned out to be negative it is\n replace by 0.\n\n Notes\n -----\n True mutual information can't be negative. If its estimate by a numerical\n method is negative, it means (providing the method is adequate) that the\n mutual information is close to 0 and replacing it by 0 is a reasonable\n strategy.\n\n References\n ----------\n .. [1] B. C. Ross \"Mutual Information between Discrete and Continuous\n Data Sets\". PLoS ONE 9(2), 2014.\n ",
"language": "en",
"n_whitespaces": 221,
"n_words": 126,
"vocab_size": 85
} | def _compute_mi_cd(c, d, n_neighbors):
n_samples = c.shape[0]
c = c.reshape((-1, 1))
radius = np.empty(n_samples)
label_counts = np.empty(n_samples)
k_all = np.empty(n_samples)
nn = NearestNeighbors()
for label in np.unique(d):
mask = d == label
count = np.sum(mask)
if count > 1:
k = min(n_neighbors, count - 1)
nn.set_params(n_neighbors=k)
nn.fit(c[mask])
r = nn.kneighbors()[0]
radius[mask] = np.nextafter(r[:, -1], 0)
k_all[mask] = k
label_counts[mask] = count
# Ignore points with unique labels.
mask = label_counts > 1
n_samples = np.sum(mask)
label_counts = label_counts[mask]
k_all = k_all[mask]
c = c[mask]
radius = radius[mask]
kd = KDTree(c)
m_all = kd.query_radius(c, radius, count_only=True, return_distance=False)
m_all = np.array(m_all)
mi = (
digamma(n_samples)
+ np.mean(digamma(k_all))
- np.mean(digamma(label_counts))
- np.mean(digamma(m_all))
)
return max(0, mi)
|
|
50,251 | 203,216 | 47 | django/core/management/base.py | 15 | 5 | def handle_app_config(self, app_config, **options):
raise Not | Refs #33476 -- Refactored problematic code before reformatting by Black.
In these cases Black produces unexpected results, e.g.
def make_random_password(
self,
length=10,
allowed_chars='abcdefghjkmnpqrstuvwxyz' 'ABCDEFGHJKLMNPQRSTUVWXYZ' '23456789',
):
or
cursor.execute("""
SELECT ...
""",
[table name],
) | handle_app_config | c5cd8783825b5f6384417dac5f3889b4210b7d08 | django | base.py | 8 | 4 | https://github.com/django/django.git | 1 | 16 | 0 | 15 | 29 | Python | {
"docstring": "\n Perform the command's actions for app_config, an AppConfig instance\n corresponding to an application label given on the command line.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 19,
"vocab_size": 17
} | def handle_app_config(self, app_config, **options):
raise NotImplementedError(
"Subclasses of AppCommand must provide a handle_app_config() method."
)
|
|
@pytest.mark.parametrize(
"max_features",
[lambda X: 1, lambda X: X.shape[1], lambda X: min(X.shape[1], 10000)],
) | 75,720 | 259,339 | 70 | sklearn/feature_selection/tests/test_from_model.py | 38 | 23 | def test_inferred_max_features_integer(max_features):
clf = RandomForestClassifier(n_estimators=5, random_state=0)
transformer = SelectFromModel(
estimator=clf, max_features=max_features, threshold=-np.inf
)
X_trans = transformer.fit_transform(data, y)
assert transformer.max_features_ == max_features
assert X_trans.shape[1] == transformer.max_features_
@pytest.mark.paramet | ENH Allow `SelectFromModel`'s `max_features` to accept callables (#22356)
* Initial implementation
* Improved error handling and stability
* Added unit tests
* Updated test to use `max_features_` instead of `max_features`
* Added documentation for new private attribute `max_features_`
* Improved error handling for callables
* Updated whats_new
* Removed incorrect term reference to `max_features`
* Removed float case and improved testing
* Updated test names to more clearly reflect intention
* Added a sample callable in `max_features` description
* Improved documentation and streamlined error handling
* Updated example to include demonstrate using a callable for max_features
* Separated out callable demo into separate example
* Removed demo from `max_features` docs (now in example)
* Updated changelog
* Apply suggestions from code review
Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com>
* Trimmed unneeded comments
* Updated tests to reflect new error handling
* Removed new line at end of docstring
* Updated docstring
* Fixed example syntax error
* Fixed example syntax
* Apply suggestions from code review
Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com>
* Reverted irrelevant changes
* Update sklearn/feature_selection/_from_model.py
Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com>
* Fixed error message
* Improved test coverage
* Minor doc improvement -- added a list for `max_features` type
* Update sklearn/feature_selection/_from_model.py
Co-authored-by: Adrin Jalali <adrin.jalali@gmail.com>
* Improved input validation and added test for array-like
* Updated doc to use no longer use lambda function
* Fixed docstring list
* Added missing whitespace for list format in docstring
Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com>
Co-authored-by: Adrin Jalali <adrin.jalali@gmail.com> | test_inferred_max_features_integer | db24a30bd3b90a9d55e82e450631de96305744f7 | scikit-learn | test_from_model.py | 12 | 8 | https://github.com/scikit-learn/scikit-learn.git | 1 | 64 | 1 | 29 | 162 | Python | {
"docstring": "Check max_features_ and output shape for integer max_features.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | def test_inferred_max_features_integer(max_features):
clf = RandomForestClassifier(n_estimators=5, random_state=0)
transformer = SelectFromModel(
estimator=clf, max_features=max_features, threshold=-np.inf
)
X_trans = transformer.fit_transform(data, y)
assert transformer.max_features_ == max_features
assert X_trans.shape[1] == transformer.max_features_
@pytest.mark.parametrize(
"max_features",
[lambda X: 1, lambda X: X.shape[1], lambda X: min(X.shape[1], 10000)],
) |
42,228 | 177,016 | 40 | networkx/algorithms/tests/test_lowest_common_ancestors.py | 12 | 12 | def test_naive_all_pairs_lowest_common_ancestor3(self):
all_pairs = product(self.DG.nodes(), self.DG.nodes())
ans = naive_all_pairs_lca(self.DG, pairs=all_pairs)
self.assert_lca_dicts_same(dict(ans), self.gold)
| Naive lowest common ancestor implementation (#5736)
* Add naive lca methods
* Naive algorithm implementation for LCA
* Modify naive lca functions
* Correct parameters of nx.ancestors
* Update lowest_common_ancestors.py
* Parametrize tests
* Apply suggestions from code review
Co-authored-by: Dan Schult <dschult@colgate.edu>
* Yield instead of append
* Tests for naive lca
* Correct test cases for naive lca algorithms
* Apply suggestions from code review
Co-authored-by: Mridul Seth <mail@mriduls.com>
* Fix function name -when calling
* Make requested changes
* Inlining _get_a_lowest_common_ancestor
Co-authored-by: dtuncturk <dilaramemis@sabanciuniv.edu>
Co-authored-by: Dan Schult <dschult@colgate.edu>
Co-authored-by: Mridul Seth <mail@mriduls.com> | test_naive_all_pairs_lowest_common_ancestor3 | b2f91c34a23058dd70b41784af0d87890216026a | networkx | test_lowest_common_ancestors.py | 11 | 4 | https://github.com/networkx/networkx.git | 1 | 51 | 0 | 11 | 83 | Python | {
"docstring": "Produces the correct results when all pairs given as a generator.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | def test_naive_all_pairs_lowest_common_ancestor3(self):
all_pairs = product(self.DG.nodes(), self.DG.nodes())
ans = naive_all_pairs_lca(self.DG, pairs=all_pairs)
self.assert_lca_dicts_same(dict(ans), self.gold)
|
|
51,063 | 205,281 | 79 | django/db/migrations/autodetector.py | 22 | 8 | def _resolve_dependency(dependency):
if dependency[0] != "__setting__":
return dependen | Refs #33476 -- Reformatted code with Black. | _resolve_dependency | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | autodetector.py | 11 | 7 | https://github.com/django/django.git | 2 | 54 | 0 | 21 | 89 | Python | {
"docstring": "\n Return the resolved dependency and a boolean denoting whether or not\n it was swappable.\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 14,
"vocab_size": 14
} | def _resolve_dependency(dependency):
if dependency[0] != "__setting__":
return dependency, False
resolved_app_label, resolved_object_name = getattr(
settings, dependency[1]
).split(".")
return (resolved_app_label, resolved_object_name.lower()) + dependency[2:], True
|
|
@not_implemented_for("undirected")
@not_implemented_for("multigraph") | 42,203 | 176,975 | 54 | networkx/algorithms/lowest_common_ancestors.py | 23 | 11 | def lowest_common_ancestor(G, node1, node2, default=None):
ans = list(all_pairs_lowest_common_ancestor(G, pairs=[(node1, node2)]))
if ans:
assert len(ans) == 1
return ans[0][1]
else:
return default
@not_implemented_for("undirected")
@not_implemented_for("multigraph") | Add examples to lowest common ancestors algorithms (#5531)
* Add examples to lowest common ancestors documentation
* Fix output style of examples
* Fix output style of example
* Update pre-commit
* Update networkx/algorithms/lowest_common_ancestors.py
Co-authored-by: Ross Barnowski <rossbar@berkeley.edu>
* Update networkx/algorithms/lowest_common_ancestors.py
Co-authored-by: Ross Barnowski <rossbar@berkeley.edu>
* Indentation fix & pprint dictionary
* Update networkx/algorithms/lowest_common_ancestors.py
Co-authored-by: Ross Barnowski <rossbar@berkeley.edu>
* Update networkx/algorithms/lowest_common_ancestors.py
Co-authored-by: Ross Barnowski <rossbar@berkeley.edu>
* Update networkx/algorithms/lowest_common_ancestors.py
Co-authored-by: Ross Barnowski <rossbar@berkeley.edu>
* Move "import pprint" to the example
Co-authored-by: dtuncturk <dilaramemis@sabanciuniv.edu>
Co-authored-by: Ross Barnowski <rossbar@berkeley.edu> | lowest_common_ancestor | abaa68779ccb4cce8d1a5ecade622ab96d01edeb | networkx | lowest_common_ancestors.py | 13 | 7 | https://github.com/networkx/networkx.git | 2 | 55 | 1 | 22 | 105 | Python | {
"docstring": "Compute the lowest common ancestor of the given pair of nodes.\n\n Parameters\n ----------\n G : NetworkX directed graph\n\n node1, node2 : nodes in the graph.\n\n default : object\n Returned if no common ancestor between `node1` and `node2`\n\n Returns\n -------\n The lowest common ancestor of node1 and node2,\n or default if they have no common ancestors.\n\n Examples\n --------\n >>> G = nx.DiGraph([(0, 1), (0, 2), (2, 3), (2, 4), (1, 6), (4, 5)])\n >>> nx.lowest_common_ancestor(G, 3, 5)\n 2\n\n We can also set `default` argument as below. The value of default is returned\n if there are no common ancestors of given two nodes.\n\n >>> G = nx.DiGraph([(4, 5), (12, 13)])\n >>> nx.lowest_common_ancestor(G, 12, 5, default=\"No common ancestors!\")\n 'No common ancestors!'\n\n Notes\n -----\n Only defined on non-null directed acyclic graphs.\n Takes n log(n) time in the size of the graph.\n See `all_pairs_lowest_common_ancestor` when you have\n more than one pair of nodes of interest.\n\n See Also\n --------\n tree_all_pairs_lowest_common_ancestor\n all_pairs_lowest_common_ancestor\n ",
"language": "en",
"n_whitespaces": 252,
"n_words": 155,
"vocab_size": 107
} | def lowest_common_ancestor(G, node1, node2, default=None):
ans = list(all_pairs_lowest_common_ancestor(G, pairs=[(node1, node2)]))
if ans:
assert len(ans) == 1
return ans[0][1]
else:
return default
@not_implemented_for("undirected")
@not_implemented_for("multigraph") |
14,058 | 65,933 | 16 | erpnext/education/report/program_wise_fee_collection/program_wise_fee_collection.py | 33 | 16 | def get_data(filters=None):
data = []
conditions = get_filter_conditions(filters)
fee_details = frappe.db.sql(
% (conditions),
as_dict=1,
)
for entry in fee_details:
data.append(
{
"program": entry.program,
"fees_collected": entry.paid_amount,
"outstanding_amount": entry.outstanding_amount,
"grand_total": entry.grand_total,
}
)
return data
| style: format code with black | get_data | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | program_wise_fee_collection.py | 12 | 37 | https://github.com/frappe/erpnext.git | 2 | 74 | 0 | 29 | 121 | Python | {
"docstring": "\n\t\t\tSELECT\n\t\t\t\tFeesCollected.program,\n\t\t\t\tFeesCollected.paid_amount,\n\t\t\t\tFeesCollected.outstanding_amount,\n\t\t\t\tFeesCollected.grand_total\n\t\t\tFROM (\n\t\t\t\tSELECT\n\t\t\t\t\tsum(grand_total) - sum(outstanding_amount) AS paid_amount, program,\n\t\t\t\t\tsum(outstanding_amount) AS outstanding_amount,\n\t\t\t\t\tsum(grand_total) AS grand_total\n\t\t\t\tFROM `tabFees`\n\t\t\t\tWHERE\n\t\t\t\t\tdocstatus = 1 and\n\t\t\t\t\tprogram IS NOT NULL\n\t\t\t\t\t%s\n\t\t\t\tGROUP BY program\n\t\t\t) AS FeesCollected\n\t\t\tORDER BY FeesCollected.paid_amount DESC\n\t\t",
"language": "en",
"n_whitespaces": 24,
"n_words": 42,
"vocab_size": 33
} | def get_data(filters=None):
data = []
conditions = get_filter_conditions(filters)
fee_details = frappe.db.sql(
% (conditions),
as_dict=1,
)
for entry in fee_details:
data.append(
{
"program": entry.program,
"fees_collected": entry.paid_amount,
"outstanding_amount": entry.outstanding_amount,
"grand_total": entry.grand_total,
}
)
return data
|
|
4,271 | 22,227 | 84 | pipenv/vendor/requirementslib/models/dependencies.py | 46 | 15 | def get_dependencies_from_json(ireq):
if ireq.editable or not is_pinned_requirement(ireq):
return
# It is technically possible to parse extras out of the JSON API's
| Rename notpip to pip. Vendor in pip-22.2.1 and latest requirementslib and vistir. | get_dependencies_from_json | cd5a9683be69c86c8f3adcd13385a9bc5db198ec | pipenv | dependencies.py | 12 | 18 | https://github.com/pypa/pipenv.git | 6 | 101 | 0 | 40 | 96 | Python | {
"docstring": "Retrieves dependencies for the given install requirement from the json\n api.\n\n :param ireq: A single InstallRequirement\n :type ireq: :class:`~pipenv.patched.pip._internal.req.req_install.InstallRequirement`\n :return: A set of dependency lines for generating new InstallRequirements.\n :rtype: set(str) or None\n ",
"language": "en",
"n_whitespaces": 51,
"n_words": 33,
"vocab_size": 29
} | def get_dependencies_from_json(ireq):
if ireq.editable or not is_pinned_requirement(ireq):
return
# It is technically possible to parse extras out of the JSON API's
# requirement format, but it is such a chore let's just use the simple API.
if ireq.extras:
return
session = requests.session()
atexit.register(session.close)
version = str(ireq.req.specifier).lstrip("=")
|
|
40,716 | 171,745 | 58 | pandas/core/frame.py | 20 | 12 | def assign(self, **kwargs) -> DataFrame:
r
data = self.copy(deep=None)
for k, v in kwargs.items():
| ENH/TST: expand copy-on-write to assign() method (#50010) | assign | 36dcf519c67a8098572447f7d5a896740fc9c464 | pandas | frame.py | 10 | 66 | https://github.com/pandas-dev/pandas.git | 2 | 48 | 0 | 18 | 75 | Python | {
"docstring": "\n Assign new columns to a DataFrame.\n\n Returns a new object with all original columns in addition to new ones.\n Existing columns that are re-assigned will be overwritten.\n\n Parameters\n ----------\n **kwargs : dict of {str: callable or Series}\n The column names are keywords. If the values are\n callable, they are computed on the DataFrame and\n assigned to the new columns. The callable must not\n change input DataFrame (though pandas doesn't check it).\n If the values are not callable, (e.g. a Series, scalar, or array),\n they are simply assigned.\n\n Returns\n -------\n DataFrame\n A new DataFrame with the new columns in addition to\n all the existing columns.\n\n Notes\n -----\n Assigning multiple columns within the same ``assign`` is possible.\n Later items in '\\*\\*kwargs' may refer to newly created or modified\n columns in 'df'; items are computed and assigned into 'df' in order.\n\n Examples\n --------\n >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]},\n ... index=['Portland', 'Berkeley'])\n >>> df\n temp_c\n Portland 17.0\n Berkeley 25.0\n\n Where the value is a callable, evaluated on `df`:\n\n >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32)\n temp_c temp_f\n Portland 17.0 62.6\n Berkeley 25.0 77.0\n\n Alternatively, the same behavior can be achieved by directly\n referencing an existing Series or sequence:\n\n >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32)\n temp_c temp_f\n Portland 17.0 62.6\n Berkeley 25.0 77.0\n\n You can create multiple columns within the same assign where one\n of the columns depends on another one defined within the same assign:\n\n >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32,\n ... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9)\n temp_c temp_f temp_k\n Portland 17.0 62.6 290.15\n Berkeley 25.0 77.0 298.15\n ",
"language": "en",
"n_whitespaces": 761,
"n_words": 268,
"vocab_size": 146
} | def assign(self, **kwargs) -> DataFrame:
r
data = self.copy(deep=None)
for k, v in kwargs.items():
data[k] = com.apply_if_callable(v, data)
return data
|
|
70,305 | 244,278 | 368 | mmdet/models/dense_heads/solo_head.py | 40 | 14 | def resize_feats(self, feats):
out = []
for i in range(len(feats)):
if i == 0:
out.append(
F.interpolate(
feats[0],
size=feats[i + 1].shape[-2:],
mode='bilinear', | [Feature] Support SOLOv2 (#7441)
* solov2 init
* solov2 r18 lightweight
* add model docstrings and reformat the code
* add docstrings to model method
* add solov2 big model config and correct some errors in the docstring
* fix linting issues
* refactor code and configs
* rename variables according to the convention
* add and enhance solov2 logic
* add doc strings
* update solov2 config files
* fix norm_cfg in mask head
* minor fix
* update configs
Co-authored-by: BIGWangYuDong <yudongwang@tju.edu.cn> | resize_feats | d18cdb140ef3cb9ed5fdef6f1a815f5836f1b1ab | mmdetection | solo_head.py | 19 | 20 | https://github.com/open-mmlab/mmdetection.git | 4 | 127 | 0 | 29 | 198 | Python | {
"docstring": "Downsample the first feat and upsample last feat in feats.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | def resize_feats(self, feats):
out = []
for i in range(len(feats)):
if i == 0:
out.append(
F.interpolate(
feats[0],
size=feats[i + 1].shape[-2:],
mode='bilinear',
align_corners=False))
elif i == len(feats) - 1:
out.append(
F.interpolate(
feats[i],
size=feats[i - 1].shape[-2:],
mode='bilinear',
align_corners=False))
else:
out.append(feats[i])
return out
|
|
14,672 | 67,940 | 50 | erpnext/stock/report/stock_projected_qty/stock_projected_qty.py | 71 | 17 | def get_bin_list(filters):
conditions = []
if filters.item_code:
cond | style: format code with black | get_bin_list | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | stock_projected_qty.py | 16 | 24 | https://github.com/frappe/erpnext.git | 5 | 107 | 0 | 52 | 181 | Python | {
"docstring": "select item_code, warehouse, actual_qty, planned_qty, indented_qty,\n\t\tordered_qty, reserved_qty, reserved_qty_for_production, reserved_qty_for_sub_contract, projected_qty\n\t\tfrom tabBin bin {conditions} order by item_code, warehouse\n\t\t",
"language": "en",
"n_whitespaces": 16,
"n_words": 19,
"vocab_size": 18
} | def get_bin_list(filters):
conditions = []
if filters.item_code:
conditions.append("item_code = '%s' " % filters.item_code)
if filters.warehouse:
warehouse_details = frappe.db.get_value(
"Warehouse", filters.warehouse, ["lft", "rgt"], as_dict=1
)
if warehouse_details:
conditions.append(
" exists (select name from `tabWarehouse` wh \
where wh.lft >= %s and wh.rgt <= %s and bin.warehouse = wh.name)"
% (warehouse_details.lft, warehouse_details.rgt)
)
bin_list = frappe.db.sql(
.format(
conditions=" where " + " and ".join(conditions) if conditions else ""
),
as_dict=1,
)
return bin_list
|
|
80,828 | 271,613 | 373 | keras/engine/training.py | 113 | 9 | def run_eagerly(self):
if (
self.dynamic and self._run_eagerly is False
): # pylint:disable=g-bool-id-comparison
# TODO(fchollet): consider using py_func to enable this.
raise ValueError(
"Your model contains layers that can only be "
"successfully run in eager execution (layers "
"constructed with `dynamic=True`). "
"You cannot set `run_eagerly=False`."
