File size: 9,121 Bytes
d5014cd
 
 
 
 
 
 
 
 
 
684b641
344d9ad
d5014cd
 
 
 
 
 
56d299c
 
c79a9e3
56d299c
 
 
d5014cd
56d299c
d5014cd
9a86216
56d299c
 
 
 
d5014cd
56d299c
d5014cd
 
 
 
 
ea76461
8828aef
11af0ea
ea76461
 
34472a2
15f5251
3e76fb7
34472a2
 
25f6987
b52e930
84e1917
34472a2
665a8c6
34472a2
 
 
ea76461
d5014cd
 
 
 
 
 
 
384b298
d5014cd
 
 
 
 
56d299c
d5014cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04b7d12
 
 
8970cbe
04b7d12
 
8970cbe
c82cc02
04b7d12
8970cbe
8302230
04b7d12
8970cbe
8302230
04b7d12
8970cbe
8302230
04b7d12
 
 
 
d5014cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa30967
d5014cd
 
 
 
f4090b1
d5014cd
 
 
f4090b1
 
d5014cd
 
f4090b1
d5014cd
f4090b1
d5014cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe2509
 
 
 
 
cfaf46d
 
 
3b73f86
21bb846
 
 
 
 
3b73f86
 
d5014cd
 
 
 
344d9ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
---
task_categories:
- text-classification
task_ids:
- sentiment-analysis
- sentiment-classification
- sentiment-scoring
- semantic-similarity-classification
- semantic-similarity-scoring
tags:
- sentiment analysis, Twitter, tweets
- sentiment
multilinguality:
- monolingual
- multilingual
size_categories:
- 100K<n<1M
language:
- amh
- ary
- ar
- arq
- hau
- ibo
- kin
- por
- pcm
- eng
- oro
- swa
- tir
- twi
- tso
- yor
pretty_name: AfriSenti
---

# Dataset Card for AfriSenti Dataset

<p align="center">
<img src="https://raw.githubusercontent.com/afrisenti-semeval/afrisent-semeval-2023/main/images/afrisenti-twitter.png", width="700" height="500">

--------------------------------------------------------------------------------

## Dataset Description


- **Homepage:** https://github.com/afrisenti-semeval/afrisent-semeval-2023
- **Repository:** [GitHub](https://github.com/afrisenti-semeval/afrisent-semeval-2023)
- **Paper:**  [AfriSenti: AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages](https://arxiv.org/pdf/2302.08956.pdf)
- **Paper:**  [SemEval-2023 Task 12: Sentiment Analysis for African Languages (AfriSenti-SemEval)](https://arxiv.org/pdf/2304.06845.pdf)
- **Paper:**  [NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis](https://arxiv.org/pdf/2201.08277.pdf)
- **Leaderboard:** N/A
- **Point of Contact:** [shamsuddeen Muhammad](shamsuddeen2004@gmail.com)


### Dataset Summary

 AfriSenti is the largest sentiment analysis dataset for under-represented African languages, covering 110,000+ annotated tweets in 14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yoruba). 
 
 The datasets are used in the first Afrocentric SemEval shared task, SemEval 2023 Task 12: Sentiment analysis for African languages (AfriSenti-SemEval). AfriSenti allows the research community to build sentiment analysis systems for various African languages and enables the study of sentiment and contemporary language use in African languages.


### Supported Tasks and Leaderboards

The AfriSenti can be used for a wide range of sentiment analysis tasks in African languages, such as sentiment classification, sentiment intensity analysis, and emotion detection. This dataset is suitable for training and evaluating machine learning models for various NLP tasks related to sentiment analysis in African languages.
[SemEval 2023 Task 12 : Sentiment Analysis for African Languages](https://codalab.lisn.upsaclay.fr/competitions/7320)


### Languages

14 African languages (Amharic (amh), Algerian Arabic (ary), Hausa(hau), Igbo(ibo), Kinyarwanda(kin), Moroccan Arabic/Darija(arq), Mozambican Portuguese(por), Nigerian Pidgin (pcm), Oromo (oro), Swahili(swa), Tigrinya(tir), Twi(twi), Xitsonga(tso), and Yoruba(yor)). 


