Initial Commit
Browse files- split-test.py +97 -195
split-test.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# coding=utf-8
|
2 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
@@ -12,238 +11,141 @@
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
-
"""
|
16 |
|
17 |
|
|
|
|
|
|
|
|
|
18 |
import datasets
|
19 |
|
20 |
|
|
|
|
|
21 |
_CITATION = """\
|
22 |
-
@
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
}
|
28 |
"""
|
29 |
|
|
|
|
|
30 |
_DESCRIPTION = """\
|
31 |
-
|
32 |
"""
|
33 |
|
34 |
-
|
|
|
35 |
|
|
|
36 |
_LICENSE = ""
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
"test_text": URL + "emoji/test_text.txt",
|
45 |
-
"test_labels": URL + "emoji/test_labels.txt",
|
46 |
-
"val_text": URL + "emoji/val_text.txt",
|
47 |
-
"val_labels": URL + "emoji/val_labels.txt",
|
48 |
-
},
|
49 |
-
"emotion": {
|
50 |
-
"train_text": URL + "emotion/train_text.txt",
|
51 |
-
"train_labels": URL + "emotion/train_labels.txt",
|
52 |
-
"test_text": URL + "emotion/test_text.txt",
|
53 |
-
"test_labels": URL + "emotion/test_labels.txt",
|
54 |
-
"val_text": URL + "emotion/val_text.txt",
|
55 |
-
"val_labels": URL + "emotion/val_labels.txt",
|
56 |
-
},
|
57 |
-
"hate": {
|
58 |
-
"train_text": URL + "hate/train_text.txt",
|
59 |
-
"train_labels": URL + "hate/train_labels.txt",
|
60 |
-
"test_text": URL + "hate/test_text.txt",
|
61 |
-
"test_labels": URL + "hate/test_labels.txt",
|
62 |
-
"val_text": URL + "hate/val_text.txt",
|
63 |
-
"val_labels": URL + "hate/val_labels.txt",
|
64 |
-
},
|
65 |
-
"irony": {
|
66 |
-
"train_text": URL + "irony/train_text.txt",
|
67 |
-
"train_labels": URL + "irony/train_labels.txt",
|
68 |
-
"test_text": URL + "irony/test_text.txt",
|
69 |
-
"test_labels": URL + "irony/test_labels.txt",
|
70 |
-
"val_text": URL + "irony/val_text.txt",
|
71 |
-
"val_labels": URL + "irony/val_labels.txt",
|
72 |
-
},
|
73 |
-
"offensive": {
|
74 |
-
"train_text": URL + "offensive/train_text.txt",
|
75 |
-
"train_labels": URL + "offensive/train_labels.txt",
|
76 |
-
"test_text": URL + "offensive/test_text.txt",
|
77 |
-
"test_labels": URL + "offensive/test_labels.txt",
|
78 |
-
"val_text": URL + "offensive/val_text.txt",
|
79 |
-
"val_labels": URL + "offensive/val_labels.txt",
|
80 |
-
},
|
81 |
-
"sentiment": {
|
82 |
-
"train_text": URL + "sentiment/train_text.txt",
|
83 |
-
"train_labels": URL + "sentiment/train_labels.txt",
|
84 |
-
"test_text": URL + "sentiment/test_text.txt",
|
85 |
-
"test_labels": URL + "sentiment/test_labels.txt",
|
86 |
-
"val_text": URL + "sentiment/val_text.txt",
|
87 |
-
"val_labels": URL + "sentiment/val_labels.txt",
|
88 |
-
},
|
89 |
-
"stance": {
|
90 |
-
"abortion": {
|
91 |
-
"train_text": URL + "stance/abortion/train_text.txt",
|
92 |
-
"train_labels": URL + "stance/abortion/train_labels.txt",
|
93 |
-
"test_text": URL + "stance/abortion/test_text.txt",
|
94 |
-
"test_labels": URL + "stance/abortion/test_labels.txt",
|
95 |
-
"val_text": URL + "stance/abortion/val_text.txt",
|
96 |
-
"val_labels": URL + "stance/abortion/val_labels.txt",
|
97 |
-
},
|
98 |
-
"atheism": {
|
99 |
-
"train_text": URL + "stance/atheism/train_text.txt",
|
100 |
-
"train_labels": URL + "stance/atheism/train_labels.txt",
|
101 |
-
"test_text": URL + "stance/atheism/test_text.txt",
|
102 |
-
"test_labels": URL + "stance/atheism/test_labels.txt",
|
103 |
-
"val_text": URL + "stance/atheism/val_text.txt",
|
104 |
-
"val_labels": URL + "stance/atheism/val_labels.txt",
|
105 |
-
},
|
106 |
-
"climate": {
|
107 |
-
"train_text": URL + "stance/climate/train_text.txt",
|
108 |
-
"train_labels": URL + "stance/climate/train_labels.txt",
|
109 |
-
"test_text": URL + "stance/climate/test_text.txt",
|
110 |
-
"test_labels": URL + "stance/climate/test_labels.txt",
|
111 |
-
"val_text": URL + "stance/climate/val_text.txt",
|
112 |
-
"val_labels": URL + "stance/climate/val_labels.txt",
|
113 |
-
},
|
114 |
-
"feminist": {
|
115 |
-
"train_text": URL + "stance/feminist/train_text.txt",
|
116 |
-