)
if self._cluster_coordinator and self._run_eagerly:
raise ValueError(
"When using `Model` with `ParameterServerStrategy`, "
"`run_eagerly` is not | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | run_eagerly | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | training.py | 12 | 20 | https://github.com/keras-team/keras.git | 8 | 68 | 0 | 80 | 127 | Python | {
"docstring": "Settable attribute indicating whether the model should run eagerly.\n\n Running eagerly means that your model will be run step by step,\n like Python code. Your model might run slower, but it should become easier\n for you to debug it by stepping into individual layer calls.\n\n By default, we will attempt to compile your model to a static graph to\n deliver the best execution performance.\n\n Returns:\n Boolean, whether the model should run eagerly.\n ",
"language": "en",
"n_whitespaces": 130,
"n_words": 72,
"vocab_size": 52
} | def run_eagerly(self):
if (
self.dynamic and self._run_eagerly is False
): # pylint:disable=g-bool-id-comparison
# TODO(fchollet): consider using py_func to enable this.
raise ValueError(
"Your model contains layers that can only be "
"successfully run in eager execution (layers "
"constructed with `dynamic=True`). "
"You cannot set `run_eagerly=False`."
)
if self._cluster_coordinator and self._run_eagerly:
raise ValueError(
"When using `Model` with `ParameterServerStrategy`, "
"`run_eagerly` is not supported."
)
# Run eagerly logic, by priority:
# (1) Dynamic models must be run eagerly.
# (2) Explicitly setting run_eagerly causes a Model to be run eagerly.
# (3) Not explicitly setting run_eagerly defaults to TF's global setting.
return (
self.dynamic
or self._run_eagerly
or (tf.config.functions_run_eagerly() and self._run_eagerly is None)
)
|
|
16,882 | 79,164 | 24 | wagtail/models/__init__.py | 10 | 5 | def get_preview_context(self, request, *args, **kwargs):
return {"object": self, "request": request}
| Add docs for PreviewableMixin | get_preview_context | e864b9c4d12ad0edd38283c17c2935e950e73520 | wagtail | __init__.py | 8 | 2 | https://github.com/wagtail/wagtail.git | 1 | 24 | 0 | 10 | 41 | Python | {
"docstring": "\n Returns a context dictionary for use in templates for previewing this object.\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 11
} | def get_preview_context(self, request, *args, **kwargs):
return {"object": self, "request": request}
|
|
99,145 | 300,279 | 228 | tests/components/mobile_app/test_sensor.py | 61 | 21 | async def test_default_disabling_entity(hass, create_registrations, webhook_client):
webhook_id = create_registrations[1]["webhook_id"]
webhook_url = f"/api/webhook/{webhook_id}"
reg_resp = await webhook_client.post(
w | Allow mobile app to disable entities by default (#71562) | test_default_disabling_entity | 539ce7ff0e9d9bc59cd8f028f245c09f802c89cb | core | test_sensor.py | 15 | 25 | https://github.com/home-assistant/core.git | 1 | 129 | 0 | 45 | 230 | Python | {
"docstring": "Test that sensors can be disabled by default upon registration.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | async def test_default_disabling_entity(hass, create_registrations, webhook_client):
webhook_id = create_registrations[1]["webhook_id"]
webhook_url = f"/api/webhook/{webhook_id}"
reg_resp = await webhook_client.post(
webhook_url,
json={
"type": "register_sensor",
"data": {
"name": "Battery State",
"type": "sensor",
"unique_id": "battery_state",
"default_disabled": True,
},
},
)
assert reg_resp.status == HTTPStatus.CREATED
json = await reg_resp.json()
assert json == {"success": True}
await hass.async_block_till_done()
entity = hass.states.get("sensor.test_1_battery_state")
assert entity is None
assert (
er.async_get(hass).async_get("sensor.test_1_battery_state").disabled_by
== er.RegistryEntryDisabler.INTEGRATION
)
|
|
36,490 | 155,918 | 1,545 | dask/dataframe/io/parquet/arrow.py | 379 | 51 | def _create_dd_meta(cls, dataset_info):
# Collect necessary information from dataset_info
schema = dataset_info["schema"]
index = dataset_info["index"]
categories = dataset_info["categories"]
partition_obj = dataset_info["partitions"]
partitions = dataset_info["partition_names"]
physical_column_names = dataset_info.get("physical_schema", schema).names
columns = None
# Set index and column names using
# pandas metadata (when available)
pandas_metadata = _get_pandas_metadata(schema)
if pandas_metadata:
(
index_names,
column_names,
storage_name_mapping,
column_index_names,
) = _parse_pandas_metadata(pandas_metadata)
if categories is None:
categories = []
for col in pandas_metadata["columns"]:
if (col["pandas_type"] == "categorical") and (
col["name"] not in categories
):
categories.append(col["name"])
else:
# No pandas metadata implies no index, unless selected by the user
index_names = []
column_names = physical_column_names
storage_name_mapping = {k: k for k in column_names}
column_index_names = [None]
if index is None and index_names:
# Pandas metadata has provided the index name for us
index = index_names
# Ensure that there is no overlap between partition columns
# and explicit column storage
if partitions:
_partitions = [p for p in partitions if p not in physical_column_names]
if not _partitions:
partitions = []
dataset_info["partitions"] = None
dataset_info["partition_keys"] = {}
datas | Fix "physical" column bug in pyarrow-based read_parquet (#8775)
Starting with pyarrow-5.0, the `pyarrow.dataset` API can now be used to write parquet datasets. Using `pyarrow.dataset.write_dataset` to write partitioned data results in different "pandas metadata" than we get from a Dask-written dataset, because Dask will not include the partitioned column names in this metadata (since they are not "physical" columns), but pyarrow will. This exposed a bug in Dask, where we were conflating "pandas metadata" column names with "physical" column names. This PR adds a small fix to ensure that Dask will only bail on reading partitioned columns if/when the partitioned columns are really "physical" columns. | _create_dd_meta | 73acebb3a2066792dea39c78245a6e1a01b2b173 | dask | arrow.py | 19 | 81 | https://github.com/dask/dask.git | 27 | 504 | 0 | 196 | 823 | Python | {
"docstring": "Use parquet schema and hive-partition information\n (stored in dataset_info) to construct DataFrame metadata.\n\n This method is used by both arrow engines.\n ",
"language": "en",
"n_whitespaces": 42,
"n_words": 21,
"vocab_size": 21
} | def _create_dd_meta(cls, dataset_info):
# Collect necessary information from dataset_info
schema = dataset_info["schema"]
index = dataset_info["index"]
categories = dataset_info["categories"]
partition_obj = dataset_info["partitions"]
partitions = dataset_info["partition_names"]
physical_column_names = dataset_info.get("physical_schema", schema).names
columns = None
# Set index and column names using
# pandas metadata (when available)
pandas_metadata = _get_pandas_metadata(schema)
if pandas_metadata:
(
index_names,
column_names,
storage_name_mapping,
column_index_names,
) = _parse_pandas_metadata(pandas_metadata)
if categories is None:
categories = []
for col in pandas_metadata["columns"]:
if (col["pandas_type"] == "categorical") and (
col["name"] not in categories
):
categories.append(col["name"])
else:
# No pandas metadata implies no index, unless selected by the user
index_names = []
column_names = physical_column_names
storage_name_mapping = {k: k for k in column_names}
column_index_names = [None]
if index is None and index_names:
# Pandas metadata has provided the index name for us
index = index_names
# Ensure that there is no overlap between partition columns
# and explicit column storage
if partitions:
_partitions = [p for p in partitions if p not in physical_column_names]
if not _partitions:
partitions = []
dataset_info["partitions"] = None
dataset_info["partition_keys"] = {}
dataset_info["partition_names"] = partitions
elif len(_partitions) != len(partitions):
raise ValueError(
"No partition-columns should be written in the \n"
"file unless they are ALL written in the file.\n"
"physical columns: {} | partitions: {}".format(
physical_column_names, partitions
)
)
column_names, index_names = _normalize_index_columns(
columns, column_names + partitions, index, index_names
)
all_columns = index_names + column_names
# Check that categories are included in columns
if categories and not set(categories).intersection(all_columns):
raise ValueError(
"categories not in available columns.\n"
"categories: {} | columns: {}".format(categories, list(all_columns))
)
dtypes = _get_pyarrow_dtypes(schema, categories)
dtypes = {storage_name_mapping.get(k, k): v for k, v in dtypes.items()}
index_cols = index or ()
meta = _meta_from_dtypes(all_columns, dtypes, index_cols, column_index_names)
if categories:
# Make sure all categories are set to "unknown".
# Cannot include index names in the `cols` argument.
meta = clear_known_categories(
meta, cols=[c for c in categories if c not in meta.index.names]
)
if partition_obj:
for partition in partition_obj:
if isinstance(index, list) and partition.name == index[0]:
# Index from directory structure
meta.index = pd.CategoricalIndex(
[], categories=partition.keys, name=index[0]
)
elif partition.name == meta.index.name:
# Index created from a categorical column
meta.index = pd.CategoricalIndex(
[], categories=partition.keys, name=meta.index.name
)
elif partition.name in meta.columns:
meta[partition.name] = pd.Series(
pd.Categorical(categories=partition.keys, values=[]),
index=meta.index,
)
# Update `dataset_info` and return `meta`
dataset_info["index"] = index
dataset_info["index_cols"] = index_cols
dataset_info["categories"] = categories
return meta
|
|
9,392 | 48,185 | 243 | airflow/providers/google/cloud/transfers/postgres_to_gcs.py | 54 | 31 | def convert_type(self, value, schema_type, stringify_dict=True):
if isinstance(value, datetime.datetime):
iso_format_value = value.isoformat()
if value.tzinfo is None:
return iso_format_value
return pendulum.parse(iso_format_value).float_timestamp
if isinstance(val | Fix `PostgresToGCSOperator` does not allow nested JSON (#23063)
* Avoid double json.dumps for json data export in PostgresToGCSOperator.
* Fix CI | convert_type | 766726f2e3a282fcd2662f5dc6e9926dc38a6540 | airflow | postgres_to_gcs.py | 12 | 19 | https://github.com/apache/airflow.git | 8 | 149 | 0 | 35 | 231 | Python | {
"docstring": "\n Takes a value from Postgres, and converts it to a value that's safe for\n JSON/Google Cloud Storage/BigQuery.\n Timezone aware Datetime are converted to UTC seconds.\n Unaware Datetime, Date and Time are converted to ISO formatted strings.\n Decimals are converted to floats.\n\n :param value: Postgres column value.\n :param schema_type: BigQuery data type.\n :param stringify_dict: Specify whether to convert dict to string.\n ",
"language": "en",
"n_whitespaces": 124,
"n_words": 60,
"vocab_size": 46
} | def convert_type(self, value, schema_type, stringify_dict=True):
if isinstance(value, datetime.datetime):
iso_format_value = value.isoformat()
if value.tzinfo is None:
return iso_format_value
return pendulum.parse(iso_format_value).float_timestamp
if isinstance(value, datetime.date):
return value.isoformat()
if isinstance(value, datetime.time):
formatted_time = time.strptime(str(value), "%H:%M:%S")
time_delta = datetime.timedelta(
hours=formatted_time.tm_hour, minutes=formatted_time.tm_min, seconds=formatted_time.tm_sec
)
return str(time_delta)
if stringify_dict and isinstance(value, dict):
return json.dumps(value)
if isinstance(value, Decimal):
return float(value)
return value
|
|
81,820 | 276,990 | 49 | keras/utils/metrics_utils.py | 27 | 15 | def _filter_top_k(x, k):
_, top_k_idx = tf.math.top_k(x, k, sorted=False)
top_k_mask = tf.reduce_sum(
tf.one_ | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | _filter_top_k | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | metrics_utils.py | 13 | 6 | https://github.com/keras-team/keras.git | 1 | 72 | 0 | 24 | 110 | Python | {
"docstring": "Filters top-k values in the last dim of x and set the rest to NEG_INF.\n\n Used for computing top-k prediction values in dense labels (which has the same\n shape as predictions) for recall and precision top-k metrics.\n\n Args:\n x: tensor with any dimensions.\n k: the number of values to keep.\n\n Returns:\n tensor with same shape and dtype as x.\n ",
"language": "en",
"n_whitespaces": 89,
"n_words": 59,
"vocab_size": 41
} | def _filter_top_k(x, k):
_, top_k_idx = tf.math.top_k(x, k, sorted=False)
top_k_mask = tf.reduce_sum(
tf.one_hot(top_k_idx, tf.shape(x)[-1], axis=-1), axis=-2
)
return x * top_k_mask + NEG_INF * (1 - top_k_mask)
|
|
43,477 | 181,690 | 192 | tests/tpot_tests.py | 102 | 12 | def test_pick_two_individuals_eligible_for_crossover_bad():
ind1 = creator.Individual.from_string(
'BernoulliNB(input_matrix, BernoulliNB__alpha=1.0, BernoulliNB__fit_prior=True)',
tpot_obj._pset
)
ind2 = creator.Individual.from_string(
'BernoulliNB(input_matrix, BernoulliNB__alpha=1.0, BernoulliNB__fit_prior=True)',
tpot_obj._pset
)
ind3 = creator.Individual.from_string(
'GaussianNB(input_matrix)',
tpot_obj._pset
)
# Ind1 and ind2 are not a pair because they are the same, ind3 shares no primitive
pick1, pick2 = pick_two_individuals_eligible_for_crossover([ind1, ind2, ind3])
assert pick1 is None and pick2 is None
# You can | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | test_pick_two_individuals_eligible_for_crossover_bad | 388616b6247ca4ea8de4e2f340d6206aee523541 | tpot | tpot_tests.py | 9 | 19 | https://github.com/EpistasisLab/tpot.git | 4 | 104 | 0 | 48 | 171 | Python | {
"docstring": "Assert that pick_two_individuals_eligible_for_crossover() returns the right output when no pair is eligible",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 12
} | def test_pick_two_individuals_eligible_for_crossover_bad():
ind1 = creator.Individual.from_string(
'BernoulliNB(input_matrix, BernoulliNB__alpha=1.0, BernoulliNB__fit_prior=True)',
tpot_obj._pset
)
ind2 = creator.Individual.from_string(
'BernoulliNB(input_matrix, BernoulliNB__alpha=1.0, BernoulliNB__fit_prior=True)',
tpot_obj._pset
)
ind3 = creator.Individual.from_string(
'GaussianNB(input_matrix)',
tpot_obj._pset
)
# Ind1 and ind2 are not a pair because they are the same, ind3 shares no primitive
pick1, pick2 = pick_two_individuals_eligible_for_crossover([ind1, ind2, ind3])
assert pick1 is None and pick2 is None
# You can not do crossover with a population of only 1.
pick1, pick2 = pick_two_individuals_eligible_for_crossover([ind1])
