Datasets:
File size: 7,163 Bytes
d5014cd 384b298 d5014cd 04b7d12 8970cbe 04b7d12 8970cbe 04b7d12 8970cbe 04b7d12 8970cbe 04b7d12 8970cbe 04b7d12 d5014cd 12a5540 d5014cd cfaf46d d5014cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
task_categories:
- text-classification
task_ids:
- sentiment-analysis
- sentiment-classification
- sentiment-scoring
- semantic-similarity-classification
- semantic-similarity-scoring
tags:
- twitter:sentiment analysis, africa:sentiment analysis
multilinguality:
- monolingual
- multilingual
size_categories:
- 100K<n<1M
language:
- am
- ha
- ig
- yo
- sw
- rw
- om
- ti
- ar
- pt
- ama
- kin
- pcm
- tso
- arq
- ary
pretty_name: AfriSenti
---
# Dataset Card for AfriSenti Dataset
## Dataset Summary
AfriSenti is the largest sentiment analysis dataset for under-represented African languages, covering 110,000+ annotated tweets in 14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yoruba).
The datasets are used in the first Afrocentric SemEval shared task, SemEval 2023 Task 12: Sentiment analysis for African languages (AfriSenti-SemEval). AfriSenti allows the research community to build sentiment analysis systems for various African languages and enables the study of sentiment and contemporary language use in African languages.
- **Repository:**
https://github.com/afrisenti-semeval/afrisent-semeval-2023
- **Paper:**
1. [NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis](https://arxiv.org/pdf/2201.08277.pdf)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
### Supported Tasks and Leaderboards
The AfriSenti can be used for a wide range of sentiment analysis tasks in African languages, such as sentiment classification, sentiment intensity analysis, and emotion detection. This dataset is suitable for training and evaluating machine learning models for various NLP tasks related to sentiment analysis in African languages.
[SemEval 2023 Task 12 : Sentiment Analysis for African Languages](https://codalab.lisn.upsaclay.fr/competitions/7320)
### Languages
14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yoruba).
## Dataset Structure
### Data Instances
For each instance, there is a string for the tweet and a string for the label. See the AfriSenti [dataset viewer](https://huggingface.co/datasets/shmuhammad/AfriSenti/viewer/shmuhammad--AfriSenti/train) to explore more examples.
```
{
"tweet": "string",
"label": "string"
}
```
### Data Fields
The data fields are:
```
tweet: a string feature.
label: a classification label, with possible values including positive, negative and neutral.
```
### Data Splits
The AfriSenti dataset has 3 splits: train, validation, and test. Below are the statistics for Version 1.0.0 of the dataset.
| | ama | arq | hau | ibo | ary | orm | pcm | pt-MZ | kin | swa | tir | tso | twi | yo |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| train | 5,982 | 1,652 | 14,173 | 10,193 | 5,584| - | 5,122 | 3,064 | 3,303 | 1,811 | - | 805 | 3,482| 8,523 |
| dev | 1,498 | 415 | 2,678 | 1,842 | 1,216 | 397 | 1,282 | 768 | 828 | 454 | 399 | 204 | 389 | 2,091 |
| test | 2,000 | 959 | 5,304 | 3,683 | 2,962 | 2,097 | 4,155 | 3,663 | 1,027 | 749 | 2,001 | 255 | 950 | 4,516 |
| total | 9,483 | 3,062 | 22,155 | 15,718 | 9,762 | 2,494 | 10,559 | 7,495 | 5,158 | 3,014 | 2,400 | 1,264 | 4,821 | 15,130 |
### How to use it
```python
from datasets import load_dataset
# you can load specific languages (e.g., Amharic). This download train, validation and test sets.
ds = load_dataset("shmuhammad/AfriSenti", "amh")
# train set only
ds = load_dataset("shmuhammad/AfriSenti", "amh", split = "train")
# test set only
ds = load_dataset("shmuhammad/AfriSenti", "amh", split = "test")
# validation set only
ds = load_dataset("shmuhammad/AfriSenti", "amh", split = "validation")
```
## Dataset Creation
### Curation Rationale
AfriSenti Version 1.0.0 aimed to be used in the first Afrocentric SemEval shared task **[SemEval 2023 Task 12: Sentiment analysis for African languages (AfriSenti-SemEval)](https://afrisenti-semeval.github.io)**.
### Source Data
Twitter
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
We anonymized the tweets by replacing all *@mentions* by *@user* and removed all URLs.
## Considerations for Using the Data
### Social Impact of Dataset
The Afrisenti dataset has the potential to improve sentiment analysis for African languages, which is essential for understanding and analyzing the diverse perspectives of people in the African continent. This dataset can enable researchers and developers to create sentiment analysis models that are specific to African languages, which can be used to gain insights into the social, cultural, and political views of people in African countries. Furthermore, this dataset can help address the issue of underrepresentation of African languages in natural language processing, paving the way for more equitable and inclusive AI technologies.
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
AfriSenti is an extension of NaijaSenti, a dataset consisting of four Nigerian languages: Hausa, Yoruba, Igbo, and Nigerian-Pidgin. This dataset has been expanded to include other African languages, and was curated with the help of the following:
| Language | Dataset Curators |
|---|---|
| Algerian Arabic (arq) | Nedjma Ousidhoum |
| Amharic (ama) | Abinew Ali Ayele, Seid Muhie Yimam |
| Hausa (hau) | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello |
| Igbo (ibo) | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello |
| Kinyarwanda (kin)| Samuel Rutund |
| Moroccan Arabic/Darija (ary) | Oumaima Hourran |
| Mozambique Portuguese (pt-MZ) | Felermino Dário Mário António Ali |
| Nigerian Pidgin (pcm) | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello |
| Oromo (orm) | Abinew Ali Ayele, Seid Muhie Yimam, Hagos Tesfahun Gebremichael, Sisay Adugna Chala, Hailu Beshada Balcha, Wendimu Baye Messell,Tadesse Belay |
| Swahili (swa) | Davis Davis |
| Tigrinya (tir) | Abinew Ali Ayele, Seid Muhie Yimam, Hagos Tesfahun Gebremichael, Sisay Adugna Chala, Hailu Beshada Balcha, Wendimu Baye Messell,Tadesse Belay |
| Twi (twi) | Salomey Osei, Bernard Opoku, Steven Arthur |
| Xithonga (tso) | Felermino Dário Mário António Ali |
| Yoruba (yor) | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello |
### Licensing Information
This AfriSenti is licensed under a Creative Commons Attribution 4.0 International License
### Citation Information
```
```
```
```
### Contributions
[More Information Needed]
|