"train_labels": URL + "stance/feminist/train_labels.txt",
|
117 |
-
"test_text": URL + "stance/feminist/test_text.txt",
|
118 |
-
"test_labels": URL + "stance/feminist/test_labels.txt",
|
119 |
-
"val_text": URL + "stance/feminist/val_text.txt",
|
120 |
-
"val_labels": URL + "stance/feminist/val_labels.txt",
|
121 |
-
},
|
122 |
-
"hillary": {
|
123 |
-
"train_text": URL + "stance/hillary/train_text.txt",
|
124 |
-
"train_labels": URL + "stance/hillary/train_labels.txt",
|
125 |
-
"test_text": URL + "stance/hillary/test_text.txt",
|
126 |
-
"test_labels": URL + "stance/hillary/test_labels.txt",
|
127 |
-
"val_text": URL + "stance/hillary/val_text.txt",
|
128 |
-
"val_labels": URL + "stance/hillary/val_labels.txt",
|
129 |
-
},
|
130 |
-
},
|
131 |
}
|
132 |
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
class
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
140 |
)
|
141 |
-
self.type = type
|
142 |
-
self.sub_type = sub_type
|
143 |
|
144 |
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
|
|
|
|
|
|
148 |
BUILDER_CONFIGS = [
|
149 |
-
|
150 |
-
|
151 |
-
sub_type=None,
|
152 |
-
version=datasets.Version("1.1.0"),
|
153 |
-
description=f"This part of my dataset covers {key} part of TweetEval Dataset.",
|
154 |
-
)
|
155 |
-
for key in list(_URLs.keys())
|
156 |
-
if key != "stance"
|
157 |
-
] + [
|
158 |
-
TweetEvalConfig(
|
159 |
-
type="stance",
|
160 |
-
sub_type=key,
|
161 |
-
version=datasets.Version("1.1.0"),
|
162 |
-
description=f"This part of my dataset covers stance_{key} part of TweetEval Dataset.",
|
163 |
-
)
|
164 |
-
for key in list(_URLs["stance"].keys())
|
165 |
]
|
166 |
|
|
|
|
|
167 |
def _info(self):
|
168 |
-
if self.config.type == "stance":
|
169 |
-
names = ["none", "against", "favor"]
|
170 |
-
elif self.config.type == "sentiment":
|
171 |
-
names = ["negative", "neutral", "positive"]
|
172 |
-
elif self.config.type == "offensive":
|
173 |
-
names = ["non-offensive", "offensive"]
|
174 |
-
elif self.config.type == "irony":
|
175 |
-
names = ["non_irony", "irony"]
|
176 |
-
elif self.config.type == "hate":
|
177 |
-
names = ["non-hate", "hate"]
|
178 |
-
elif self.config.type == "emoji":
|
179 |
-
names = [
|
180 |
-
"❤",
|
181 |
-
"😍",
|
182 |
-
"😂",
|
183 |
-
"💕",
|
184 |
-
"🔥",
|
185 |
-
"😊",
|
186 |
-
"😎",
|
187 |
-
"✨",
|
188 |
-
"💙",
|
189 |
-
"😘",
|
190 |
-
"📷",
|
191 |
-
"🇺🇸",
|
192 |
-
"☀",
|
193 |
-
"💜",
|
194 |
-
"��",
|
195 |
-
"💯",
|
196 |
-
"😁",
|
197 |
-
"🎄",
|
198 |
-
"📸",
|
199 |
-
"😜",
|
200 |
-
]
|
201 |
-
|
202 |
-
else:
|
203 |
-
names = ["anger", "joy", "optimism", "sadness"]
|
204 |
|
|
|
|
|
|
|
|
|
|
|
205 |
return datasets.DatasetInfo(
|
|
|
206 |
description=_DESCRIPTION,
|
207 |
-
|
208 |
-
|
209 |
-
),
|
210 |
-
|
|
|
|
|
211 |
homepage=_HOMEPAGE,
|
|
|
212 |
license=_LICENSE,
|
|
|
213 |
citation=_CITATION,
|
214 |
)
|
215 |
|
216 |
def _split_generators(self, dl_manager):
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
223 |
return [
|
224 |
datasets.SplitGenerator(
|
225 |
name=datasets.Split.TRAIN,
|
226 |
# These kwargs will be passed to _generate_examples
|
227 |
-
gen_kwargs={
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
gen_kwargs={"text_path": data_dir["test_text"], "labels_path": data_dir["test_labels"]},
|
233 |
-
),
|
234 |
-
datasets.SplitGenerator(
|
235 |
-
name=datasets.Split.VALIDATION,
|
236 |
-
# These kwargs will be passed to _generate_examples
|
237 |
-
gen_kwargs={"text_path": data_dir["val_text"], "labels_path": data_dir["val_labels"]},
|
238 |
-
),
|
239 |
]
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
|
|
|
1 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
"""Indo Wordnet dataset"""
|
15 |
|
16 |
|
17 |
+
import csv
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
|
21 |
import datasets
|
22 |
|
23 |
|
24 |
+
# TODO: Add BibTeX citation
|
25 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
26 |
_CITATION = """\
|
27 |
+
@InProceedings{huggingface:dataset,
|
28 |
+
title = {A great new dataset},
|
29 |
+
author={huggingface, Inc.