assert pick1 is None and pick2 is None
# You can not do crossover with a population of 0.
pick1, pick2 = pick_two_individuals_eligible_for_crossover([])
assert pick1 is None and pick2 is None
|
|
52,808 | 209,826 | 77 | scapy/arch/windows/__init__.py | 26 | 9 | def get_ips(v6=False):
# type: (bool) -> Dict[NetworkInterface, List[ | [Hinty] Core typing: windows (#3684)
* Core typing: windows
Co-authored-by: Pierre <pierre@droids-corp.org> | get_ips | a2b7a28faff1db058dd22ce097a268e0ad5d1d33 | scapy | __init__.py | 13 | 8 | https://github.com/secdev/scapy.git | 3 | 53 | 0 | 22 | 86 | Python | {
"docstring": "Returns all available IPs matching to interfaces, using the windows system.\n Should only be used as a WinPcapy fallback.\n\n :param v6: IPv6 addresses\n ",
"language": "en",
"n_whitespaces": 32,
"n_words": 23,
"vocab_size": 23
} | def get_ips(v6=False):
# type: (bool) -> Dict[NetworkInterface, List[str]]
res = {}
for iface in six.itervalues(conf.ifaces):
if v6:
res[iface] = iface.ips[6]
else:
res[iface] = iface.ips[4]
return res
|
|
6,898 | 38,013 | 31 | src/transformers/models/opt/modeling_opt.py | 16 | 9 | def _set_gradient_checkpointing(self, module, value=False):
| Add OPT (#17088)
* First version - OPT model
* Final changes
- putting use cache to False
* few changes
- remove commented block
* few changes
- remove unecessary files
* fix style issues
* few changes
- remove a test file
- added the logits test
* Update src/transformers/models/auto/tokenization_auto.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add gen tests
* few changes
- rm mask filling example on docstring
* few changes
- remove useless args
* some changes
- more tests should pass now
- needs to clean more
- documentation still needs to be done
* fix code quality
* major changes
- change attention architecture to BART-like
- modify some tests
- style fix
* rm useless classes
- remove opt for:
- QA
- cond generation
- seq classif
* Removed autodoc calls to non-existant classes
TOkenizers are not implemented
* Update src/transformers/__init__.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/__init__.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/auto/modeling_tf_auto.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Replaced OPTTokeniser with GPT2 tokenizer
* added GPT2Tokenizer.from_pretrained("patrickvonplaten/opt_gpt2_tokenizer")
* Removed OPTTokenizer
* make style
* Make style replaces
``` ...).unsqueeze(```
by
``` >>>).unsqueeze(```
* make repo consistency
* Removed PretrainedOPTModel
* fix opt.mdx removed other heads
* fix init, removed 3 heads
* removed heads
* finished cleaning head
* removed seauence classif and question answering
* removed unused imports
* removed useless dummy object for QA, SC and CG
* removed tests for removed useless dummy object for QA, SC and CG
* Removed head_mask using encoder layers which don't exist
* fixed test
* fix line
* added OPT to toctree
* Updated model path with pushed weigths
* fix model path
* fixed code quality
* fixed embeddings and generation tests
* update paths
* clean comments
* removed OPTClassificationHead for sentence classification
* renamed hidden layer
* renamed num layers to standard num_hidden_layers
* num_attention_heads fix
* changes for 125m
* add first version for 125m
* add first version - flax
* add new version
* causal LM output
* replace output type with BaseModelOutputWithPastAndCrossAttentions
* revert working config from 150m to 350m
* clean
* removed decoder input ids
* fixed embed dim
* more embed_dim issues
* make style + removed enc_dec test
* update falx model
* removed troublesome copy
* added is_encoder_decoder=False to config
* added set_input emb fuinction to model class
* requires torch on embed test
* use head mask instead of decoder head mask input param solves a test
* 8 test remaining, update
* Updated create_and_check_decoder_model_past_large_inputs
* Make style
* update op tokenizer with condition
* make style
* See if I can push
* some clean up
* remove linear head hack
* save intermediate
* save correct attention
* add copied from from bart
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix part of the reviewss
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* same changes in naming / conversion
* correct mask
* more fixes
* delete FlaxOPT and TfOPT
* clean traces of Flax and Tf
* fix mask
* fixed positionnal embedding length when past key value is provoded
* get 125m, 6.7b to work
* Added do_layer_norm
* solved mismatch in load dictionnary
* clean up preapre opt input dict
* fixed past key value as bool
* fix previus
* fixed return dict False tuple issue
* All tests are passing
* Make style
* Ignore OPTDecoder non tested
* make fix-copies
* make repo consistency
* small fix
* removed uselss @torch.no_grad decorator
* make styl;e
* fix previous opt test
* style
* make style
* added opt documentation
* update OPT_PRETRAINED_MODEL_ARCHIVE_LIST
* up
* more fixes
* model & config work
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* added comment on padding hack (+2)
* cleaup
* review update
* docstring for missing arg
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/transformers/models/opt/__init__.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* update pretrained map
* update path and tests
* make style
* styling
* make consistency
* add gpt2 tok new
* more tok fixes
* Update src/transformers/models/auto/tokenization_auto.py
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/en/model_doc/opt.mdx
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update tests/models/opt/test_modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/opt/modeling_opt.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update based on reviews
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* make style
* make tokenizer auto tests pass
* apply Lysandre suggestion
* finish tests
* add some good tokenizer tests
* improve docs slighly
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co> | _set_gradient_checkpointing | b971c769e80fe85fb7dd35c7cf65f3ac97ea6421 | transformers | modeling_opt.py | 9 | 3 | https://github.com/huggingface/transformers.git | 2 | 26 | 0 | 13 | 53 | Python | {
"docstring": "\n Generation example:\n\n ```python\n >>> from transformers import AutoTokenizer, AutoModelForCausalLM\n\n >>> model = OPTForCausalLM.from_pretrained(\"ArthurZ/opt-350m\")\n >>> tokenizer = GPT2Tokenizer.from_pretrained(\"patrickvonplaten/opt_gpt2_tokenizer\")\n\n >>> TEXTS_TO_GENERATE = \"Hey, are you consciours? Can you talk to me?\" \"Hi there, my name is Barack\"\n >>> inputs = tokenizer([TEXTS_TO_GENERATE], max_length=1024, return_tensors=\"pt\")\n\n >>> # Generate\n >>> generate_ids = model.generate(inputs[\"input_ids\"], num_beams=2, min_length=0, max_length=20)\n >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]\n 'I'm not conscious.<\\s>'\n ```\n\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide\n it.\n\n Indices can be obtained using [`GPT2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):\n Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:\n\n - 1 for tokens that are **not masked**,\n - 0 for tokens that are **masked**.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Indices can be obtained using [`OPTTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see\n `past_key_values`).\n\n If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_inputs`] and modify\n to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the\n default strategy.\n head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):\n Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:\n\n - 1 indicates the head is **not masked**,\n - 0 indicates the head is **masked**.\n\n past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):\n Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape\n `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape\n `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.\n\n Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention\n blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.\n\n If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that\n don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all\n `decoder_input_ids` of shape `(batch_size, sequence_length)`.\n inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):\n Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This\n is useful if you want more control over how to convert `input_ids` indices into associated vectors than the\n model's internal embedding lookup matrix.\n use_cache (`bool`, *optional*):\n If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see\n `past_key_values`).\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned\n tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n",
"language": "en",
"n_whitespaces": 979,
"n_words": 470,
"vocab_size": 244
} | def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (OPTDecoder)):
module.gradient_checkpointing = value
OPT_GENERATION_EXAMPLE = r
OPT_INPUTS_DOCSTRING = r
|
|
120,959 | 337,105 | 78 | examples/text_to_image/train_text_to_image.py | 29 | 7 | def to(self, device=None, dtype=None) -> None:
r
# .to() on the ten | [train_text2image] Fix EMA and make it compatible with deepspeed. (#813)
* fix ema
* style
* add comment about copy
* style
* quality | to | 008b608f1551dbcf521284ed0e7a6722cd02ef07 | diffusers | train_text_to_image.py | 11 | 10 | https://github.com/huggingface/diffusers.git | 3 | 56 | 0 | 28 | 85 | Python | {
"docstring": "Move internal buffers of the ExponentialMovingAverage to `device`.\n\n Args:\n device: like `device` argument to `torch.Tensor.to`\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 15,
"vocab_size": 14
} | def to(self, device=None, dtype=None) -> None:
r
# .to() on the tensors handles None correctly
self.shadow_params = [
p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device)
for p in self.shadow_params
]
|
|
85,240 | 285,200 | 28 | openbb_terminal/econometrics/econometrics_model.py | 16 | 11 | def get_granger_causality(dependent_series, independent_series, lags):
granger_set = pd.concat([dependent_series, independent_series], axis=1)
granger = grangercausalitytests(granger_set, [lags], verbose=False)
return granger
| Here we merge all API Refactor related branches (#2236)
* Update api.py
* Updated forex menu
* refactor ycrv command
* refactor ycrv command black
* refactor ecocal command
* Minh changes
* Adding space to test pushing
* title fix ecocal df
* get economic calendar annotation
* fix investingcom tests
* refactor index command
* refactor overview command
* give defaults to wsj view function args
* rename date args investincom
* refacto bigmac command
* fix ecocal typo
* refactor rtps command
* alphavantage gdp
* alphavantage gdp per capita
* alphavantage cpi
* alphavantage tyld
* alphavantage inf
* refactor macro command
* refactor macro command w helpers
* refactor treasury command
* fix macro on terminal
* treasury labels
* refactor maturities
* update treasury maturities doc strings
* refactor get economic calendar finhub
* refactor map command api
* display map filter choices
* route economy api to performance map
* route economy api to performance map
* display group choices on valuation command
* refactor performance and valuation commands
* refactor spectrum model and view
* add choices to spectrum controller
* delete image after view
* fix model tests finviz
* fix finciz view tests
* refactor futures
* fix some tests
* fix more tests
* fix controller test
* refactor fred series notes
* update fred notes docstring
* refacto fred series ids
* fix pred and qa when empty datasets
* refactor fred
* uncomment stuff
* refacto get series data
* fix some tests
* set defaults on args
* refactor fred yield curve
* black
* fix spell and remove ecocal names
* fix linting
* linting
* pylint fix
* change dangerous defaults
* Working through crypto fixes (#2256)
* Working through crypto fixes
* Continued adding crypto stuff
* Added crypto overview
* Added test fixes
* Added fixtures
* Fixed tests
* Fixed charting issue
* Removed broken APIs
* Final adjustments
* Added test fixes
* map get groups and get ycrv countries into old api
* exposed econdb helper funcs
* remove helpers
* refactor search indices
* linting
* refactor arg currency
* pylint from currency
* Started switching crpyto ascending to ascend
* Merging
* Portfolio model arguements, params, and docstring
* Refactored for etf commands (#2292)
* Refactored for etf commands
* Fixed tests
* Added load command
* Fixed menu
* Portfolio logic fixes
* Added econometrics (#2260)
* Added econometrics
* Fixed tests
* Simplified API
* Added test fixes
* Added test csv
* Allowed examples to be loaded
* Fund refactor (#2291)
* Fund refactor
* Changed fund_name and fund to name
* Changed ascending to ascend
* Stock menu refactoring for easier API usage (#2194)
* Stocks refactoring for easier API usage
* Linting
* Refactor newly added features
* Linting
* Fixing tests
* Refactor common files used by stocks menu
* Fixing flake8
* Fix linting and tests
* Linting
* Fix flake8
* refactor insider_data
* refactor mentions
* refactor watchlist
* refactor sentiment
* refactor sentiment
* fix yahoofinance tests
* refactor load and candle
* refactor get_news and display_news
* refactor stocks.ins.act
* candle default matplotlib
* fix yahoofinance_view tests
* fix ark model tests
* fix ark view tests
* fix business insider model
* fix business insider view
* refactor csimarket model
* fix tests csi market model
* update dd controller
* fix get suppliers tests
* fix dd controller tests
* fix finhub tests
* fix finviz tests
* fix fmp tests
* fix marketwatch tests
* corrected argument keywords in test_bt_model
* corrected argument keywords in test_bt_view
* refactor fa controller
* refactor marketwatch view
* refactor gov controller
* fix tests fa av
* fix tests elect
* fix dcf tests
* fix polygon tests
* fix fmp tests
* fix quiverquant tests
* fix yahoofinance fa tests
* fix more fa tests
* fix insider tests
* fix more tests
* fix more tests
* fix options tests
* fix stock gov tests
* fix tests test_ba_controller
* fix tests for test_finviz_compare_model.py
* fixed 2 tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* fix final tests
* fixed tests
* fixed tests
* Fix tests
* black
* forgot to black tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* flakefix
* Tests + code : Stocks / Discovery
* fix tests
* added recorder
* fixed tests
* fixed tests
* black
* black
* remove unused imports
* refactor display raw
* sia dicts fix
* pylint
* linting
* remove dangerous default
* fix tests
* fix beta model test
* black
* skip screener qa test
* change sector path to sectors
* update tests readme
* fix metric defaults
* black
* substitute lost ticker
* defaults cpic
* another round on sia
* refactor cramer
* reduce default tweets on sentiment
* refactor yf hist, corr, volume
* arkorders default
* refactor income, balance, cashflow
* refacto scorr, screener, getfinnhub
* refactor stockgrid
* ibkr refactor
* another round on stockgrid
* add dividens end point
* refactor discovery endpoints
* update docstrings with similar input
* refactor messages
* refactor ba
* refactor regioons
* refactor twitter sentiment
* refactor hist
* refactor regions
* give default to timeframe
* refactor bunch of defaults and arg names
* remove leftover imports
* refactor vwap
* let tests run
* fix tests
* fix stock tests
* fix stockanalysis tests
* flake
* MYPY
* Made important changes
* added fixes
* Fixed big issue
* Added fixes to tests
* fix qa tests
* fix tests
* fix 1 more test
* last stocks failing
* fix crypto test
Co-authored-by: Chavithra PARANA <chavithra@gmail.com>
Co-authored-by: montezdesousa <montezdesousa@gmail.com>
Co-authored-by: hjoaquim <h.joaquim@campus.fct.unl.pt>
Co-authored-by: montezdesousa <79287829+montezdesousa@users.noreply.github.com>
Co-authored-by: colin99d <colin99delahunty@gmail.com>
* fix portfolio tests
* change period to window
* update ca docstrings
* refactor get_similar_companies func
* Fixed
* Update CI
* Update CI 2
* Update CI 3
* Update dependencies
Co-authored-by: colin99d <colin99delahunty@gmail.com>
Co-authored-by: Colin Delahunty <72827203+colin99d@users.noreply.github.com>
Co-authored-by: montezdesousa <montezdesousa@gmail.com>
Co-authored-by: James Simmons <simmonsj330@gmail.com>
Co-authored-by: Theodore Aptekarev <aptekarev@gmail.com>
Co-authored-by: minhhoang1023 <40023817+minhhoang1023@users.noreply.github.com>
Co-authored-by: jose-donato <43375532+jose-donato@users.noreply.github.com>
Co-authored-by: montezdesousa <79287829+montezdesousa@users.noreply.github.com>
Co-authored-by: northern-64bit <75195383+northern-64bit@users.noreply.github.com>
Co-authored-by: hjoaquim <h.joaquim@campus.fct.unl.pt> | get_granger_causality | 9e1a58e2dbedec4e4a9f9c2e32ddf091776c606b | OpenBBTerminal | econometrics_model.py | 9 | 4 | https://github.com/OpenBB-finance/OpenBBTerminal.git | 1 | 42 | 0 | 14 | 63 | Python | {
"docstring": "Calculate granger tests\n\n Parameters\n ----------\n dependent_series: Series\n The series you want to test Granger Causality for.\n independent_series: Series\n The series that you want to test whether it Granger-causes time_series_y\n lags : int\n The amount of lags for the Granger test. By default, this is set to 3.\n ",
"language": "en",
"n_whitespaces": 86,
"n_words": 47,
"vocab_size": 36
} | def get_granger_causality(dependent_series, independent_series, lags):
granger_set = pd.concat([dependent_series, independent_series], axis=1)
granger = grangercausalitytests(granger_set, [lags], verbose=False)
return granger
|
|
51,592 | 206,624 | 91 | django/utils/decorators.py | 47 | 4 | def _multi_decorate(decorators, method):
if hasattr(decorators, "__iter__") | Refs #33476 -- Reformatted code with Black. | _multi_decorate | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | decorators.py | 11 | 10 | https://github.com/django/django.git | 3 | 52 | 0 | 35 | 58 | Python | {
"docstring": "\n Decorate `method` with one or more function decorators. `decorators` can be\n a single decorator or an iterable of decorators.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 19,
"vocab_size": 17
} | def _multi_decorate(decorators, method):
if hasattr(decorators, "__iter__"):
# Apply a list/tuple of decorators if 'decorators' is one. Decorator
# functions are applied so that the call order is the same as the
# order in which they appear in the iterable.
decorators = decorators[::-1]
else:
decorators = [decorators]
|
|
4,536 | 23,192 | 716 | ppocr/data/imaug/fce_targets.py | 191 | 49 | def generate_level_targets(self, img_size, text_polys, ignore_polys):
h, w = img_size
lv_size_divs = self.level_size_divisors
lv_proportion_range = self.level_proportion_range
lv_text_polys = [[] for i in range(len(lv_size_divs))]
lv_ignore_polys = [[] for i in | add fcenet | generate_level_targets | 9f62b610dea6161627200ed85d92e19b1923279a | PaddleOCR | fce_targets.py | 15 | 39 | https://github.com/PaddlePaddle/PaddleOCR.git | 10 | 384 | 0 | 96 | 586 | Python | {
"docstring": "Generate ground truth target on each level.\n\n Args:\n img_size (list[int]): Shape of input image.\n text_polys (list[list[ndarray]]): A list of ground truth polygons.\n ignore_polys (list[list[ndarray]]): A list of ignored polygons.\n Returns:\n level_maps (list(ndarray)): A list of ground target on each level.\n ",
"language": "en",
"n_whitespaces": 105,
"n_words": 40,
"vocab_size": 24
} | def generate_level_targets(self, img_size, text_polys, ignore_polys):
h, w = img_size
lv_size_divs = self.level_size_divisors
lv_proportion_range = self.level_proportion_range
lv_text_polys = [[] for i in range(len(lv_size_divs))]
lv_ignore_polys = [[] for i in range(len(lv_size_divs))]
level_maps = []
for poly in text_polys:
# assert len(poly) == 1
# text_instance = [[poly[i], poly[i + 1]]
# for i in range(0, len(poly), 2)]
polygon = np.array(poly, dtype=np.int).reshape((1, -1, 2))
_, _, box_w, box_h = cv2.boundingRect(polygon)
proportion = max(box_h, box_w) / (h + 1e-8)
for ind, proportion_range in enumerate(lv_proportion_range):
if proportion_range[0] < proportion < proportion_range[1]:
lv_text_polys[ind].append(poly / lv_size_divs[ind])
for ignore_poly in ignore_polys:
# assert len(ignore_poly) == 1
# text_instance = [[ignore_poly[i], ignore_poly[i + 1]]
# for i in range(0, len(ignore_poly), 2)]
polygon = np.array(ignore_poly, dtype=np.int).reshape((1, -1, 2))
_, _, box_w, box_h = cv2.boundingRect(polygon)
proportion = max(box_h, box_w) / (h + 1e-8)
for ind, proportion_range in enumerate(lv_proportion_range):
if proportion_range[0] < proportion < proportion_range[1]:
lv_ignore_polys[ind].append(ignore_poly / lv_size_divs[ind])
for ind, size_divisor in enumerate(lv_size_divs):
current_level_maps = []
level_img_size = (h // size_divisor, w // size_divisor)
text_region = self.generate_text_region_mask(
level_img_size, lv_text_polys[ind])[None]
current_level_maps.append(text_region)
center_region = self.generate_center_region_mask(
level_img_size, lv_text_polys[ind])[None]
current_level_maps.append(center_region)
effective_mask = self.generate_effective_mask(
level_img_size, lv_ignore_polys[ind])[None]
current_level_maps.append(effective_mask)
fourier_real_map, fourier_image_maps = self.generate_fourier_maps(
level_img_size, lv_text_polys[ind])
current_level_maps.append(fourier_real_map)
current_level_maps.append(fourier_image_maps)
level_maps.append(np.concatenate(current_level_maps))
return level_maps
|
|
14,684 | 67,961 | 12 | erpnext/stock/stock_balance.py | 18 | 8 | def get_reserved_qty(item_code, warehouse):
reserved_qty = frappe.db.sql(
,
(item_code, warehouse, item_code, warehouse),
)
return flt( | style: format code with black | get_reserved_qty | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | stock_balance.py | 10 | 46 | https://github.com/frappe/erpnext.git | 2 | 43 | 0 | 17 | 62 | Python | {
"docstring": "\n\t\tselect\n\t\t\tsum(dnpi_qty * ((so_item_qty - so_item_delivered_qty) / so_item_qty))\n\t\tfrom\n\t\t\t(\n\t\t\t\t(select\n\t\t\t\t\tqty as dnpi_qty,\n\t\t\t\t\t(\n\t\t\t\t\t\tselect qty from `tabSales Order Item`\n\t\t\t\t\t\twhere name = dnpi.parent_detail_docname\n\t\t\t\t\t\tand (delivered_by_supplier is null or delivered_by_supplier = 0)\n\t\t\t\t\t) as so_item_qty,\n\t\t\t\t\t(\n\t\t\t\t\t\tselect delivered_qty from `tabSales Order Item`\n\t\t\t\t\t\twhere name = dnpi.parent_detail_docname\n\t\t\t\t\t\tand delivered_by_supplier = 0\n\t\t\t\t\t) as so_item_delivered_qty,\n\t\t\t\t\tparent, name\n\t\t\t\tfrom\n\t\t\t\t(\n\t\t\t\t\tselect qty, parent_detail_docname, parent, name\n\t\t\t\t\tfrom `tabPacked Item` dnpi_in\n\t\t\t\t\twhere item_code = %s and warehouse = %s\n\t\t\t\t\tand parenttype=\"Sales Order\"\n\t\t\t\t\tand item_code != parent_item\n\t\t\t\t\tand exists (select * from `tabSales Order` so\n\t\t\t\t\twhere name = dnpi_in.parent and docstatus = 1 and status != 'Closed')\n\t\t\t\t) dnpi)\n\t\t\tunion\n\t\t\t\t(select stock_qty as dnpi_qty, qty as so_item_qty,\n\t\t\t\t\tdelivered_qty as so_item_delivered_qty, parent, name\n\t\t\t\tfrom `tabSales Order Item` so_item\n\t\t\t\twhere item_code = %s and warehouse = %s\n\t\t\t\tand (so_item.delivered_by_supplier is null or so_item.delivered_by_supplier = 0)\n\t\t\t\tand exists(select * from `tabSales Order` so\n\t\t\t\t\twhere so.name = so_item.parent and so.docstatus = 1\n\t\t\t\t\tand so.status != 'Closed'))\n\t\t\t) tab\n\t\twhere\n\t\t\tso_item_qty >= so_item_delivered_qty\n\t",
"language": "en",
"n_whitespaces": 124,
"n_words": 163,
"vocab_size": 69
} | def get_reserved_qty(item_code, warehouse):
reserved_qty = frappe.db.sql(
,
(item_code, warehouse, item_code, warehouse),
)
return flt(reserved_qty[0][0]) if reserved_qty else 0
|
|
23,229 | 108,518 | 21 | lib/matplotlib/pyplot.py | 15 | 2 | def cool():
set_cmap('cool | Cleanup documentation generation for pyplot
- remove the awkward `pyplot.plotting()` function, which only served
as a namespace to take up the docs for pyplot and output them via
`.. autofunction`
- Instead generate the same information using `.. autosummary::`. We
have to list the desired methods here explicitly. I've added a test
that these are the same as previously auto-generated in the
`plotting()` docstring. If we change anything in pyplot, we'll be
notified through the test failure that we have to adapt the
autosummary list.
