File size: 4,663 Bytes
4900ca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import csv
import textwrap
import pandas as pd

import datasets

LANGUAGES = ['amh', 'hau', 'ibo', 'arq', 'ary', 'yor', 'por', 'twi', 'tso', 'tir', 'orm', 'pcm', 'kin', 'swa']

class AfriSentiConfig(datasets.BuilderConfig):
    """BuilderConfig for AfriSenti"""

    def __init__(
        self,
        text_features,
        label_column,
        label_classes,
        train_url,
        valid_url,
        test_url,
        citation,
        **kwargs,
    ):
        """BuilderConfig for AfriSenti.

        Args:
          text_features: `dict[string]`, map from the name of the feature
            dict for each text field to the name of the column in the txt/csv/tsv file
          label_column: `string`, name of the column in the txt/csv/tsv file corresponding
            to the label
          label_classes: `list[string]`, the list of classes if the label is categorical
          train_url: `string`, url to train file from
          valid_url: `string`, url to valid file from
          test_url: `string`, url to test file from
          citation: `string`, citation for the data set
          **kwargs: keyword arguments forwarded to super.
        """
        super(AfriSentiConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
        self.text_features = text_features
        self.label_column = label_column
        self.label_classes = label_classes
        self.train_url = train_url
        self.valid_url = valid_url
        self.test_url = test_url
        self.citation = citation


class AfriSenti(datasets.GeneratorBasedBuilder):
    """AfriSenti benchmark"""

    BUILDER_CONFIGS = []

    for lang in LANGUAGES:
        BUILDER_CONFIGS.append(
            AfriSentiConfig(
                name=lang,
                description=textwrap.dedent(
                    f"""\
                    {lang} dataset."""
                ),
                text_features={"tweet": "tweet"},
                label_classes=["positive", "neutral", "negative"],
                label_column="label",
                train_url=f"https://raw.githubusercontent.com/afrisenti-semeval/afrisent-semeval-2023/main/data/{lang}/train.tsv",
                valid_url=f"https://raw.githubusercontent.com/afrisenti-semeval/afrisent-semeval-2023/main/data/{lang}/dev.tsv",
                test_url=f"https://raw.githubusercontent.com/afrisenti-semeval/afrisent-semeval-2023/main/data/{lang}/test.tsv",
                citation=textwrap.dedent(
                    f"""\
                {lang} citation"""
                ),
            ),
        )

    def _info(self):
        features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features}
        features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)

        return datasets.DatasetInfo(
            description=self.config.description,
            features=datasets.Features(features),
            citation=self.config.citation,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        train_path = dl_manager.download_and_extract(self.config.train_url)
        valid_path = dl_manager.download_and_extract(self.config.valid_url)
        test_path = dl_manager.download_and_extract(self.config.test_url)
        
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path, "split": "train"}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path, "split": "dev"}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path, "split": "test"}),
        ]

    def _generate_examples(self, filepath):
        df = pd.read_csv(filepath, sep='\t')

        print('-'*100)
        print(df.head())
        print('-'*100)

        for id_, row in df.iterrows():
            tweet = row["tweet"]
            label = row["label"]

            yield id_, {"tweet": tweet, "label": label}