|
30 |
+
},
|
31 |
+
year={2020}
|
32 |
}
|
33 |
"""
|
34 |
|
35 |
+
# TODO: Add description of the dataset here
|
36 |
+
# You can copy an official description
|
37 |
_DESCRIPTION = """\
|
38 |
+
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
|
39 |
"""
|
40 |
|
41 |
+
# TODO: Add a link to an official homepage for the dataset here
|
42 |
+
_HOMEPAGE = ""
|
43 |
|
44 |
+
# TODO: Add the licence for the dataset here if you can find it
|
45 |
_LICENSE = ""
|
46 |
|
47 |
+
# TODO: Add link to the official dataset URLs here
|
48 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
49 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
50 |
+
_URLS = {
|
51 |
+
"first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
|
52 |
+
"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
}
|
54 |
|
55 |
+
_LANGS = {
|
56 |
+
"english": "en",
|
57 |
+
"hindi": "hi"
|
58 |
+
}
|
59 |
|
60 |
+
class SplitTestConfig(datasets.BuilderConfig):
|
61 |
+
"""BuilderConfig for SplitTest."""
|
62 |
+
|
63 |
+
def __init__(self, name, **kwargs):
|
64 |
+
"""
|
65 |
+
Args:
|
66 |
+
name: `string`, name of dataset config
|
67 |
+
**kwargs: keyword arguments forwarded to super.
|
68 |
+
"""
|
69 |
+
super(SplitTestConfig, self).__init__(
|
70 |
+
version=datasets.Version("2.1.0", ""), name=name, **kwargs
|
71 |
)
|
|
|
|
|
72 |
|
73 |
|
74 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
75 |
+
class SplitTest(datasets.GeneratorBasedBuilder):
|
76 |
+
"""TODO: Short description of my dataset."""
|
77 |
+
|
78 |
+
VERSION = datasets.Version("1.1.0")
|
79 |
+
|
80 |
+
# This is an example of a dataset with multiple configurations.
|
81 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
82 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
83 |
+
|
84 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
85 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
86 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
87 |
|
88 |
+
# You will be able to load one or the other configurations in the following list with
|
89 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
90 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
91 |
BUILDER_CONFIGS = [
|
92 |
+
SplitTestConfig(name="english", version=VERSION, description="English"),
|
93 |
+
SplitTestConfig(name="hindi", version=VERSION, description="Hindi"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
]
|
95 |
|
96 |
+
DEFAULT_CONFIG_NAME = "english" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
97 |
+
|
98 |
def _info(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"word": datasets.Value("string")
|
103 |
+
}
|
104 |
+
)
|
105 |
return datasets.DatasetInfo(
|
106 |
+
# This is the description that will appear on the datasets page.
|
107 |
description=_DESCRIPTION,
|
108 |
+
# This defines the different columns of the dataset and their types
|
109 |
+
features=features, # Here we define them above because they are different between the two configurations
|
110 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
111 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
112 |
+
# supervised_keys=("sentence", "label"),
|
113 |
+
# Homepage of the dataset for documentation
|
114 |
homepage=_HOMEPAGE,
|
115 |
+
# License for the dataset if available
|
116 |
license=_LICENSE,
|
117 |
+
# Citation for the dataset
|
118 |
citation=_CITATION,
|
119 |
)
|
120 |
|
121 |
def _split_generators(self, dl_manager):
|
122 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
123 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
124 |
+
|
125 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
126 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
127 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
128 |
+
|
129 |
+
file_name = "text." + _LANGS[self.config.name]
|
130 |
+
|
131 |
return [
|
132 |
datasets.SplitGenerator(
|
133 |
name=datasets.Split.TRAIN,
|
134 |
# These kwargs will be passed to _generate_examples
|
135 |
+
gen_kwargs={
|
136 |
+
"filepath": os.path.join(data_dir, file_name),
|
137 |
+
"split": "train",
|
138 |
+
},
|
139 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
]
|
141 |
|
142 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
143 |
+
def _generate_examples(self, filepath, split):
|
144 |
+
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
145 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
146 |
+
with open(filepath, encoding="utf-8") as f:
|
147 |
+
for key, row in enumerate(f):
|
148 |
+
data = json.loads(row)
|
149 |
+
yield key, {
|
150 |
+
"word": data["word"]
|
151 |
+
}
|