- Removed the docstring generation logic
`_setup_pyplot_info_docstrings()`. Apart from generating the
`plotting()` docstring, this added docstrings to the pyplot colormap
setters. Instead, we now add these docstrings directly via
boilerplate.py
Co-authored-by: Elliott Sales de Andrade <quantum.analyst@gmail.com> | cool | 032316bc6c7798fca6c82de24167c975f237687f | matplotlib | pyplot.py | 8 | 2 | https://github.com/matplotlib/matplotlib.git | 1 | 9 | 0 | 15 | 22 | Python | {
"docstring": "\n Set the colormap to 'cool'.\n\n This changes the default colormap as well as the colormap of the current\n image if there is one. See ``help(colormaps)`` for more information.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 28,
"vocab_size": 22
} | def cool():
set_cmap('cool')
# Autogenerated by boilerplate.py. Do not edit as changes will be lost. |
|
52,627 | 209,158 | 32 | scapy/packet.py | 11 | 3 | def add_parent(self, parent):
| Add parent field to Packet (#3607)
Co-authored-by: Sergey Matsievskiy <matsievskiy@fastwel.ru> | add_parent | 6d7184e8bec5102dfa66bcc10432a30a7e0dcf3a | scapy | packet.py | 7 | 2 | https://github.com/secdev/scapy.git | 1 | 13 | 0 | 11 | 24 | Python | {
"docstring": "Set packet parent.\n When packet is an element in PacketListField, parent field would\n point to the list owner packet.",
"language": "en",
"n_whitespaces": 32,
"n_words": 19,
"vocab_size": 18
} | def add_parent(self, parent):
# type: (Packet) -> None
self.parent = parent
|
|
52,377 | 208,534 | 35 | IPython/testing/tools.py | 9 | 7 | def make_tempfile(name):
open(name, 'w', encoding='utf-8 | Fix EncodingWarning on Python 3.10 | make_tempfile | 23276ac4770f380ce1d5808950dd412a35594af1 | ipython | tools.py | 11 | 6 | https://github.com/ipython/ipython.git | 2 | 31 | 0 | 9 | 59 | Python | {
"docstring": " Create an empty, named, temporary file for the duration of the context.\n ",
"language": "en",
"n_whitespaces": 16,
"n_words": 12,
"vocab_size": 11
} | def make_tempfile(name):
open(name, 'w', encoding='utf-8').close()
try:
yield
finally:
os.unlink(name)
|
|
3,761 | 21,319 | 342 | pipenv/patched/notpip/_vendor/cachecontrol/controller.py | 120 | 21 | def update_cached_response(self, request, response):
cache_url = self.cache_url(request.url)
cached_response = self.serializer.loads(request, self.cache.get(cache_url))
if not cached_response:
# we didn't have a cached response
return response
# Lets update our headers with the headers from the new request:
# http://tools.ietf.org/html/draft-ietf-httpbis-p4-conditional-26#section-4.1
#
# The server isn't supposed to send headers that would make
# the cached body invalid. But... just in case, we'll be sure
# to strip out ones we know that might be problmatic due to
# typical assumptions.
excluded_headers = ["content-length"]
cached_response.headers.update(
dict(
(k, v)
for k, v in response.headers.items()
if k.lower() not in excluded_headers
)
)
# we want a 200 b/c we have content via the cache
cached_response.status = | Vendor in pip 22.1.2 | update_cached_response | c69d55f7c82d5ae2cce542bcfb98d043ca4836a0 | pipenv | controller.py | 13 | 16 | https://github.com/pypa/pipenv.git | 4 | 103 | 0 | 79 | 172 | Python | {
"docstring": "On a 304 we will get a new set of headers that we want to\n update our cached value with, assuming we have one.\n\n This should only ever be called when we've sent an ETag and\n gotten a 304 as the response.\n ",
"language": "en",
"n_whitespaces": 70,
"n_words": 42,
"vocab_size": 37
} | def update_cached_response(self, request, response):
cache_url = self.cache_url(request.url)
cached_response = self.serializer.loads(request, self.cache.get(cache_url))
if not cached_response:
# we didn't have a cached response
return response
# Lets update our headers with the headers from the new request:
# http://tools.ietf.org/html/draft-ietf-httpbis-p4-conditional-26#section-4.1
#
# The server isn't supposed to send headers that would make
# the cached body invalid. But... just in case, we'll be sure
# to strip out ones we know that might be problmatic due to
# typical assumptions.
excluded_headers = ["content-length"]
cached_response.headers.update(
dict(
(k, v)
for k, v in response.headers.items()
if k.lower() not in excluded_headers
)
)
# we want a 200 b/c we have content via the cache
cached_response.status = 200
# update our cache
self._cache_set(cache_url, request, cached_response)
return cached_response
|
|
1,541 | 9,099 | 32 | parsing/dml_csr/loss/lovasz_softmax.py | 21 | 9 | def binary_xloss(logits, labels, ignore=None):
l | Create lovasz_softmax.py | binary_xloss | db307ffb12d6ba1f8eaeeafd29ee6d4a3fd6fa97 | insightface | lovasz_softmax.py | 12 | 4 | https://github.com/deepinsight/insightface.git | 1 | 43 | 0 | 17 | 69 | Python | {
"docstring": "\n Binary Cross entropy loss\n logits: [B, H, W] Variable, logits at each pixel (between -\\infty and +\\infty)\n labels: [B, H, W] Tensor, binary ground truth masks (0 or 1)\n ignore: void class id\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 33,
"vocab_size": 30
} | def binary_xloss(logits, labels, ignore=None):
logits, labels = flatten_binary_scores(logits, labels, ignore)
loss = StableBCELoss()(logits, Variable(labels.float()))
return loss
# --------------------------- MULTICLASS LOSSES ---------------------------
|
|
84,464 | 283,198 | 137 | build/pyinstaller/user_agent/base.py | 38 | 7 | def generate_navigator_js(os=None, navigator=None, platform=None, device_type=None):
config = generate_navigator(
os=os, navigator=navigator, platform=platform, device_type=device_type
)
return {
"appCodeName": config["app_code_name"],
"appName": config["app_name"],
"appVersion": config[" | Create a packaged app bundle with Pyinstaller (#1525)
* Add dashboard widget assets
* Add ipywidgets and ipyflex to project
* Add currencies dashboard notebook
* Update docs and docstrings
* Add pyinstaller to project deps
* Add pyinstaller artifacts to gitignore
* Fix linter errors in terminal.py
* Update cspell hook and action with a pyinstaller specific word
* Add pyinstaller specfile and artifacts
* Add splashscreen image
* Add app icon
* adding splash screen support to terminal.spec and terminal.py
* Restore the conda env build files
* Sync deps
* Add border to the splashscreen image
* Clean up terminal launcher
* Add support for default feature flags in packages apps
* Fix types and linting
* Add splashscreen management to app bootup
* Check prediction feature flag when entering crypto/pred
* Update pyinstaller spec file
* fix .spec file to work for splash and icon - removed the ".."
* Allows to export when using installer (#1568)
* fix export for packaged apps
* fix filename
* Git : replace commit_hash when it is set in config_terminal
* Add update of the git commit hash in gtff default during build
* Add packaged app name and feature flag to logs
* Add platform specific icon assignment
* Add macOS build assets
* Add tensorflow to hidden imports
* Move LOGGING_COMMIT_HASH to gtff
* Adding files/folders needed to .spec and pyinstaller folder. This will make certain commands work again.
* Linting
* Workflow : ignore ./build/pyinstaller from codespell
* Workflow : exclude ./build/pyinstaller from flake8
* Poetry + Workflow : add types-six
* Pyinstaller : remove property_cached, user_agent and vaderSentiment
* Revert "Pyinstaller : remove property_cached, user_agent and vaderSentiment"
This reverts commit dbb3e2b81086f97819ebd21457148c7160a4d703.
* Clean up local paths in specfile
* Validate deps have correct Jinja version (they do)
* Fix logging commit hash to be set correctly for the logger to see it
Co-authored-by: Andrew <andrew.kenreich@gmail.com>
Co-authored-by: didierlopes.eth <dro.lopes@campus.fct.unl.pt>
Co-authored-by: Chavithra PARANA <chavithra@gmail.com> | generate_navigator_js | ab4de1dd70fba866930150e440a03e461a6ca6a8 | OpenBBTerminal | base.py | 9 | 17 | https://github.com/OpenBB-finance/OpenBBTerminal.git | 1 | 120 | 0 | 38 | 207 | Python | {
"docstring": "\n Generates web navigator's config with keys corresponding\n to keys of `windows.navigator` JavaScript object.\n\n :param os: limit list of oses for generation\n :type os: string or list/tuple or None\n :param navigator: limit list of browser engines for generation\n :type navigator: string or list/tuple or None\n :param device_type: limit possible oses by device type\n :type device_type: list/tuple or None, possible values:\n \"desktop\", \"smartphone\", \"tablet\", \"all\"\n :return: User-Agent config\n :rtype: dict with keys (TODO)\n :raises InvalidOption: if could not generate user-agent for\n any combination of allowed oses and navigators\n :raise InvalidOption: if any of passed options is invalid\n ",
"language": "en",
"n_whitespaces": 149,
"n_words": 95,
"vocab_size": 60
} | def generate_navigator_js(os=None, navigator=None, platform=None, device_type=None):
config = generate_navigator(
os=os, navigator=navigator, platform=platform, device_type=device_type
)
return {
"appCodeName": config["app_code_name"],
"appName": config["app_name"],
"appVersion": config["app_version"],
"platform": config["platform"],
"userAgent": config["user_agent"],
"oscpu": config["oscpu"],
"product": config["product"],
"productSub": config["product_sub"],
"vendor": config["vendor"],
"vendorSub": config["vendor_sub"],
"buildID": config["build_id"],
}
|
|
9,893 | 49,719 | 212 | modules/image/text_to_image/disco_diffusion_cnclip_vitb16/cn_clip/clip/bert_tokenizer.py | 79 | 13 | def printable_text(text):
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
| add disco_diffusion_cnclip_vitb16 module | printable_text | f4d6e64cdc132ae868699a0ba442f4ab1d304a14 | PaddleHub | bert_tokenizer.py | 17 | 17 | https://github.com/PaddlePaddle/PaddleHub.git | 7 | 103 | 0 | 50 | 179 | Python | {
"docstring": "Returns text encoded in a way suitable for print or `tf.logging`.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | def printable_text(text):
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text
elif isinstance(text, unicode):
return text.encode("utf-8")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
|
|
34,797 | 150,599 | 95 | freqtrade/freqai/prediction_models/RL/RLPrediction_env_v2.py | 31 | 10 | def is_tradesignal(self, action):
# trade signal
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral)
| callback function and TDQN model added | is_tradesignal | 01232e9a1f8e28e3611e38af3816edb026600767 | freqtrade | RLPrediction_env_v2.py | 14 | 4 | https://github.com/freqtrade/freqtrade.git | 6 | 65 | 0 | 20 | 102 | Python | {
"docstring": "\n not trade signal is :\n Action: Neutral, position: Neutral -> Nothing \n Action: Long, position: Long -> Hold Long\n Action: Short, position: Short -> Hold Short\n ",
"language": "en",
"n_whitespaces": 62,
"n_words": 25,
"vocab_size": 16
} | def is_tradesignal(self, action):
# trade signal
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral)
or (action == Actions.Short.value and self._position == Positions.Short)
or (action == Actions.Long.value and self._position == Positions.Long))
|
|
54,986 | 217,880 | 101 | python3.10.4/Lib/http/server.py | 13 | 9 | def log_message(self, format, *args):
sys.stderr.write("%s - - [%s] %s\n" %
(self.address_string(),
self.log_date_time_string(),
| add python 3.10.4 for windows | log_message | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | server.py | 11 | 5 | https://github.com/XX-net/XX-Net.git | 1 | 37 | 0 | 12 | 62 | Python | {
"docstring": "Log an arbitrary message.\n\n This is used by all other logging functions. Override\n it if you have specific logging wishes.\n\n The first argument, FORMAT, is a format string for the\n message to be logged. If the format string contains\n any % escapes requiring parameters, they should be\n specified as subsequent arguments (it's just like\n printf!).\n\n The client ip and current date/time are prefixed to\n every message.\n\n ",
"language": "en",
"n_whitespaces": 138,
"n_words": 66,
"vocab_size": 57
} | def log_message(self, format, *args):
sys.stderr.write("%s - - [%s] %s\n" %
(self.address_string(),
self.log_date_time_string(),
format%args))
|
|
120,698 | 335,005 | 34 | src/diffusers/utils/logging.py | 16 | 10 | def warning_advice(self, *args, **kwargs):
no_advisory_warnings = os.getenv("DIFFUSERS_NO_ADVISORY_WARNINGS", False)
if no_advisory_warnings:
return
self.warning(*args, **kwargs)
logging.Logger.warning_advice = warning_advice
| changes comments and env vars in `utils/logging`
removes mentions of 🤗Transformers with 🤗Diffusers equivalent. | warning_advice | c3cc8eb23c8095217388d350409b454ea396c12b | diffusers | logging.py | 9 | 5 | https://github.com/huggingface/diffusers.git | 2 | 36 | 0 | 15 | 72 | Python | {
"docstring": "\n This method is identical to `logger.warninging()`, but if env var DIFFUSERS_NO_ADVISORY_WARNINGS=1 is set, this\n warning will not be printed\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 19,
"vocab_size": 18
} | def warning_advice(self, *args, **kwargs):
no_advisory_warnings = os.getenv("DIFFUSERS_NO_ADVISORY_WARNINGS", False)
if no_advisory_warnings:
return
self.warning(*args, **kwargs)
logging.Logger.warning_advice = warning_advice
|
|
47,895 | 196,395 | 41 | sympy/matrices/repmatrix.py | 16 | 8 | def zip_row_op(self, i, k, f):
for j in range(self.cols):
self[i, j] = f | Moved imports to higher level | zip_row_op | 59d22b6bb7287613d598611027f640d068ca5748 | sympy | repmatrix.py | 11 | 3 | https://github.com/sympy/sympy.git | 2 | 45 | 0 | 16 | 64 | Python | {
"docstring": "In-place operation on row ``i`` using two-arg functor whose args are\n interpreted as ``(self[i, j], self[k, j])``.\n\n Examples\n ========\n\n >>> from sympy import eye\n >>> M = eye(3)\n >>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M\n Matrix([\n [1, 0, 0],\n [2, 1, 0],\n [0, 0, 1]])\n\n See Also\n ========\n row\n row_op\n col_op\n\n ",
"language": "en",
"n_whitespaces": 166,
"n_words": 54,
"vocab_size": 46
} | def zip_row_op(self, i, k, f):
for j in range(self.cols):
self[i, j] = f(self[i, j], self[k, j])
|
|
49,356 | 199,700 | 18 | sympy/polys/orthopolys.py | 13 | 7 | def legendre_poly(n, x=None, polys=False):
r
return named_poly(n, dup_legendre, QQ, "Legendre polynomial", (x,), polys)
| Run orthopolys and appellseqs through a common interface
Including unifying the two Chebyshev generators into one function.
There are also two kinds of Hermite polynomials, and they too share the
same recurrence, but the second type He_n(x) (aka the probabilist,
reduced or small polynomials) will not be added here. | legendre_poly | d1d46df73ebaad94089847558d00a8b7269f554d | sympy | orthopolys.py | 8 | 13 | https://github.com/sympy/sympy.git | 1 | 33 | 0 | 13 | 47 | Python | {
"docstring": "Generates the Legendre polynomial `P_n(x)`.\n\n Parameters\n ==========\n\n n : int\n Degree of the polynomial.\n x : optional\n polys : bool, optional\n If True, return a Poly, otherwise (default) return an expression.\n ",
"language": "en",
"n_whitespaces": 63,
"n_words": 31,
"vocab_size": 26
} | def legendre_poly(n, x=None, polys=False):
r
return named_poly(n, dup_legendre, QQ, "Legendre polynomial", (x,), polys)
|
|
118,084 | 322,189 | 495 | paddlenlp/taskflow/knowledge_mining.py | 91 | 19 | def _concat_short_text_reuslts(self, input_texts, results):
long_text_lens = [len(text) for text in input_texts]
concat_results = []
single_results = {}
count = 0
for text in input_texts:
text_len = len(text)
while True:
if len(single_results) == 0 or len(single_results[
"text"]) < text_len:
if len(single_results) == 0:
single_results = copy.deepcopy(results[count])
else:
single_results["text"] += results[count]["text"]
single_results["items"].extend(results[count]["items"])
count += 1
elif len(single_results["text"]) == text_len:
concat_results.append(single_results)
single_results = {}
break
else:
raise Exception(
"The length of input text and raw text is not equal.")
| Update neural search readme and Add Paddle Serving Support (#1558)
* add recall inference similarity
* update examples
* updatea readme
* update dir name
* update neural search readme
* update milvus readme
* update domain adaptive pretraining readme
* fix the mistakes
* update readme
* add recall Paddle Serving Support
* update readme
* update readme and format the code
* reformat the files
* move the files
* reformat the code
* remove redundant code
Co-authored-by: Zeyu Chen <chenzeyu01@baidu.com>
Co-authored-by: tianxin <tianxin04@baidu.com> | _concat_short_text_reuslts | 621357338437ee420eabbbf5ab19065bc85e73a5 | PaddleNLP | knowledge_mining.py | 18 | 28 | https://github.com/PaddlePaddle/PaddleNLP.git | 9 | 172 | 0 | 59 | 289 | Python | {
"docstring": "\n Concat the model output of short texts to the total result of long text.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 14,
"vocab_size": 12
} | def _concat_short_text_reuslts(self, input_texts, results):
long_text_lens = [len(text) for text in input_texts]
concat_results = []
single_results = {}
count = 0
for text in input_texts:
text_len = len(text)
while True:
if len(single_results) == 0 or len(single_results[
"text"]) < text_len:
if len(single_results) == 0:
single_results = copy.deepcopy(results[count])
else:
single_results["text"] += results[count]["text"]
single_results["items"].extend(results[count]["items"])
count += 1
elif len(single_results["text"]) == text_len:
concat_results.append(single_results)
single_results = {}
break
else:
raise Exception(
"The length of input text and raw text is not equal.")
for result in concat_results:
pred_words = result['items']
pred_words = self._reset_offset(pred_words)
result['items'] = pred_words
return concat_results
|
|
53,046 | 211,216 | 541 | ppdet/modeling/heads/s2anet_head.py | 191 | 43 | def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
origin_shape_list = []
scale_factor_list = []
# scale_factor: scale_y, scale_x
for i in range(bbox_num.shape[0]):
expand_shape = paddle.expand(origin_shape[i:i + 1, :],
[b | refactor s2anet (#6604)
* refactor s2anet to support batch_size > 1
* fix problem of inference
* support batch_size > 1 for training
* fix empty results
* fix dota eval
* fix configs of s2anet_head
* modify s2anet_spine_1x to 73 mAP | get_pred | b4727677751081b257c6fa23c3c124ab9e5a32a1 | PaddleDetection | s2anet_head.py | 13 | 36 | https://github.com/PaddlePaddle/PaddleDetection.git | 2 | 466 | 0 | 103 | 682 | Python | {
"docstring": "\n Rescale, clip and filter the bbox from the output of NMS to\n get final prediction.\n Args:\n bboxes(Tensor): bboxes [N, 10]\n bbox_num(Tensor): bbox_num\n im_shape(Tensor): [1 2]\n scale_factor(Tensor): [1 2]\n Returns:\n bbox_pred(Tensor): The output is the prediction with shape [N, 8]\n including labels, scores and bboxes. The size of\n bboxes are corresponding to the original image.\n ",
"language": "en",
"n_whitespaces": 205,
"n_words": 54,
"vocab_size": 42
} | def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
origin_shape_list = []
scale_factor_list = []
# scale_factor: scale_y, scale_x
for i in range(bbox_num.shape[0]):
expand_shape = paddle.expand(origin_shape[i:i + 1, :],
[bbox_num[i], 2])
scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
scale = paddle.concat([
scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x,
scale_y
])
expand_scale = paddle.expand(scale, [bbox_num[i], 8])
origin_shape_list.append(expand_shape)
scale_factor_list.append(expand_scale)
origin_shape_list = paddle.concat(origin_shape_list)
scale_factor_list = paddle.concat(scale_factor_list)
# bboxes: [N, 10], label, score, bbox
pred_label_score = bboxes[:, 0:2]
pred_bbox = bboxes[:, 2:]
# rescale bbox to original image
pred_bbox = pred_bbox.reshape([-1, 8])
scaled_bbox = pred_bbox / scale_factor_list
origin_h = origin_shape_list[:, 0]
origin_w = origin_shape_list[:, 1]
bboxes = scaled_bbox
zeros = paddle.zeros_like(origin_h)
x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros)
y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros)
x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros)
y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros)
x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros)
y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros)
x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros)
y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros)
pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1)
pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1)
return pred_result
|
|
13,733 | 64,834 | 46 | erpnext/accounts/doctype/chart_of_accounts_importer/chart_of_accounts_importer.py | 65 | 13 | def unset_existing_data(company):
linked = frappe.db.sql(
,
as_dict=True,
)
# remove accounts data from company
update_values = {d.fieldname: "" for d in linked}
frappe.db.set_value("Company", company, update_values, update_values)
# remove accounts data from various doctypes
for doctype in [
"Account",
"Party Account",
"Mode of Payment Account",
"Tax Withholding Account",
"Sales Taxes and Charges Template",
"Purchase Taxes and Charges Template",
]:
frappe.db.sql( | style: format code with black | unset_existing_data | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | chart_of_accounts_importer.py | 13 | 19 | https://github.com/frappe/erpnext.git | 3 | 82 | 0 | 48 | 140 | Python | {
"docstring": "select fieldname from tabDocField\n\t\twhere fieldtype=\"Link\" and options=\"Account\" and parent=\"Company\"delete from `tab{0}` where `company`=\"%s\"",
"language": "en",
"n_whitespaces": 12,
"n_words": 14,
"vocab_size": 11
} | def unset_existing_data(company):
linked = frappe.db.sql(
,
as_dict=True,
)
# remove accounts data from company
update_values = {d.fieldname: "" for d in linked}
frappe.db.set_value("Company", company, update_values, update_values)
# remove accounts data from various doctypes
for doctype in [
"Account",
"Party Account",
"Mode of Payment Account",
"Tax Withholding Account",
"Sales Taxes and Charges Template",
"Purchase Taxes and Charges Template",
]:
frappe.db.sql(
.format(doctype) % (company) # nosec
)
|
|
70,390 | 244,465 | 55 | mmdet/models/dense_heads/base_dense_head.py | 16 | 9 | def simple_test(self, feats, batch_img_metas, rescale=False):
outs = self.forward(feats)
results_list = self.get_results(
*outs, batch_img_metas=batch_img_metas, rescale=rescale)
return results_list
| Modify RetinaNet model interface | simple_test | 924c381a78eb70cede198e042ef34e038e05c15a | mmdetection | base_dense_head.py | 9 | 5 | https://github.com/open-mmlab/mmdetection.git | 1 | 41 | 0 | 14 | 63 | Python | {
"docstring": "Test function without test-time augmentation.\n\n Args:\n feats (tuple[torch.Tensor]): Multi-level features from the\n upstream network, each is a 4D-tensor.\n batch_img_metas (list[dict]): List of image information.\n rescale (bool, optional): Whether to rescale the results.\n Defaults to False.\n\n Returns:\n list[obj:`InstanceData`]: Detection results of each image\n after the post process.\n Each item usually contains following keys.\n\n - scores (Tensor): Classification scores, has a shape\n (num_instance, )\n - labels (Tensor): Labels of bboxes, has a shape\n (num_instances, ).\n - bboxes (Tensor): Has a shape (num_instances, 4),\n the last dimension 4 arrange as (x1, y1, x2, y2).\n ",
"language": "en",
"n_whitespaces": 280,
"n_words": 91,
"vocab_size": 71
} | def simple_test(self, feats, batch_img_metas, rescale=False):
outs = self.forward(feats)
results_list = self.get_results(
*outs, batch_img_metas=batch_img_metas, rescale=rescale)
return results_list
|
|
5,678 | 31,086 | 167 | src/transformers/commands/pt_to_tf.py | 59 | 13 | def compare_pt_tf_models(pt_model, pt_input, tf_model, tf_input):
pt_outputs = pt_model(**pt_input, output_hidden_states=True)
tf_outputs = tf_model(**tf_input, output_hidden_states=True)
# 1. All output attributes must be the same
pt_out_attrs = set(pt_outputs.keys())
| CLI: add stricter automatic checks to `pt-to-tf` (#17588)
* Stricter pt-to-tf checks; Update docker image for related tests
* check all attributes in the output
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> | compare_pt_tf_models | 78c695eb624bc863ea165b6fb0a8850bfd9fcefa | transformers | pt_to_tf.py | 12 | 12 | https://github.com/huggingface/transformers.git | 2 | 76 | 0 | 48 | 119 | Python | {
"docstring": "\n Compares the TensorFlow and PyTorch models, given their inputs, returning a tuple with the maximum observed\n difference and its source.\n ",
"language": "en",
"n_whitespaces": 42,
"n_words": 20,
"vocab_size": 18
} | def compare_pt_tf_models(pt_model, pt_input, tf_model, tf_input):
pt_outputs = pt_model(**pt_input, output_hidden_states=True)
tf_outputs = tf_model(**tf_input, output_hidden_states=True)
# 1. All output attributes must be the same
pt_out_attrs = set(pt_outputs.keys())
tf_out_attrs = set(tf_outputs.keys())
if pt_out_attrs != tf_out_attrs:
raise ValueError(
f"The model outputs have different attributes, aborting. (Pytorch: {pt_out_attrs}, TensorFlow:"
f" {tf_out_attrs})"
)
# 2. For each output attribute, ALL values must be the same |
|
@pytest.fixture(
params=_get_all_parser_float_precision_combinations()["params"],
ids=_get_all_parser_float_precision_combinations()["ids"],
) | 39,627 | 165,035 | 174 | pandas/tests/io/parser/conftest.py | 64 | 20 | def _get_all_parser_float_precision_combinations():
params = []
ids = []
for parser, parser_id in zip(_all_parsers, _all_parser_ids):
if hasattr(parser, "values"):
# Wrapped in pytest.param, get the actual parser back
parser = parser.values[0]
for precision in parser.float_precision_choices:
# Re-wrap in pytest.param for pyarrow
mark = pytest.mark.single_cpu if parser.engine == "pyarrow" els | CI: Add single_cpu build (#45995) | _get_all_parser_float_precision_combinations | 08104e8c0a80579dfe3e984b32b35ddc94aafa01 | pandas | conftest.py | 15 | 12 | https://github.com/pandas-dev/pandas.git | 5 | 105 | 1 | 51 | 223 | Python | {
"docstring": "\n Return all allowable parser and float precision\n combinations and corresponding ids.\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 11,
"vocab_size": 10
} | def _get_all_parser_float_precision_combinations():
params = []
ids = []
for parser, parser_id in zip(_all_parsers, _all_parser_ids):
if hasattr(parser, "values"):
# Wrapped in pytest.param, get the actual parser back
parser = parser.values[0]
for precision in parser.float_precision_choices:
# Re-wrap in pytest.param for pyarrow
mark = pytest.mark.single_cpu if parser.engine == "pyarrow" else ()
param = pytest.param((parser(), precision), marks=mark)
params.append(param)
ids.append(f"{parser_id}-{precision}")
return {"params": params, "ids": ids}
@pytest.fixture(
params=_get_all_parser_float_precision_combinations()["params"],
ids=_get_all_parser_float_precision_combinations()["ids"],
) |
49,846 | 201,071 | 86 | tests/app_loading/tests.py | 17 | 12 | def test_egg3(self):
egg_name = "%s/omelet.egg" % self.egg_dir
with extend_sys_path(egg_name):
| Refs #33476 -- Reformatted code with Black. | test_egg3 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | tests.py | 14 | 7 | https://github.com/django/django.git | 1 | 54 | 0 | 15 | 101 | Python | {
"docstring": "Models module can be loaded from an app located under an egg's top-level package",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 13
} | def test_egg3(self):
egg_name = "%s/omelet.egg" % self.egg_dir
with extend_sys_path(egg_name):
with self.settings(INSTALLED_APPS=["omelet.app_with_models"]):
models_module = apps.get_app_config("app_with_models").models_module
self.assertIsNotNone(models_module)
del apps.all_models["app_with_models"]
|
|
@pytest.mark.parametrize("setting", ["Enabled", "Disabled"]) | 54,437 | 216,155 | 29 | tests/pytests/functional/modules/win_lgpo/test_audit_settings_module.py | 18 | 11 | def test_auditing_case_names(lgpo, setting_name, setting, enable_legacy_auditing):
lgpo.set_computer_policy(setting_name, setting)
result = lgpo.get_policy(setting_name, "machine")
assert result == setting
@pytest.mark.parametrize("setting", ["Enabled", | Add and update tests | test_auditing_case_names | 0e69e2317dfa06f114c6dd63bc70c68fc81d19b1 | salt | test_audit_settings_module.py | 9 | 4 | https://github.com/saltstack/salt.git | 1 | 34 | 1 | 17 | 82 | Python | {
"docstring": "\n Helper function to set an audit setting and assert that it was successful\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 13,
"vocab_size": 13
} | def test_auditing_case_names(lgpo, setting_name, setting, enable_legacy_auditing):
lgpo.set_computer_policy(setting_name, setting)
result = lgpo.get_policy(setting_name, "machine")
assert result == setting
@pytest.mark.parametrize("setting", ["Enabled", "Disabled"]) |
16,397 | 75,348 | 138 | wagtail/images/tests/tests.py | 31 | 15 | def test_get(self):
# Generate signature
signature = generate_signature(self.image.id, "fill-800x600")
# Get the image
response = self.client.get(
reverse(
"wagtailimages_serve", args=(signature, self.image.id, "fill-800x600")
)
)
# Check response
self.assertEqual(response.status_code, 200)
self.assertTrue(response.streaming)
self.asse | Reformat with black | test_get | d10f15e55806c6944827d801cd9c2d53f5da4186 | wagtail | tests.py | 14 | 10 | https://github.com/wagtail/wagtail.git | 1 | 74 | 0 | 24 | 127 | Python | {
"docstring": "\n Test a valid GET request to the view\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 8,
"vocab_size": 8
} | def test_get(self):
# Generate signature
signature = generate_signature(self.image.id, "fill-800x600")
# Get the image
response = self.client.get(
reverse(
"wagtailimages_serve", args=(signature, self.image.id, "fill-800x600")
)
)
# Check response
self.assertEqual(response.status_code, 200)
self.assertTrue(response.streaming)
self.assertEqual(response["Content-Type"], "image/png")
|
|
341 | 2,705 | 149 | packages/syft/src/syft/lib/python/slice.py | 34 | 15 | def _object2proto(self) -> Slice_PB:
slice_pb | change[syft.lib.python] syft import absolute -> relative | _object2proto | e5bfcd8016813b1d253a72da5c5071b0e0965644 | PySyft | slice.py | 11 | 19 | https://github.com/OpenMined/PySyft.git | 4 | 81 | 0 | 23 | 133 | Python | {
"docstring": "\n Serialize the Slice object instance returning a protobuf.\n\n Returns:\n Slice_PB: returns a protobuf object class representing this Slice object.\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 19,
"vocab_size": 16
} | def _object2proto(self) -> Slice_PB:
slice_pb = Slice_PB()
if self.start:
slice_pb.start = self.start
slice_pb.has_start = True
if self.stop:
slice_pb.stop = self.stop
slice_pb.has_stop = True
if self.step:
slice_pb.step = self.step
slice_pb.has_step = True
slice_pb.id.CopyFrom(serialize(obj=self._id))
return slice_pb
|
|
21,008 | 101,599 | 158 | plugins/extract/recognition/vgg_face2_keras.py | 36 | 13 | def __call__(self) -> List[Tuple[int, int]]:
logger.info("Sorting face distances. Depending on your dataset this may take some time...")
if self._threshold:
self._threshold = self._result_linkage[:, 2].max() * self._threshold
result_order = self._seriation(self._result_linkage,
self._num_pre | Overhaul sort:
- Standardize image data reading and writing
- Optimize loading (just one pass required)
- Make all sort groups binnable (to greater or lesser results)
- Add sort by pitch
- Deprecate multiple options
- linting, docs + locales | __call__ | 98d01760e469fd2108eed8d0b0a1ba6297c3177c | faceswap | vgg_face2_keras.py | 13 | 19 | https://github.com/deepfakes/faceswap.git | 2 | 73 | 0 | 32 | 115 | Python | {
"docstring": " Process the linkages.\n\n Transforms a distance matrix into a sorted distance matrix according to the order implied\n by the hierarchical tree (dendrogram).\n\n Returns\n -------\n list:\n List of indices with the order implied by the hierarchical tree or list of tuples of\n (`index`, `bin`) if a binning threshold was provided\n ",
"language": "en",
"n_whitespaces": 114,
"n_words": 49,
"vocab_size": 34
} | def __call__(self) -> List[Tuple[int, int]]:
logger.info("Sorting face distances. Depending on your dataset this may take some time...")
if self._threshold:
self._threshold = self._result_linkage[:, 2].max() * self._threshold
result_order = self._seriation(self._result_linkage,
self._num_predictions,
self._num_predictions + self._num_predictions - 2)
return result_order
|
|
53,084 | 211,402 | 1,144 | ppdet/modeling/post_process.py | 292 | 58 | def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
if self.export_eb:
# enable rcnn models for edgeboard hw to skip the following postprocess.
return bboxes, bboxes, bbox_num
if not self.export_onnx:
bboxes_list = []
bbox_num_list = []
id_start = 0
fake_bboxes = paddle.to_tensor(
np.array(
[[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))
fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
# add fake bbox when output is empty for each batch
for i in range(bbox_num.shape[0]):
if bbox_num[i] == 0:
bboxes_i = fake_bboxes
bbox_num_i = fake_bbox_num
else:
bboxes_i = bboxes[id_start:id_start + bbox_num[i], :]
bbox_num_i = bbox_num[i]
id_start += bbox_num[i]
bboxes_list.append(bboxes_i)
bbox_num_list.append(bbox_num_i)
bboxes = paddle.concat(bboxes_list)
bbox_num = paddle.concat(bbox_num_list)
origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
if not self.export_onnx:
origin_shape_list = []
scale_factor_list = []
# scale_factor: scale_y, scale_x
for i in range(bbox_num.shape[0]):
expand_shape = paddle.expand(origin_shape[i:i + 1, :],
[bbox_num[i], 2])
scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
expand_scale = paddle.expand(scale, [bbox_num[i], 4])
origin_shape_list.append(expand_shape)
scale_factor_list.append(expand_scale)
self.origin_shape_list = paddle.concat(origin_shape_list)
scale_factor_list = paddle.concat(scale_factor_list)
else:
# simplify the computation for bs=1 when exporting onnx
scale_y, scale_x = scale_factor[0][0], scale_factor[0][1]
scale = paddle.concat(
[scale_x, scale_y, scale_x, scale_y]).unsqueeze(0)
self.origin_shape_list = paddle.expand(origin_shape,
[bbox_num[0], 2])
scale_factor_list = paddle.expand(scale, [bbox_num[0], 4])
# bboxes: [N, 6], label, score, bbox
pred_label = bboxes[:, 0:1]
pred_score = bboxes[:, 1:2]
pred_bbox = bboxes[:, 2:]
# rescale bbox to original image
scaled_bbox = pred_bbox / scale_factor_list
origin_h = self.origin_shape_list[:, 0]
origin_w = self.origin_shape_list[:, 1]
zeros = paddle.zeros_like(origin_h)
# clip bbox to [0, original_size]
x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
# filter empty bbox
keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
keep_mask = paddle.unsqueeze(keep_mask, [1])
pred_label = paddle.where(keep_mask, pred_label,
paddle.ones_like(pred_label) * -1)
pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
retur | add flag skipping postprocess to support edgeboard hardware (#6719)
* add flag skipping postprocess to support edgeboard hardware
* add flag skipping postprocess to support edgeboard hardware
* add flag skipping postprocess to support edgeboard hardware
* add comment for the flag export_eb | get_pred | b41194eaed10a01409451e4d3ea7f8b4812cdd23 | PaddleDetection | post_process.py | 17 | 62 | https://github.com/PaddlePaddle/PaddleDetection.git | 7 | 651 | 0 | 171 | 961 | Python | {
"docstring": "\n Rescale, clip and filter the bbox from the output of NMS to \n get final prediction. \n\n Notes:\n Currently only support bs = 1.\n\n Args:\n bboxes (Tensor): The output bboxes with shape [N, 6] after decode\n and NMS, including labels, scores and bboxes.\n bbox_num (Tensor): The number of prediction boxes of each batch with\n shape [1], and is N.\n im_shape (Tensor): The shape of the input image.\n scale_factor (Tensor): The scale factor of the input image.\n Returns:\n pred_result (Tensor): The final prediction results with shape [N, 6]\n including labels, scores and bboxes.\n ",
"language": "en",
"n_whitespaces": 242,
"n_words": 90,
"vocab_size": 54
} | def get_pred(self, bboxes, bbox_num, im_shape, scale_factor):
if self.export_eb:
# enable rcnn models for edgeboard hw to skip the following postprocess.
return bboxes, bboxes, bbox_num
if not self.export_onnx:
bboxes_list = []
bbox_num_list = []
id_start = 0
fake_bboxes = paddle.to_tensor(
np.array(
[[0., 0.0, 0.0, 0.0, 1.0, 1.0]], dtype='float32'))
fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32'))
# add fake bbox when output is empty for each batch
for i in range(bbox_num.shape[0]):
if bbox_num[i] == 0:
bboxes_i = fake_bboxes
bbox_num_i = fake_bbox_num
else:
bboxes_i = bboxes[id_start:id_start + bbox_num[i], :]
bbox_num_i = bbox_num[i]
id_start += bbox_num[i]
bboxes_list.append(bboxes_i)
bbox_num_list.append(bbox_num_i)
bboxes = paddle.concat(bboxes_list)
bbox_num = paddle.concat(bbox_num_list)
origin_shape = paddle.floor(im_shape / scale_factor + 0.5)
if not self.export_onnx:
origin_shape_list = []
scale_factor_list = []
# scale_factor: scale_y, scale_x
for i in range(bbox_num.shape[0]):
expand_shape = paddle.expand(origin_shape[i:i + 1, :],
[bbox_num[i], 2])
scale_y, scale_x = scale_factor[i][0], scale_factor[i][1]
scale = paddle.concat([scale_x, scale_y, scale_x, scale_y])
expand_scale = paddle.expand(scale, [bbox_num[i], 4])
origin_shape_list.append(expand_shape)
scale_factor_list.append(expand_scale)
self.origin_shape_list = paddle.concat(origin_shape_list)
scale_factor_list = paddle.concat(scale_factor_list)
else:
# simplify the computation for bs=1 when exporting onnx
scale_y, scale_x = scale_factor[0][0], scale_factor[0][1]
scale = paddle.concat(
[scale_x, scale_y, scale_x, scale_y]).unsqueeze(0)
self.origin_shape_list = paddle.expand(origin_shape,
[bbox_num[0], 2])
scale_factor_list = paddle.expand(scale, [bbox_num[0], 4])
# bboxes: [N, 6], label, score, bbox
pred_label = bboxes[:, 0:1]
pred_score = bboxes[:, 1:2]
pred_bbox = bboxes[:, 2:]
# rescale bbox to original image
scaled_bbox = pred_bbox / scale_factor_list
origin_h = self.origin_shape_list[:, 0]
origin_w = self.origin_shape_list[:, 1]
zeros = paddle.zeros_like(origin_h)
# clip bbox to [0, original_size]
x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros)
y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros)
x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros)
y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros)
pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1)
# filter empty bbox
keep_mask = nonempty_bbox(pred_bbox, return_mask=True)
keep_mask = paddle.unsqueeze(keep_mask, [1])
pred_label = paddle.where(keep_mask, pred_label,
paddle.ones_like(pred_label) * -1)
pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1)
return bboxes, pred_result, bbox_num
|
|
99,894 | 301,046 | 18 | homeassistant/components/nexia/entity.py | 4 | 7 | def _signal_zone_update(self):
async_dispatcher_send(self.hass, f"{SIGNAL_ZONE_UPD | Update nexia to use asyncio (#72108) | _signal_zone_update | d8a580a90f8bf3206b31619493f4e653fceb3f4b | core | entity.py | 11 | 2 | https://github.com/home-assistant/core.git | 1 | 15 | 0 | 4 | 41 | Python | {
"docstring": "Signal a zone update.\n\n Whenever the underlying library does an action against\n a zone, the data for the zone is updated.\n\n Update a single zone.\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 25,
"vocab_size": 20
} | def _signal_zone_update(self):
async_dispatcher_send(self.hass, f"{SIGNAL_ZONE_UPDATE}-{self._zone.zone_id}")
|
|
@pytest.mark.parametrize("y", [([1.0, -2.0, 0.0]), ([0.0, 0.0, 0.0])]) | 75,518 | 259,003 | 287 | sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py | 133 | 39 | def test_asymmetric_error(quantile):
n_samples = 10_000
rng = np.random.RandomState(42)
# take care that X @ coef + intercept > 0
X = np.concatenate(
(
np.abs(rng.randn(n_samples)[:, None]),
-rng.randint(2, size=(n_samples, 1)),
),
a | FEA add quantile HGBT (#21800) | test_asymmetric_error | 5ad3421a5b5759ecfaaab93406592d988f5d487f | scikit-learn | test_gradient_boosting.py | 14 | 27 | https://github.com/scikit-learn/scikit-learn.git | 1 | 209 | 1 | 96 | 361 | Python | {
"docstring": "Test quantile regression for asymmetric distributed targets.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | def test_asymmetric_error(quantile):
n_samples = 10_000
rng = np.random.RandomState(42)
# take care that X @ coef + intercept > 0
X = np.concatenate(
(
np.abs(rng.randn(n_samples)[:, None]),
-rng.randint(2, size=(n_samples, 1)),
),
axis=1,
)
intercept = 1.23
coef = np.array([0.5, -2])
# For an exponential distribution with rate lambda, e.g. exp(-lambda * x),
# the quantile at level q is:
# quantile(q) = - log(1 - q) / lambda
# scale = 1/lambda = -quantile(q) / log(1-q)
y = rng.exponential(
scale=-(X @ coef + intercept) / np.log(1 - quantile), size=n_samples
)
model = HistGradientBoostingRegressor(
loss="quantile",
quantile=quantile,
max_iter=25,
random_state=0,
max_leaf_nodes=10,
).fit(X, y)
assert_allclose(np.mean(model.predict(X) > y), quantile, rtol=1e-2)
pinball_loss = PinballLoss(quantile=quantile)
loss_true_quantile = pinball_loss(y, X @ coef + intercept)
loss_pred_quantile = pinball_loss(y, model.predict(X))
# we are overfitting
assert loss_pred_quantile <= loss_true_quantile
@pytest.mark.parametrize("y", [([1.0, -2.0, 0.0]), ([0.0, 0.0, 0.0])]) |
88,424 | 289,281 | 1,402 | homeassistant/components/gtfs/sensor.py | 259 | 46 | def update(self) -> None:
with self.lock:
# Fetch valid stop information once
if not self._origin:
stops = self._pygtfs.stops_by_id(self.origin)
if not stops:
self._available = False
_LOGGER.warning("Origin stop ID %s not found", self.origin)
return
self._origin = stops[0]
if not self._destination:
stops = self._pygtfs.stops_by_id(self.destination)
if not stops:
self._available = False
_LOGGER.warning(
| Move attribution to standalone attribute [e-g] (#80513) | update | c717fd19de01fc822d146cc5e353959dfa86d5f7 | core | sensor.py | 17 | 72 | https://github.com/home-assistant/core.git | 18 | 420 | 0 | 141 | 727 | Python | {
"docstring": "Get the latest data from GTFS and update the states.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | def update(self) -> None:
with self.lock:
# Fetch valid stop information once
if not self._origin:
stops = self._pygtfs.stops_by_id(self.origin)
if not stops:
self._available = False
_LOGGER.warning("Origin stop ID %s not found", self.origin)
return
self._origin = stops[0]
if not self._destination:
stops = self._pygtfs.stops_by_id(self.destination)
if not stops:
self._available = False
_LOGGER.warning(
"Destination stop ID %s not found", self.destination
)
return
self._destination = stops[0]
self._available = True
# Fetch next departure
self._departure = get_next_departure(
self._pygtfs,
self.origin,
self.destination,
self._offset,
self._include_tomorrow,
)
# Define the state as a UTC timestamp with ISO 8601 format
if not self._departure:
self._state = None
else:
self._state = self._departure["departure_time"].replace(
tzinfo=dt_util.UTC
)
# Fetch trip and route details once, unless updated
if not self._departure:
self._trip = None
else:
trip_id = self._departure["trip_id"]
if not self._trip or self._trip.trip_id != trip_id:
_LOGGER.debug("Fetching trip details for %s", trip_id)
self._trip = self._pygtfs.trips_by_id(trip_id)[0]
route_id = self._departure["route_id"]
if not self._route or self._route.route_id != route_id:
_LOGGER.debug("Fetching route details for %s", route_id)
self._route = self._pygtfs.routes_by_id(route_id)[0]
# Fetch agency details exactly once
if self._agency is None and self._route:
_LOGGER.debug("Fetching agency details for %s", self._route.agency_id)
try:
self._agency = self._pygtfs.agencies_by_id(self._route.agency_id)[0]
except IndexError:
_LOGGER.warning(
"Agency ID '%s' was not found in agency table, "
"you may want to update the routes database table "
"to fix this missing reference",
self._route.agency_id,
)
self._agency = False
# Assign attributes, icon and name
self.update_attributes()
if self._agency:
self._attr_attribution = self._agency.agency_name
else:
self._attr_attribution = None
if self._route:
self._icon = ICONS.get(self._route.route_type, ICON)
else:
self._icon = ICON
name = (
f"{getattr(self._agency, 'agency_name', DEFAULT_NAME)} "
f"{self.origin} to {self.destination} next departure"
)
if not self._departure:
name = f"{DEFAULT_NAME}"
self._name = self._custom_name or name
|
|
95,240 | 296,245 | 102 | tests/components/homekit_controller/test_binary_sensor.py | 41 | 16 | async def test_carbon_monoxide_sensor_read_state(hass, utcnow):
helper = await setup_test_component(hass, create_carbon_monoxide_sensor_service)
await helper.async_update(
ServicesTypes.CARBON_MONOXIDE_SENSOR,
{CharacteristicsTypes.CARBON_MONOXIDE_DETECTED: 0},
)
state = await helper.poll_and_get_state()
assert state.state == "off"
await helper.async_update(
ServicesTypes.CARBON_MONOXIDE_SENSOR,
{CharacteristicsTypes.CARBON_MONOXIDE_DETECTED: 1},
)
state = await helper.poll_and_get_state()
assert state.state == "on"
assert state.attributes["d | Fix HomeKit Controller device class for CO Sensors (#69949) | test_carbon_monoxide_sensor_read_state | ad5d7a845b73b6ef09b111597d6c542be4781b07 | core | test_binary_sensor.py | 11 | 15 | https://github.com/home-assistant/core.git | 1 | 92 | 0 | 24 | 152 | Python | {
"docstring": "Test that we can read the state of a HomeKit contact accessory.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 12
} | async def test_carbon_monoxide_sensor_read_state(hass, utcnow):
helper = await setup_test_component(hass, create_carbon_monoxide_sensor_service)
await helper.async_update(
ServicesTypes.CARBON_MONOXIDE_SENSOR,
{CharacteristicsTypes.CARBON_MONOXIDE_DETECTED: 0},
)
state = await helper.poll_and_get_state()
assert state.state == "off"
await helper.async_update(
ServicesTypes.CARBON_MONOXIDE_SENSOR,
{CharacteristicsTypes.CARBON_MONOXIDE_DETECTED: 1},
)
state = await helper.poll_and_get_state()
assert state.state == "on"
assert state.attributes["device_class"] == BinarySensorDeviceClass.CO
|
|
@dataclass | 1,224 | 7,512 | 308 | ludwig/utils/triton_utils.py | 52 | 33 | def save_config(self) -> TritonArtifact:
device = self.device
if self.inference_stage != PREDICTOR:
device = "cpu"
self.config = TritonConfig(
self.full_model_name,
self.input_features,
self.output_features,
self.max_batch_size,
self.max_queue_delay_microseconds,
device,
self.model_instance_count,
self.inference_stage,
)
config_path = os.path.join(self.base_path, "config.pbtxt")
with open(config_path, "w") as f:
formatted_config = remove_empty_lines(self.config.get_model_conf | Triton ensemble export (#2251) | save_config | ed8d9cf20843744f18593b22fb6a30eaf5f325eb | ludwig | triton_utils.py | 13 | 31 | https://github.com/ludwig-ai/ludwig.git | 2 | 144 | 1 | 44 | 231 | Python | {
"docstring": "Save the Triton config.\n\n Return the appropriate artifact.\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 8,
"vocab_size": 7
} | def save_config(self) -> TritonArtifact:
device = self.device
if self.inference_stage != PREDICTOR:
device = "cpu"
self.config = TritonConfig(
self.full_model_name,
self.input_features,
self.output_features,
self.max_batch_size,
self.max_queue_delay_microseconds,
device,
self.model_instance_count,
self.inference_stage,
)
config_path = os.path.join(self.base_path, "config.pbtxt")
with open(config_path, "w") as f:
formatted_config = remove_empty_lines(self.config.get_model_config())
f.write(formatted_config)
config_artifact = TritonArtifact(
model_name=self.full_model_name,
model_version=self.model_version,
platform="pytorch_libtorch",
path=config_path,
content_type="text/x-protobuf",
content_length=os.path.getsize(config_path),
)
return config_artifact
@dataclass |
72,740 | 249,236 | 258 | tests/rest/admin/test_device.py | 50 | 17 | def test_unknown_device(self) -> None:
url = "/_synapse/admin/v2/users/%s/devices/unknown_device" % urllib.parse.quote(
self.other_user
)
channel = self.make_request(
"GET",
url,
access_token=self.admin_user_tok,
)
self.assertEqual(404, channel.code, msg=channel.json_body)
self.assertEqual(Codes.NOT_F | Use literals in place of `HTTPStatus` constants in tests (#13479)
Replace
- `HTTPStatus.NOT_FOUND`
- `HTTPStatus.FORBIDDEN`
- `HTTPStatus.UNAUTHORIZED`
- `HTTPStatus.CONFLICT`
- `HTTPStatus.CREATED`
Signed-off-by: Dirk Klimpel <dirk@klimpel.org> | test_unknown_device | 1595052b2681fb86c1c1b9a6028c1bc0d38a2e4b | synapse | test_device.py | 10 | 26 | https://github.com/matrix-org/synapse.git | 1 | 136 | 0 | 31 | 212 | Python | {
"docstring": "\n Tests that a lookup for a device that does not exist returns either 404 or 200.\n ",
"language": "en",
"n_whitespaces": 31,
"n_words": 16,
"vocab_size": 14
} | def test_unknown_device(self) -> None:
url = "/_synapse/admin/v2/users/%s/devices/unknown_device" % urllib.parse.quote(
self.other_user
)
channel = self.make_request(
"GET",
url,
access_token=self.admin_user_tok,
)
self.assertEqual(404, channel.code, msg=channel.json_body)
self.assertEqual(Codes.NOT_FOUND, channel.json_body["errcode"])
channel = self.make_request(
"PUT",
url,
access_token=self.admin_user_tok,
)
self.assertEqual(200, channel.code, msg=channel.json_body)
channel = self.make_request(
"DELETE",
url,
access_token=self.admin_user_tok,
)
# Delete unknown device returns status 200
self.assertEqual(200, channel.code, msg=channel.json_body)
|
|
6,716 | 37,029 | 317 | examples/research_projects/codeparrot/scripts/human_eval.py | 96 | 46 | def complete_code(accelerator, model, tokenizer, dataloader, n_tasks, batch_size=20, **gen_kwargs):
gen_token_dict = defaultdict(list) # dict of list of generated tokens
for step, batch in tqdm(enumerate(dataloader)):
with torch.no_grad():
gen_kwargs["stopping_criteria"][0].start_length = batch["ids"].shape[-1]
generated_tokens = accelerator.unwrap_model(model).generate(
input_ids=batch["ids"][:, : batch["input_len"]], num_return_sequences=batch_size, **gen_kwargs
)
# each task is generated batch_size times
generated_tasks = batch["task_id"].repeat(batch_size)
generated_tokens = accelerator.pad_across_processes(
generated_tokens, dim=1, pad_index=tokenizer.pad_token_id
)
generated_tokens, generated_tasks = accelerator.gather((generated_tokens, generated_tasks))
generated_tokens = generated_tokens.cpu().numpy()
generated_tasks = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(generated_tasks, generated_tokens):
gen_token_dict[task].append(generated_tokens)
code_gens = [[] for _ in range(n_tasks)]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
gen_code = tokenizer.decode(s, skip_special_tokens=True, clean_up_tokenization_spaces=True)
code_gens[task].append(remove_last_block(gen_code))
return code_gens
| Jia multi gpu eval (#16428)
* add simple multi gpu complet
* add human_eval_multi_gpu
* use copy strategy to distribute across gpu, to avoid padding
* add doc string
* update code style
* use task id to arrange output
* truncate input to avoid zero pad
* Stop the copy mechanism
* update style
* restore copies to scale better in distributed mode
* update style
* replace human eval
* Apply suggestions from code review
1. Tokenize all input at the same time
2. use attention_mask to get the input length
3. other small fixes
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
* correct typo and update docstring
* update code style
* remove num sample division constraint
* remove max len calculation
* use accelerator.gather once to speed up
* use accelerate set_seed; update accelerate version
* correct gather bug
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com> | complete_code | 4868a830db5f19f56712f540979d637368221d50 | transformers | human_eval.py | 17 | 23 | https://github.com/huggingface/transformers.git | 6 | 246 | 0 | 66 | 387 | Python | {
"docstring": "Generate multiple codes for each task in the dataset. This function leverage accelerator to distribute\n the processing to multiple GPUs.\n dataloader, a wrapper around a TokenizeDataset objectm is supposed to send all the prompts from\n the evalution dataset to the modelm as the following:\n [p_0_0, p_0_1, ..., p_0_nc-1, p_1_0, ..., p_nt-1_nc-1]\n where nc is the number of copies of the prompt, and nt is the number of tasks.\n nc is such that num_sample = nc * batch_size\n\n Parameters\n ----------\n accelerator: Accelerator\n\n model: transformers.PreTrainedModel\n Code generation model. AutoTokenizer.from_pretrained(model_ckpt), ex model_ckpt = \"lvwerra/codeparrot\"\n\n tokenizer: transformers.AutoTokenizer\n The tokenizer used to train model\n\n dataloader: DataLoader\n The dataloader is a wrapper around a TokenizeDataset object. It is designed to be used with multiple GPUs.\n\n n_tasks: int\n The number of tasks in the dataset. It is used to determine the length of the output.\n Should be aligned with the number of tasks in the TokenizeDataset.\n\n batch_size: int\n num_return_sequences per copy of the prompt such that num_sample = batch_size * n_copies\n\n gen_kwargs: dict\n Keyword arguments for the generation function of the model.\n\n Returns\n -------\n code_gens: list of list of str, of length n_tasks\n List of generated codes for each task.\n Each element is a list of generated codes for each task, with length num_samples\n ",
"language": "en",
"n_whitespaces": 327,
"n_words": 207,
"vocab_size": 115
} | def complete_code(accelerator, model, tokenizer, dataloader, n_tasks, batch_size=20, **gen_kwargs):
gen_token_dict = defaultdict(list) # dict of list of generated tokens
for step, batch in tqdm(enumerate(dataloader)):
with torch.no_grad():
gen_kwargs["stopping_criteria"][0].start_length = batch["ids"].shape[-1]
generated_tokens = accelerator.unwrap_model(model).generate(
input_ids=batch["ids"][:, : batch["input_len"]], num_return_sequences=batch_size, **gen_kwargs
)
# each task is generated batch_size times
generated_tasks = batch["task_id"].repeat(batch_size)
generated_tokens = accelerator.pad_across_processes(
generated_tokens, dim=1, pad_index=tokenizer.pad_token_id
)
generated_tokens, generated_tasks = accelerator.gather((generated_tokens, generated_tasks))
generated_tokens = generated_tokens.cpu().numpy()
generated_tasks = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(generated_tasks, generated_tokens):
gen_token_dict[task].append(generated_tokens)
code_gens = [[] for _ in range(n_tasks)]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
gen_code = tokenizer.decode(s, skip_special_tokens=True, clean_up_tokenization_spaces=True)
code_gens[task].append(remove_last_block(gen_code))
return code_gens
|
|
13,993 | 65,710 | 20 | erpnext/crm/doctype/contract/contract.py | 27 | 6 | def get_status(start_date, end_date):
if not end_date:
return "Active"
start_date = getdate(start_date)
end_date = getdate(end_date)
now_date = getdate(nowdate())
return "Active" if start_date <= now_date <= end_date els | style: format code with black | get_status | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | contract.py | 10 | 7 | https://github.com/frappe/erpnext.git | 3 | 44 | 0 | 18 | 78 | Python | {
"docstring": "\n\tGet a Contract's status based on the start, current and end dates\n\n\tArgs:\n\t start_date (str): The start date of the contract\n\t end_date (str): The end date of the contract\n\n\tReturns:\n\t str: 'Active' if within range, otherwise 'Inactive'\n\t",
"language": "en",
"n_whitespaces": 55,
"n_words": 37,
"vocab_size": 29
} | def get_status(start_date, end_date):
if not end_date:
return "Active"
start_date = getdate(start_date)
end_date = getdate(end_date)
now_date = getdate(nowdate())
return "Active" if start_date <= now_date <= end_date else "Inactive"
|
|
2,946 | 19,358 | 40 | PathPlanning/CubicSpline/cubic_spline_planner.py | 12 | 7 | def calc_position(self, s):
x = self.sx.calc_position(s)
y = self.sy.calc_positi | enhance cubic spline path doc (#698)
* enhance cublic spline path doc
* enhance cublic spline path doc
* enhance cublic spline path doc
* enhance cublic spline path doc
* enhance cublic spline path doc
* enhance cublic spline path doc
* enhance cublic spline path doc
* enhance cublic spline path doc
* enhance cublic spline path doc
* enhance cublic spline path doc
* enhance cublic spline path doc
* enhance cubic spline path doc
* enhance cubic spline path doc
* enhance cubic spline path doc
* enhance cubic spline path doc
* enhance cubic spline path doc
* enhance cubic spline path doc
* enhance cubic spline path doc
* enhance cubic spline path doc
* enhance cubic spline path doc
* enhance cubic spline path doc
* enhance cubic spline path doc
* enhance cubic spline path doc
* enhance cubic spline path doc
* enhance cubic spline path doc | calc_position | def289b723e9216830c2a7b2577cb31b55710167 | PythonRobotics | cubic_spline_planner.py | 9 | 4 | https://github.com/AtsushiSakai/PythonRobotics.git | 1 | 32 | 0 | 10 | 53 | Python | {
"docstring": "\n calc position\n\n Parameters\n ----------\n s : float\n distance from the start point. if `s` is outside the data point's\n range, return None.\n\n Returns\n -------\n x : float\n x position for given s.\n y : float\n y position for given s.\n ",
"language": "en",
"n_whitespaces": 148,
"n_words": 40,
"vocab_size": 28
} | def calc_position(self, s):
x = self.sx.calc_position(s)
y = self.sy.calc_position(s)
return x, y
|
|
56,482 | 221,712 | 156 | python3.10.4/Lib/contextlib.py | 55 | 10 | def push(self, exit):
# We use an unbound method rather than a bound method to follow
# the standard lookup behaviour for special methods.
_cb_type = type(exit)
try:
exit_method = _cb_type.__exit__
except AttributeError:
# Not a context manager, so assume it's a callable.
sel | add python 3.10.4 for windows | push | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | contextlib.py | 10 | 9 | https://github.com/XX-net/XX-Net.git | 2 | 42 | 0 | 46 | 75 | Python | {
"docstring": "Registers a callback with the standard __exit__ method signature.\n\n Can suppress exceptions the same way __exit__ method can.\n Also accepts any object with an __exit__ method (registering a call\n to the method instead of the object itself).\n ",
"language": "en",
"n_whitespaces": 65,
"n_words": 37,
"vocab_size": 26
} | def push(self, exit):
# We use an unbound method rather than a bound method to follow
# the standard lookup behaviour for special methods.
_cb_type = type(exit)
try:
exit_method = _cb_type.__exit__
except AttributeError:
# Not a context manager, so assume it's a callable.
self._push_exit_callback(exit)
else:
self._push_cm_exit(exit, exit_method)
return exit # Allow use as a decorator.
|
|
104,431 | 305,647 | 57 | homeassistant/components/mpd/media_player.py | 14 | 6 | async def async_media_play(self) -> None:
if se | Improve entity type hints [m] (#77816) | async_media_play | 6355e682fa4aeb526570597d919ad1fb76755b9a | core | media_player.py | 12 | 6 | https://github.com/home-assistant/core.git | 2 | 37 | 0 | 13 | 69 | Python | {
"docstring": "Service to send the MPD the command for play/pause.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 8
} | async def async_media_play(self) -> None:
if self._status["state"] == "pause":
await self._client.pause(0)
else:
await self._client.play()
|
|
14,439 | 67,193 | 70 | erpnext/regional/report/datev/datev.py | 109 | 38 | def download_datev_csv(filters):
if isinstance(filters, str):
filters = json.loads(filters)
validate(filters)
company = filters.get("company")
fiscal_year = get_fiscal_year(date=filters.get("from_date"), company=company)
filters["fiscal_year_start"] = fiscal_year[1]
# set chart of accounts used
coa = frappe.get_value("Company", company, "chart_of_accounts")
filters["skr"] = "04" if "SKR04" in coa else ("03" if "SKR03" in coa else "")
datev_settings = frappe.get_doc("DATEV Settings", company)
filters["account_number_length"] = datev_settings.account_number_length
filters["temporary_against_account_number"] = datev_settings.temporary_against_account_number
transactions = get_transactions(filters)
account_names = get_account_names(filters)
customers = get_customers(filters)
suppliers = get_suppliers(filters)
zip_name = "{} DATEV.zip".format(frappe.utils.datetime.date.today())
zip_and_download(
zip_name,
[
{
"file_name": "EXTF_Buchungsstapel.csv",
"csv_data": get_datev_csv(transactions, filters, csv_class=Transactions),
},
{
"file_name": "EXTF_Kontenbeschriftungen.csv",
"csv_data": get_datev_csv(account_names, filters, csv_class=Accoun | style: format code with black | download_datev_csv | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | datev.py | 13 | 38 | https://github.com/frappe/erpnext.git | 4 | 248 | 0 | 74 | 421 | Python | {
"docstring": "\n\tProvide accounting entries for download in DATEV format.\n\n\tValidate the filters, get the data, produce the CSV file and provide it for\n\tdownload. Can be called like this:\n\n\tGET /api/method/erpnext.regional.report.datev.datev.download_datev_csv\n\n\tArguments / Params:\n\tfilters -- dict of filters to be passed to the sql query\n\t",
"language": "en",
"n_whitespaces": 39,
"n_words": 45,
"vocab_size": 38
} | def download_datev_csv(filters):
if isinstance(filters, str):
filters = json.loads(filters)
validate(filters)
company = filters.get("company")
fiscal_year = get_fiscal_year(date=filters.get("from_date"), company=company)
filters["fiscal_year_start"] = fiscal_year[1]
# set chart of accounts used
coa = frappe.get_value("Company", company, "chart_of_accounts")
filters["skr"] = "04" if "SKR04" in coa else ("03" if "SKR03" in coa else "")
datev_settings = frappe.get_doc("DATEV Settings", company)
filters["account_number_length"] = datev_settings.account_number_length
filters["temporary_against_account_number"] = datev_settings.temporary_against_account_number
transactions = get_transactions(filters)
account_names = get_account_names(filters)
customers = get_customers(filters)
suppliers = get_suppliers(filters)
zip_name = "{} DATEV.zip".format(frappe.utils.datetime.date.today())
zip_and_download(
zip_name,
[
{
"file_name": "EXTF_Buchungsstapel.csv",
"csv_data": get_datev_csv(transactions, filters, csv_class=Transactions),
},
{
"file_name": "EXTF_Kontenbeschriftungen.csv",
"csv_data": get_datev_csv(account_names, filters, csv_class=AccountNames),
},
{
"file_name": "EXTF_Kunden.csv",
"csv_data": get_datev_csv(customers, filters, csv_class=DebtorsCreditors),
},
{
"file_name": "EXTF_Lieferanten.csv",
"csv_data": get_datev_csv(suppliers, filters, csv_class=DebtorsCreditors),
},
],
)
|
|
7,606 | 42,544 | 55 | nltk/parse/util.py | 28 | 10 | def taggedsent_to_conll(sentence):
| Docstring tests (#3050)
* fixed pytests
* fixed more pytests
* fixed more pytest and changed multiline pytest issues fixes for snowball.py and causal.py
* fixed pytests (mainly multiline or rounding issues)
* fixed treebank pytests, removed test for return_string=True (deprecated)
* fixed destructive.py pytests, removed test for return_string=True (deprecated)
* fixed pytest (rounding issues)
* fixed pytest (initialised missing object)
* fixed pytest (formatting issues)
* fixed pytest (formatting issues)
* fixed pytest (formatting issues)
* added pytest +SKIP for deprecated module stanford
* updated AUTHORS.md
* changed docstring corrections by usage of ELLIPSIS and different roundings
* fixed AUTHORS.md to be consistent
* Fix framenet doctest formatting with pprint
* Change docstring on MultiListBox.__init__
I believe the original typo was misinterpreted and changed to something that was not originally intended.
Co-authored-by: Jan Lennartz <jan.lennartz@ing.com>
Co-authored-by: Tom Aarsen <37621491+tomaarsen@users.noreply.github.com>
Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com> | taggedsent_to_conll | 8a4cf5d94eb94b6427c5d1d7907ba07b119932c5 | nltk | util.py | 12 | 5 | https://github.com/nltk/nltk.git | 2 | 64 | 0 | 22 | 109 | Python | {
"docstring": "\n A module to convert a single POS tagged sentence into CONLL format.\n\n >>> from nltk import word_tokenize, pos_tag\n >>> text = \"This is a foobar sentence.\"\n >>> for line in taggedsent_to_conll(pos_tag(word_tokenize(text))): # doctest: +NORMALIZE_WHITESPACE\n ... \tprint(line, end=\"\")\n 1\tThis\t_\tDT\tDT\t_\t0\ta\t_\t_\n 2\tis\t_\tVBZ\tVBZ\t_\t0\ta\t_\t_\n 3\ta\t_\tDT\tDT\t_\t0\ta\t_\t_\n 4\tfoobar\t_\tJJ\tJJ\t_\t0\ta\t_\t_\n 5\tsentence\t_\tNN\tNN\t_\t0\ta\t_\t_\n 6\t.\t\t_\t.\t.\t_\t0\ta\t_\t_\n\n :param sentence: A single input sentence to parse\n :type sentence: list(tuple(str, str))\n :rtype: iter(str)\n :return: a generator yielding a single sentence in CONLL format.\n ",
"language": "en",
"n_whitespaces": 140,
"n_words": 121,
"vocab_size": 60
} | def taggedsent_to_conll(sentence):
for (i, (word, tag)) in enumerate(sentence, start=1):
input_str = [str(i), word, "_", tag, tag, "_", "0", "a", "_", "_"]
input_str = "\t".join(input_str) + "\n"
yield input_str
|
|
51,596 | 206,637 | 51 | django/utils/encoding.py | 19 | 8 | def get_system_encoding():
try:
encoding = locale.getdefaultlocale()[1] or "ascii"
codecs.lookup(en | Refs #33476 -- Reformatted code with Black. | get_system_encoding | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | encoding.py | 12 | 7 | https://github.com/django/django.git | 3 | 33 | 0 | 14 | 71 | Python | {
"docstring": "\n The encoding of the default system locale. Fallback to 'ascii' if the\n #encoding is unsupported by Python or could not be determined. See tickets\n #10335 and #5846.\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 27,
"vocab_size": 26
} | def get_system_encoding():
try:
encoding = locale.getdefaultlocale()[1] or "ascii"
codecs.lookup(encoding)
except Exception:
encoding = "ascii"
return encoding
DEFAULT_LOCALE_ENCODING = get_system_encoding()
|
|
16,728 | 77,977 | 47 | wagtail/contrib/modeladmin/options.py | 11 | 9 | def get_menu_item(self):
if self.modeladmin_instances:
submenu = Menu(items=self.g | Deprecate wagtail.contrib.modeladmin.menus.SubMenu in favour of wagtail.admin.menu.Menu
The Menu class was not originally designed to accept menu items at constructor time (instead requiring them to be passed via hooks); ModelAdmin's SubMenu class patched this functionality in, and the documentation for extending admin views piggybacked on this. Add this functionality to the base Menu class so that we don't have this unnecessary dependency on ModelAdmin. | get_menu_item | b8a9a2d319b06fc2318d68d05b5a6cdf85b5b33d | wagtail | options.py | 13 | 4 | https://github.com/wagtail/wagtail.git | 2 | 36 | 0 | 11 | 60 | Python | {
"docstring": "\n Utilised by Wagtail's 'register_menu_item' hook to create a menu\n for this group with a submenu linking to listing pages for any\n associated ModelAdmin instances\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 24,
"vocab_size": 21
} | def get_menu_item(self):
if self.modeladmin_instances:
submenu = Menu(items=self.get_submenu_items())
return GroupMenuItem(self, self.get_menu_order(), submenu)
|
|
24,258 | 110,702 | 73 | lib/matplotlib/backend_bases.py | 27 | 17 | def _draw_text_as_path(self, gc, x, y, s, prop, angle, ismath):
path, transform = self._get_text_path_transform(
| Soft deprecate the textpath module (import from text instead)
The textpath module was created in 2009, but the status has
been a bit vague with many examples and exisiting code found
on the internet importing from text instead.
In this PR everything is changed to point at text, although textpath
is still available for backwards compatibility. | _draw_text_as_path | 9b8a598d00a4fcf9579415586053583ef80a1add | matplotlib | backend_bases.py | 8 | 6 | https://github.com/matplotlib/matplotlib.git | 1 | 69 | 0 | 20 | 94 | Python | {
"docstring": "\n Draw the text by converting them to paths using `.TextToPath`.\n\n Parameters\n ----------\n x : float\n The x location of the text in display coords.\n y : float\n The y location of the text baseline in display coords.\n s : str\n The text to be converted.\n prop : `~matplotlib.font_manager.FontProperties`\n The font property.\n angle : float\n Angle in degrees to render the text at.\n ismath : bool or \"TeX\"\n If True, use mathtext parser. If \"TeX\", use tex for rendering.\n ",
"language": "en",
"n_whitespaces": 215,
"n_words": 78,
"vocab_size": 49
} | def _draw_text_as_path(self, gc, x, y, s, prop, angle, ismath):
path, transform = self._get_text_path_transform(
x, y, s, prop, angle, ismath)
color = gc.get_rgb()
gc.set_linewidth(0.0)
self.draw_path(gc, path, transform, rgbFace=color)
|
|
6,912 | 38,114 | 341 | examples/research_projects/lxmert/modeling_frcnn.py | 128 | 27 | def __call__(self, match_quality_matrix):
assert match_quality_matrix.dim() == 2
if match_quality_matrix.numel() == 0:
default_matches = match_quality_matrix.new_full((match_quality_matrix.size(1),), 0, dtype=torch.int64)
# When no gt boxes exist, we define IOU = 0 and therefore set labels
# to `self.labels[0]`, which usually defaults to background class 0
# To choose to ignore instead,
# can make labels=[-1,0,-1,1] + set appropriate thresholds
default_match_labels = match_quality_matrix.new_full(
| Black preview (#17217)
* Black preview
* Fixup too!
* Fix check copies
* Use the same version as the CI
* Bump black | __call__ | afe5d42d8d1d80af911ed980c2936bfe887078f6 | transformers | modeling_frcnn.py | 13 | 17 | https://github.com/huggingface/transformers.git | 4 | 190 | 0 | 100 | 294 | Python | {
"docstring": "\n Args:\n match_quality_matrix (Tensor[float]): an MxN tensor, containing the pairwise quality between M ground-truth elements and N predicted\n elements. All elements must be >= 0 (due to the us of `torch.nonzero` for selecting indices in :meth:`set_low_quality_matches_`).\n Returns:\n matches (Tensor[int64]): a vector of length N, where matches[i] is a matched ground-truth index in [0, M)\n match_labels (Tensor[int8]): a vector of length N, where pred_labels[i] indicates true or false positive or ignored\n ",
"language": "en",
"n_whitespaces": 139,
"n_words": 69,
"vocab_size": 56
} | def __call__(self, match_quality_matrix):
assert match_quality_matrix.dim() == 2
if match_quality_matrix.numel() == 0:
default_matches = match_quality_matrix.new_full((match_quality_matrix.size(1),), 0, dtype=torch.int64)
# When no gt boxes exist, we define IOU = 0 and therefore set labels
# to `self.labels[0]`, which usually defaults to background class 0
# To choose to ignore instead,
# can make labels=[-1,0,-1,1] + set appropriate thresholds
default_match_labels = match_quality_matrix.new_full(
(match_quality_matrix.size(1),), self.labels[0], dtype=torch.int8
)
return default_matches, default_match_labels
assert torch.all(match_quality_matrix >= 0)
# match_quality_matrix is M (gt) x N (predicted)
# Max over gt elements (dim 0) to find best gt candidate for each prediction
matched_vals, matches = match_quality_matrix.max(dim=0)
match_labels = matches.new_full(matches.size(), 1, dtype=torch.int8)
for l, low, high in zip(self.labels, self.thresholds[:-1], self.thresholds[1:]):
low_high = (matched_vals >= low) & (matched_vals < high)
match_labels[low_high] = l
if self.allow_low_quality_matches:
self.set_low_quality_matches_(match_labels, match_quality_matrix)
return matches, match_labels
|
|
else: | 55,318 | 218,453 | 25 | python3.10.4/Lib/inspect.py | 9 | 6 | def ismemberdescriptor(object):
return isinstance(object, types.MemberDescriptorType)
else:
# | add python 3.10.4 for windows | ismemberdescriptor | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | inspect.py | 8 | 2 | https://github.com/XX-net/XX-Net.git | 1 | 15 | 1 | 9 | 30 | Python | {
"docstring": "Return true if the object is a member descriptor.\n\n Member descriptors are specialized descriptors defined in extension\n modules.",
"language": "en",
"n_whitespaces": 31,
"n_words": 18,
"vocab_size": 17
} | def ismemberdescriptor(object):
return isinstance(object, types.MemberDescriptorType)
else:
# Other implementations |
35,336 | 153,268 | 142 | modin/core/dataframe/base/exchange/dataframe_protocol/utils.py | 62 | 22 | def pandas_dtype_to_arrow_c(dtype) -> str:
if isinstance(dtype, pandas.CategoricalDtype):
return ArrowCTypes.INT64
elif dtype == np.dtype("O"):
return ArrowCTypes.STRING
format_str = getattr(ArrowCTypes, dtype.name.upper(), None)
if format_str is not None:
return format_str
if is_datetime64_dtype(dtype):
# Selecting the first char of resolution string:
# dtype.str -> '<M8[ns]'
resolution | FEAT-#4245: Define base interface for dataframe exchange protocol (#4246)
Signed-off-by: Igoshev, Yaroslav <yaroslav.igoshev@intel.com>
Co-authored-by: Dmitry Chigarev <dmitry.chigarev@intel.com> | pandas_dtype_to_arrow_c | fc539c3d70a40c9d7aabc5c50dd7280aa5e4637e | modin | utils.py | 13 | 27 | https://github.com/modin-project/modin.git | 5 | 107 | 0 | 48 | 177 | Python | {
"docstring": "\n Represent pandas `dtype` as a format string in Apache Arrow C notation.\n\n Parameters\n ----------\n dtype : np.dtype\n Datatype of pandas DataFrame to represent.\n\n Returns\n -------\n str\n Format string in Apache Arrow C notation of the given `dtype`.\n ",
"language": "en",
"n_whitespaces": 76,
"n_words": 37,
"vocab_size": 30
} | def pandas_dtype_to_arrow_c(dtype) -> str:
if isinstance(dtype, pandas.CategoricalDtype):
return ArrowCTypes.INT64
elif dtype == np.dtype("O"):
return ArrowCTypes.STRING
format_str = getattr(ArrowCTypes, dtype.name.upper(), None)
if format_str is not None:
return format_str
if is_datetime64_dtype(dtype):
# Selecting the first char of resolution string:
# dtype.str -> '<M8[ns]'
resolution = re.findall(r"\[(.*)\]", dtype.str)[0][:1]
return ArrowCTypes.TIMESTAMP.format(resolution=resolution, tz="")
raise NotImplementedError(
f"Convertion of {dtype} to Arrow C format string is not implemented."
)
|
|
40,759 | 172,105 | 32 | pandas/core/dtypes/inference.py | 16 | 4 | def is_file_like(obj) -> bool:
if not (hasattr(obj, "read") or hasattr(obj, "write")):
return False
| Fix some dosctring RT02 error (#50197) | is_file_like | bce995817caf00ab5e82cb4cf1b540f1530cf4ea | pandas | inference.py | 11 | 32 | https://github.com/pandas-dev/pandas.git | 3 | 38 | 0 | 15 | 67 | Python | {
"docstring": "\n Check if the object is a file-like object.\n\n For objects to be considered file-like, they must\n be an iterator AND have either a `read` and/or `write`\n method as an attribute.\n\n Note: file-like objects must be iterable, but\n iterable objects need not be file-like.\n\n Parameters\n ----------\n obj : The object to check\n\n Returns\n -------\n bool\n Whether `obj` has file-like properties.\n\n Examples\n --------\n >>> import io\n >>> buffer = io.StringIO(\"data\")\n >>> is_file_like(buffer)\n True\n >>> is_file_like([1, 2, 3])\n False\n ",
"language": "en",
"n_whitespaces": 147,
"n_words": 76,
"vocab_size": 61
} | def is_file_like(obj) -> bool:
if not (hasattr(obj, "read") or hasattr(obj, "write")):
return False
return bool(hasattr(obj, "__iter__"))
|
|
645 | 4,252 | 23 | octavia-cli/octavia_cli/apply/resources.py | 9 | 9 | def update(self) -> Union[SourceRead, DestinationRead, ConnectionRead]:
return self._create_or_update(self._update_fn, self.update_payload)
| 🐙 octavia-cli: `apply` connections (#10881) | update | 56bf982cb96f831fe04f5e44a92ee4a669b9e16a | airbyte | resources.py | 8 | 7 | https://github.com/airbytehq/airbyte.git | 1 | 28 | 0 | 9 | 43 | Python | {
"docstring": "Public function to update the resource on the remote Airbyte instance.\n\n Returns:\n Union[SourceRead, DestinationRead, ConnectionRead]: The updated resource.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 18,
"vocab_size": 17
} | def update(self) -> Union[SourceRead, DestinationRead, ConnectionRead]:
return self._create_or_update(self._update_fn, self.update_payload)
|
|
71,802 | 247,638 | 347 | tests/handlers/test_oidc.py | 90 | 17 | def test_callback_session(self) -> None:
request = Mock(spec=["args", "getCookie", "cookies"])
# Missing cookie
request.args = {}
request.getCookie.return_value = None
self.get_success(self.handler.handle_oidc_callback(request))
self.assertRenderedError("missing_session", "No session cookie found")
# Missing session parameter
request.args = {}
request.getCookie.return_value = "session"
self.get_success(self.handler.handle_oidc_callback(request))
self.assertRenderedError("invalid_request", "State parameter is missing")
# Invalid cookie
request.args = {}
request.args[b"state"] = [b"state"]
request.getCookie.return_value = "session"
self.get_success(self.handler.handle_oidc_callback(request))
self.assertRenderedError("invalid_session")
# Mismatching session
session = self._generate_oidc_session_token(
state="state",
nonce="nonce",
client_redirect_url="http://client/redirect",
)
request.args = {}
request.args[b"state"] = [b"mismatching state"]
request.getCookie.return_value = session
self.get_success(self.handler.handle_oidc_callback(request))
self.assertRenderedError("mismatching_session")
# Valid session
request.args = {}
request.args[b"state"] = [b"state"]
request.getCookie.return_value = session
self.get_success(self.handler.handle_oidc_callback(request))
self.assert | Add type hints to some tests/handlers files. (#12224) | test_callback_session | 5dd949bee6158a8b651db9f2ae417a62c8184bfd | synapse | test_oidc.py | 11 | 31 | https://github.com/matrix-org/synapse.git | 1 | 241 | 0 | 42 | 419 | Python | {
"docstring": "The callback verifies the session presence and validity",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | def test_callback_session(self) -> None:
request = Mock(spec=["args", "getCookie", "cookies"])
# Missing cookie
request.args = {}
request.getCookie.return_value = None
self.get_success(self.handler.handle_oidc_callback(request))
self.assertRenderedError("missing_session", "No session cookie found")
# Missing session parameter
request.args = {}
request.getCookie.return_value = "session"
self.get_success(self.handler.handle_oidc_callback(request))
self.assertRenderedError("invalid_request", "State parameter is missing")
# Invalid cookie
request.args = {}
request.args[b"state"] = [b"state"]
request.getCookie.return_value = "session"
self.get_success(self.handler.handle_oidc_callback(request))
self.assertRenderedError("invalid_session")
# Mismatching session
session = self._generate_oidc_session_token(
state="state",
nonce="nonce",
client_redirect_url="http://client/redirect",
)
request.args = {}
request.args[b"state"] = [b"mismatching state"]
request.getCookie.return_value = session
self.get_success(self.handler.handle_oidc_callback(request))
self.assertRenderedError("mismatching_session")
# Valid session
request.args = {}
request.args[b"state"] = [b"state"]
request.getCookie.return_value = session
self.get_success(self.handler.handle_oidc_callback(request))
self.assertRenderedError("invalid_request")
|
|
11,867 | 59,100 | 140 | src/prefect/filesystems.py | 35 | 18 | def _create_repo_url(self) -> str:
url_components = urllib.parse.urlparse(self.repository_url)
if url_components.scheme == "https" and self.credentials is not None:
repo_url = url_components.netloc + url_components.path
updated_components = url_components._replace(
netloc=f"{self.credentials.get_se | Add private repos | _create_repo_url | bbee097653559003fa0db61ab00f1ff8567eea9a | prefect | filesystems.py | 16 | 16 | https://github.com/PrefectHQ/prefect.git | 3 | 73 | 0 | 29 | 142 | Python | {
"docstring": "Format the URL provided to the `git clone` command.\n\n For private repos: https://<oauth-key>@github.com/<username>/<repo>.git\n All other repos should be the same as `self.repository`.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 22,
"vocab_size": 20
} | def _create_repo_url(self) -> str:
url_components = urllib.parse.urlparse(self.repository_url)
if url_components.scheme == "https" and self.credentials is not None:
repo_url = url_components.netloc + url_components.path
updated_components = url_components._replace(
netloc=f"{self.credentials.get_secret_value()}@{url_components.netloc}"
)
full_url = urllib.parse.urlunparse(updated_components)
else:
full_url = self.repository_url
return full_url
|
|
51,882 | 207,149 | 20 | tests/admin_filters/tests.py | 6 | 6 | def test_lookup_with_dynamic_value(self):
| Refs #33476 -- Reformatted code with Black. | test_lookup_with_dynamic_value | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | tests.py | 8 | 14 | https://github.com/django/django.git | 1 | 86 | 0 | 6 | 25 | Python | {
"docstring": "\n Ensure SimpleListFilter can access self.value() inside the lookup.\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 8,
"vocab_size": 8
} | def test_lookup_with_dynamic_value(self):
modeladmin = DepartmentFilterDynamicValueBookAdmin(Book, site)
|
|
6,164 | 33,821 | 952 | tests/test_tokenization_common.py | 144 | 32 | def test_batch_encode_dynamic_overflowing(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name}, {tokenizer.__class__.__name__})"):
if is_torch_available():
returned_tensor = "pt"
elif is_tf_available():
returned_tensor = "tf"
elif is_flax_available():
returned_tensor = "jax"
else:
return
if not tokenizer.pad_token or tokenizer.pad_token_id < 0:
return
tokens = | Fix custom tokenizers test (#19052)
* Fix CI for custom tokenizers
* Add nightly tests
* Run CI, run!
* Fix paths
* Typos
* Fix test | test_batch_encode_dynamic_overflowing | f7ce4f1ff789c11f129597a1171b5d549d102e09 | transformers | test_tokenization_common.py | 17 | 46 | https://github.com/huggingface/transformers.git | 10 | 314 | 0 | 71 | 521 | Python | {
"docstring": "\n When calling batch_encode with multiple sequence it can returns different number of\n overflowing encoding for each sequence:\n [\n Sequence 1: [Encoding 1, Encoding 2],\n Sequence 2: [Encoding 1],\n Sequence 3: [Encoding 1, Encoding 2, ... Encoding N]\n ]\n This needs to be padded so that it can represented as a tensor\n ",
"language": "en",
"n_whitespaces": 121,
"n_words": 51,
"vocab_size": 42
} | def test_batch_encode_dynamic_overflowing(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name}, {tokenizer.__class__.__name__})"):
if is_torch_available():
returned_tensor = "pt"
elif is_tf_available():
returned_tensor = "tf"
elif is_flax_available():
returned_tensor = "jax"
else:
return
if not tokenizer.pad_token or tokenizer.pad_token_id < 0:
return
tokens = tokenizer.encode_plus(
"HuggingFace is solving NLP one commit at a time",
max_length=6,
padding=True,
truncation=True,
return_tensors=returned_tensor,
return_overflowing_tokens=True,
)
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
self.assertEqual(len(tokens[key].shape), 2)
# Mono sample
tokens = tokenizer.batch_encode_plus(
["HuggingFace is solving NLP one commit at a time"],
max_length=6,
padding=True,
truncation="only_first",
return_tensors=returned_tensor,
return_overflowing_tokens=True,
)
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
self.assertEqual(len(tokens[key].shape), 2)
self.assertEqual(tokens[key].shape[-1], 6)
# Multi sample
tokens = tokenizer.batch_encode_plus(
["HuggingFace is solving NLP one commit at a time", "Very tiny input"],
max_length=6,
padding=True,
truncation="only_first",
return_tensors=returned_tensor,
return_overflowing_tokens=True,
)
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
self.assertEqual(len(tokens[key].shape), 2)
self.assertEqual(tokens[key].shape[-1], 6)
|
|
@keras_export("keras.optimizers.get") | 81,339 | 275,215 | 300 | keras/optimizers/__init__.py | 106 | 34 | def deserialize(config, custom_objects=None):
# loss_scale_optimizer has a direct dependency of optimizer, import here
# rather than top to avoid the cyclic dependency.
from keras.mixed_precision import (
loss_scale_optimizer,
) # pylint: disable=g-import-not-at-top
all_classes = {
"adadelta": adadelta_v2.Adadelta,
"adagrad": adagrad_v2.Adagrad,
"adam": adam_v2.Adam,
"adamax": adamax_v2.Adamax,
"experimentaladadelta": adadelta_experimental.Adadelta,
"experimentaladagrad": adagrad_experimental.Adagrad,
"experimentaladam": adam_experimental.Adam,
"experimentalsgd": sgd_experimental.SGD,
"nadam": nadam_v2.Nadam,
"rmsprop": rmsprop_v2.RMSprop,
"sgd": gradient_descent_v2.SGD,
"ftrl": ftrl.Ftrl,
"lossscaleoptimizer": loss_scale_optimizer.LossScaleOptimizer,
"lossscaleoptimizerv3": loss_scale_optimizer.LossScaleOptimizerV3,
# LossScaleOptimizerV1 was an old version of LSO that was removed.
# Deserializing it turns it into a LossScaleOptimizer
"lossscaleoptimizerv1": loss_scale_optimizer.LossScaleOptimizer,
}
# Make deserialization case-insensitive for built-in optimizers.
if config["class_name"].lower() in all_classes:
config["class_name"] = config["class_name"].lower()
return deserialize_keras_object(
config,
module_objects=all_classes,
custom_objects=custom_objects,
printable_module_name="optimizer",
)
@keras_export("keras | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | deserialize | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | __init__.py | 12 | 29 | https://github.com/keras-team/keras.git | 2 | 156 | 1 | 92 | 275 | Python | {
"docstring": "Inverse of the `serialize` function.\n\n Args:\n config: Optimizer configuration dictionary.\n custom_objects: Optional dictionary mapping names (strings) to custom\n objects (classes and functions) to be considered during deserialization.\n\n Returns:\n A Keras Optimizer instance.\n ",
"language": "en",
"n_whitespaces": 71,
"n_words": 32,
"vocab_size": 30
} | def deserialize(config, custom_objects=None):
# loss_scale_optimizer has a direct dependency of optimizer, import here
# rather than top to avoid the cyclic dependency.
from keras.mixed_precision import (
loss_scale_optimizer,
) # pylint: disable=g-import-not-at-top
all_classes = {
"adadelta": adadelta_v2.Adadelta,
"adagrad": adagrad_v2.Adagrad,
"adam": adam_v2.Adam,
"adamax": adamax_v2.Adamax,
"experimentaladadelta": adadelta_experimental.Adadelta,
"experimentaladagrad": adagrad_experimental.Adagrad,
"experimentaladam": adam_experimental.Adam,
"experimentalsgd": sgd_experimental.SGD,
"nadam": nadam_v2.Nadam,
"rmsprop": rmsprop_v2.RMSprop,
"sgd": gradient_descent_v2.SGD,
"ftrl": ftrl.Ftrl,
"lossscaleoptimizer": loss_scale_optimizer.LossScaleOptimizer,
"lossscaleoptimizerv3": loss_scale_optimizer.LossScaleOptimizerV3,
# LossScaleOptimizerV1 was an old version of LSO that was removed.
# Deserializing it turns it into a LossScaleOptimizer
"lossscaleoptimizerv1": loss_scale_optimizer.LossScaleOptimizer,
}
# Make deserialization case-insensitive for built-in optimizers.
if config["class_name"].lower() in all_classes:
config["class_name"] = config["class_name"].lower()
return deserialize_keras_object(
config,
module_objects=all_classes,
custom_objects=custom_objects,
printable_module_name="optimizer",
)
@keras_export("keras.optimizers.get") |
47,689 | 196,189 | 40 | sympy/combinatorics/permutations.py | 12 | 7 | def commutes_with(self, other):
a = s | Updated import locations | commutes_with | 498015021131af4dbb07eb110e5badaba8250c7b | sympy | permutations.py | 7 | 4 | https://github.com/sympy/sympy.git | 1 | 25 | 0 | 11 | 41 | Python | {
"docstring": "\n Checks if the elements are commuting.\n\n Examples\n ========\n\n >>> from sympy.combinatorics import Permutation\n >>> a = Permutation([1, 4, 3, 0, 2, 5])\n >>> b = Permutation([0, 1, 2, 3, 4, 5])\n >>> a.commutes_with(b)\n True\n >>> b = Permutation([2, 3, 5, 4, 1, 0])\n >>> a.commutes_with(b)\n False\n ",
"language": "en",
"n_whitespaces": 131,
"n_words": 46,
"vocab_size": 30
} | def commutes_with(self, other):
a = self.array_form
b = other.array_form
return _af_commutes_with(a, b)
|
|
3,396 | 20,492 | 28 | pipenv/patched/notpip/_vendor/pygments/styles/__init__.py | 12 | 5 | def get_all_styles():
yield from STYLE_MAP
for name, _ in find_plugin_styles():
yield | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | get_all_styles | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | __init__.py | 8 | 4 | https://github.com/pypa/pipenv.git | 2 | 19 | 0 | 11 | 35 | Python | {
"docstring": "Return a generator for all styles by name,\n both builtin and plugin.",
"language": "en",
"n_whitespaces": 14,
"n_words": 12,
"vocab_size": 12
} | def get_all_styles():
yield from STYLE_MAP
for name, _ in find_plugin_styles():
yield name
|
|
7,231 | 39,439 | 37 | recommenders/utils/python_utils.py | 18 | 12 | def lift(cooccurrence):
diag_rows, diag_cols = _get_row_and_column_matrix(co | Add new item similarity metrics for SAR (#1754)
* Add mutual information similarity in SAR
* Add lexicographers mutual information similarity for SAR
* Add cosine similarity for SAR
* Add inclusion index for SAR
* Typos
* Change SARSingleNode to SAR
* Convert item similarity matrix to np.array
* Update
* Update SAR tests
* Remove unused imports
* Add explanations for new similarity metrics | lift | 1d7341e93d1f03387699fb3c6ae0b6c0e464296f | recommenders | python_utils.py | 11 | 5 | https://github.com/microsoft/recommenders.git | 1 | 48 | 0 | 17 | 85 | Python | {
"docstring": "Helper method to calculate the Lift of a matrix of\n co-occurrences. In comparison with basic co-occurrence and Jaccard\n similarity, lift favours discoverability and serendipity, as\n opposed to co-occurrence that favours the most popular items, and\n Jaccard that is a compromise between the two.\n\n Args:\n cooccurrence (numpy.ndarray): The symmetric matrix of co-occurrences of items.\n\n Returns:\n numpy.ndarray: The matrix of Lifts between any two items.\n\n ",
"language": "en",
"n_whitespaces": 98,
"n_words": 63,
"vocab_size": 44
} | def lift(cooccurrence):
diag_rows, diag_cols = _get_row_and_column_matrix(cooccurrence.diagonal())
with np.errstate(invalid="ignore", divide="ignore"):
result = cooccurrence / (diag_rows * diag_cols)
return np.array(result)
|
|
22,841 | 107,629 | 37 | lib/matplotlib/artist.py | 12 | 4 | def update(self, props):
return self._update_props(
props, "{cls.__name__!r} object has no property {prop_name!r}")
| Clarify error message for bad keyword arguments.
`plot([], [], foo=42)` previously emitted
```
'Line2D' object has no property 'foo'
```
which refers to the Matplotlib-specific concept of "properties". It now
instead emits
```
Line2D.set() got an unexpected keyword argument 'foo'
```
which is modeled after the standard error message for unknown keyword
arguments.
(To maximize backcompat, the implementation goes through a new
_internal_update, which does *not* error when the same prop is passed
under different aliases. This could be changed later, but is not the
goal of this PR.) | update | d69be2554cf6d1ac711bf433b1d6f176e3290d4f | matplotlib | artist.py | 8 | 3 | https://github.com/matplotlib/matplotlib.git | 1 | 17 | 0 | 12 | 30 | Python | {
"docstring": "\n Update this artist's properties from the dict *props*.\n\n Parameters\n ----------\n props : dict\n ",
"language": "en",
"n_whitespaces": 49,
"n_words": 13,
"vocab_size": 12
} | def update(self, props):
return self._update_props(
props, "{cls.__name__!r} object has no property {prop_name!r}")
|
|
30,007 | 133,396 | 75 | python/ray/util/sgd/torch/worker_group.py | 22 | 11 | def new_workers_size(self):
remote_resources = ray.available_resources()
max_remote_workers = self._max_workers
new_remote_workers = min(remote_resources.get("CPU" | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | new_workers_size | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ray | worker_group.py | 13 | 7 | https://github.com/ray-project/ray.git | 2 | 55 | 0 | 16 | 92 | Python | {
"docstring": "Returns number of workers to create based on available resources.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | def new_workers_size(self):
remote_resources = ray.available_resources()
max_remote_workers = self._max_workers
new_remote_workers = min(remote_resources.get("CPU", 0), max_remote_workers)
if self._use_gpu:
new_remote_workers = min(remote_resources.get("GPU", 0), new_remote_workers)
return new_remote_workers
|
|
52,779 | 209,787 | 146 | scapy/arch/windows/__init__.py | 50 | 10 | def setmonitor(self, enable=True):
# type: (bool) -> bool
# We must reset the monitor cache
if enable:
res = self.setmode('monitor')
else:
res = self.setmode('managed')
if not res:
log_runtime.error("Npcap WlanHelper returned with an error code !")
self.cache_mode = None
t | [Hinty] Core typing: windows (#3684)
* Core typing: windows
Co-authored-by: Pierre <pierre@droids-corp.org> | setmonitor | a2b7a28faff1db058dd22ce097a268e0ad5d1d33 | scapy | __init__.py | 12 | 10 | https://github.com/secdev/scapy.git | 4 | 66 | 0 | 40 | 117 | Python | {
"docstring": "Alias for setmode('monitor') or setmode('managed')\n Only available with Npcap",
"language": "en",
"n_whitespaces": 15,
"n_words": 9,
"vocab_size": 9
} | def setmonitor(self, enable=True):
# type: (bool) -> bool
# We must reset the monitor cache
if enable:
res = self.setmode('monitor')
else:
res = self.setmode('managed')
if not res:
log_runtime.error("Npcap WlanHelper returned with an error code !")
self.cache_mode = None
tmp = self.cache_mode = self.ismonitor()
return tmp if enable else (not tmp)
|
|
57,477 | 225,607 | 393 | albumentations/augmentations/geometric/rotate.py | 195 | 26 | def _rotated_rect_with_max_area(h, w, angle):
angle = math.radians(angle)
width_is_longer = w >= h
side_long, side_short = (w, h) if width_is_longer else (h, w)
# since the solutions for angle, -angl | add `crop_border` option to Rotate (#1214) | _rotated_rect_with_max_area | a4d33e180c4407990afa1fc03aa079718d738ebd | albumentations | rotate.py | 14 | 17 | https://github.com/albumentations-team/albumentations.git | 5 | 233 | 0 | 102 | 347 | Python | {
"docstring": "\n Given a rectangle of size wxh that has been rotated by 'angle' (in\n degrees), computes the width and height of the largest possible\n axis-aligned rectangle (maximal area) within the rotated rectangle.\n\n Code from: https://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders\n ",
"language": "en",
"n_whitespaces": 70,
"n_words": 34,
"vocab_size": 29
} | def _rotated_rect_with_max_area(h, w, angle):
angle = math.radians(angle)
width_is_longer = w >= h
side_long, side_short = (w, h) if width_is_longer else (h, w)
# since the solutions for angle, -angle and 180-angle are all the same,
# it is sufficient to look at the first quadrant and the absolute values of sin,cos:
sin_a, cos_a = abs(math.sin(angle)), abs(math.cos(angle))
if side_short <= 2.0 * sin_a * cos_a * side_long or abs(sin_a - cos_a) < 1e-10:
# half constrained case: two crop corners touch the longer side,
# the other two corners are on the mid-line parallel to the longer line
x = 0.5 * side_short
wr, hr = (x / sin_a, x / cos_a) if width_is_longer else (x / cos_a, x / sin_a)
else:
# fully constrained case: crop touches all 4 sides
cos_2a = cos_a * cos_a - sin_a * sin_a
wr, hr = (w * cos_a - h * sin_a) / cos_2a, (h * cos_a - w * sin_a) / cos_2a
return dict(
x_min=max(0, int(w / 2 - wr / 2)),
x_max=min(w, int(w / 2 + wr / 2)),
y_min=max(0, int(h / 2 - hr / 2)),
y_max=min(h, int(h / 2 + hr / 2)),
)
|
|
3,362 | 20,426 | 84 | pipenv/patched/notpip/_vendor/pygments/lexer.py | 29 | 10 | def using(_other, **kwargs):
gt_kwargs = {}
if 'state' in kwargs:
s = kwargs.pop('state')
| check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | using | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | lexer.py | 13 | 13 | https://github.com/pypa/pipenv.git | 4 | 69 | 0 | 22 | 107 | Python | {
"docstring": "\n Callback that processes the match with a different lexer.\n\n The keyword arguments are forwarded to the lexer, except `state` which\n is handled separately.\n\n `state` specifies the state that the new lexer will start in, and can\n be an enumerable such as ('root', 'inline', 'string') or a simple\n string which is assumed to be on top of the root state.\n\n Note: For that to work, `_other` must not be an `ExtendedRegexLexer`.\n ",
"language": "en",
"n_whitespaces": 95,
"n_words": 70,
"vocab_size": 55
} | def using(_other, **kwargs):
gt_kwargs = {}
if 'state' in kwargs:
s = kwargs.pop('state')
if isinstance(s, (list, tuple)):
gt_kwargs['stack'] = s
else:
gt_kwargs['stack'] = ('root', s)
if _other is this: |
|
116,975 | 319,613 | 144 | src/documents/tests/test_api.py | 23 | 19 | def test_unset_document_storage_path(self):
self.assertEqual(Document.objects.filter(storage_path=None).count(), 5)
bulk_edit.set_storage_path(
[self.doc1.id],
self.sp1.id,
)
self.assertEqual(Document.objects.filter(storage_path=None).count(), 4)
bulk_edit.set_storage_path(
[self.doc1.id],
None,
)
self.assertEqual(Document.objects.filter(storage_path=None).count(), 5)
self.async_task | Feature: Dynamic document storage pathes (#916)
* Added devcontainer
* Add feature storage pathes
* Exclude tests and add versioning
* Check escaping
* Check escaping
* Check quoting
* Echo
* Escape
* Escape :
* Double escape \
* Escaping
* Remove if
* Escape colon
* Missing \
* Esacpe :
* Escape all
* test
* Remove sed
* Fix exclude
* Remove SED command
* Add LD_LIBRARY_PATH
* Adjusted to v1.7
* Updated test-cases
* Remove devcontainer
* Removed internal build-file
* Run pre-commit
* Corrected flak8 error
* Adjusted to v1.7
* Updated test-cases
* Corrected flak8 error
* Adjusted to new plural translations
* Small adjustments due to code-review backend
* Adjusted line-break
* Removed PAPERLESS prefix from settings variables
* Corrected style change due to search+replace
* First documentation draft
* Revert changes to Pipfile
* Add sphinx-autobuild with keep-outdated
* Revert merge error that results in wrong storage path is evaluated
* Adjust styles of generated files ...
* Adds additional testing to cover dynamic storage path functionality
* Remove unnecessary condition
* Add hint to edit storage path dialog
* Correct spelling of pathes to paths
* Minor documentation tweaks
* Minor typo
* improving wrapping of filter editor buttons with new storage path button
* Update .gitignore
* Fix select border radius in non input-groups
* Better storage path edit hint
* Add note to edit storage path dialog re document_renamer
* Add note to bulk edit storage path re document_renamer
* Rename FILTER_STORAGE_DIRECTORY to PATH
* Fix broken filter rule parsing
* Show default storage if unspecified
* Remove note re storage path on bulk edit
* Add basic validation of filename variables
Co-authored-by: Markus Kling <markus@markus-kling.net>
Co-authored-by: Trenton Holmes <holmes.trenton@gmail.com>
Co-authored-by: Michael Shamoon <4887959+shamoon@users.noreply.github.com>
Co-authored-by: Quinn Casey <quinn@quinncasey.com> | test_unset_document_storage_path | 69ef26dab04d51e7e102dcb33cd98ddc6ad975fd | paperless-ngx | test_api.py | 12 | 15 | https://github.com/paperless-ngx/paperless-ngx.git | 1 | 136 | 0 | 17 | 215 | Python | {
"docstring": "\n GIVEN:\n - 4 documents without defined storage path\n - 1 document with a defined storage\n WHEN:\n - Bulk edit called to remove storage path from 1 document\n THEN:\n - Single document storage path removed\n ",
"language": "en",
"n_whitespaces": 107,
"n_words": 34,
"vocab_size": 22
} | def test_unset_document_storage_path(self):
self.assertEqual(Document.objects.filter(storage_path=None).count(), 5)
bulk_edit.set_storage_path(
[self.doc1.id],
self.sp1.id,
)
self.assertEqual(Document.objects.filter(storage_path=None).count(), 4)
bulk_edit.set_storage_path(
[self.doc1.id],
None,
)
self.assertEqual(Document.objects.filter(storage_path=None).count(), 5)
self.async_task.assert_called()
args, kwargs = self.async_task.call_args
self.assertCountEqual(kwargs["document_ids"], [self.doc1.id])
|
|
26,314 | 118,602 | 25 | lib/tests/streamlit/cache_spinner_test.py | 4 | 6 | def test_with_spinner(self):
| Rename and refactor `Report` machinery (#4141)
This refactor renames (almost) everything related to the outdated "report" concept with more precise concepts that we use throughout our code, primarily "script run", "session", and "app". | test_with_spinner | 704eab3478cf69847825b23dabf15813a8ac9fa2 | streamlit | cache_spinner_test.py | 10 | 3 | https://github.com/streamlit/streamlit.git | 1 | 21 | 0 | 4 | 39 | Python | {
"docstring": "If the show_spinner flag is set, there should be one element in the\n report queue.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 15,
"vocab_size": 14
} | def test_with_spinner(self):
function_with_spinner()
self.assertFalse(self.forward_msg_queue.is_empty())
|
|
72,586 | 249,079 | 337 | tests/rest/admin/test_device.py | 82 | 26 | def test_update_device_too_long_display_name(self) -> None:
| Use literals in place of `HTTPStatus` constants in tests (#13469) | test_update_device_too_long_display_name | c97042f7eef3748e17c90e48a4122389a89c4735 | synapse | test_device.py | 14 | 29 | https://github.com/matrix-org/synapse.git | 1 | 159 | 0 | 61 | 257 | Python | {
"docstring": "\n Update a device with a display name that is invalid (too long).\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 11
} | def test_update_device_too_long_display_name(self) -> None:
# Set iniital display name.
update = {"display_name": "new display"}
self.get_success(
self.handler.update_device(
self.other_user, self.other_user_device_id, update
)
)
# Request to update a device display name with a new value that is longer than allowed.
update = {
"display_name": "a"
* (synapse.handlers.device.MAX_DEVICE_DISPLAY_NAME_LEN + 1)
}
channel = self.make_request(
"PUT",
self.url,
access_token=self.admin_user_tok,
content=update,
)
self.assertEqual(HTTPStatus.BAD_REQUEST, channel.code, msg=channel.json_body)
self.assertEqual(Codes.TOO_LARGE, channel.json_body["errcode"])
# Ensure the display name was not updated.
channel = self.make_request(
"GET",
self.url,
access_token=self.admin_user_tok,
)
self.assertEqual(200, channel.code, msg=channel.json_body)
self.assertEqual("new display", channel.json_body["display_name"])
|