## Dataset Structure

### Data Instances

For each instance, there is a string for the tweet and a string for the label. See the AfriSenti [dataset viewer](https://huggingface.co/datasets/shmuhammad/AfriSenti/viewer/shmuhammad--AfriSenti/train) to explore more examples.


```
{
  "tweet": "string",
  "label": "string"
}
```


### Data Fields

The data fields are:

```
tweet: a string feature.
label: a classification label, with possible values including positive, negative and neutral.
```


### Data Splits

The AfriSenti dataset has 3 splits: train, validation, and test. Below are the statistics for Version 1.0.0 of the dataset.

|  | ama | arq | hau | ibo | ary | orm | pcm | pt-MZ | kin | swa | tir | tso | twi | yo |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| train | 5,982 | 1,652 | 14,173 | 10,193  |  5,584| - | 5,122  | 3,064  | 3,303 | 1,811 | - | 805 | 3,482| 8,523 |
| dev | 1,498 | 415 | 2,678 | 1,842 | 1,216 | 397 | 1,282 | 768 | 828 | 454 | 399  | 204 | 389 | 2,091 |
| test | 2,000  | 959 | 5,304 | 3,683 | 2,962 | 2,097  | 4,155  | 3,663 | 1,027 | 749  | 2,001 | 255 | 950 | 4,516 |
| total | 9,483  | 3,062 | 22,155 | 15,718  | 9,762 | 2,494  | 10,559 | 7,495 | 5,158  | 3,014 | 2,400 | 1,264 | 4,821 | 15,130 |

### How to use it


```python
from  datasets  import  load_dataset

# you can load specific languages (e.g., Amharic). This download train, validation and test sets. 
ds = load_dataset("shmuhammad/AfriSenti-twitter-sentiment", "amh")

# train set only
ds = load_dataset("shmuhammad/AfriSenti-twitter-sentiment", "amh", split = "train")

# test set only
ds = load_dataset("shmuhammad/AfriSenti-twitter-sentiment", "amh", split = "test")

# validation set only
ds = load_dataset("shmuhammad/AfriSenti-twitter-sentiment", "amh", split = "validation")


```



## Dataset Creation

### Curation Rationale

AfriSenti Version 1.0.0 aimed to be used in the first Afrocentric SemEval shared task **[SemEval 2023 Task 12: Sentiment analysis for African languages (AfriSenti-SemEval)](https://afrisenti-semeval.github.io)**.


### Source Data

Twitter

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?



[More Information Needed]

### Personal and Sensitive Information

We anonymized the tweets by replacing all *@mentions* by *@user* and removed all URLs.


## Considerations for Using the Data

### Social Impact of Dataset

The Afrisenti dataset has the potential to improve sentiment analysis for African languages, which is essential for understanding and analyzing the diverse perspectives of people in the African continent. This dataset can enable researchers and developers to create sentiment analysis models that are specific to African languages, which can be used to gain insights into the social, cultural, and political views of people in African countries. Furthermore, this dataset can help address the issue of underrepresentation of African languages in natural language processing, paving the way for more equitable and inclusive AI technologies.

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

AfriSenti is an extension of NaijaSenti, a dataset consisting of four Nigerian languages: Hausa, Yoruba, Igbo, and Nigerian-Pidgin. This dataset has been expanded to include other 10 African languages, and was curated with the help of the following:


| Language | Dataset Curators |
|---|---|
| Algerian Arabic (arq) | Nedjma Ousidhoum, Meriem Beloucif | 
| Amharic (ama)  | Abinew Ali Ayele, Seid Muhie Yimam | 
| Hausa (hau) | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello |  
| Igbo (ibo) | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello | 
| Kinyarwanda (kin)| Samuel Rutunda | 
| Moroccan Arabic/Darija (ary) | Oumaima Hourrane | 
| Mozambique Portuguese (pt-MZ)  | Felermino Dário Mário António Ali | 
| Nigerian Pidgin (pcm)  | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello | 
| Oromo (orm)  | Abinew Ali Ayele, Seid Muhie Yimam, Hagos Tesfahun Gebremichael, Sisay Adugna Chala, Hailu Beshada Balcha, Wendimu Baye Messell, Tadesse Belay | 
| Swahili (swa)  | Davis Davis | 
| Tigrinya (tir)  | Abinew Ali Ayele, Seid Muhie Yimam, Hagos Tesfahun Gebremichael, Sisay Adugna Chala, Hailu Beshada Balcha, Wendimu Baye Messell, Tadesse Belay | 
| Twi (twi)  | Salomey Osei, Bernard Opoku, Steven Arthur | 
| Xithonga (tso)  | Felermino Dário Mário António Ali | 
| Yoruba (yor)  | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello | 
 
  
  


### Licensing Information

This AfriSenti is licensed under a Creative Commons Attribution 4.0 International License




### Citation Information

```
@inproceedings{Muhammad2023AfriSentiAT,
  title={AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages},
  author={Shamsuddeen Hassan Muhammad and Idris Abdulmumin and Abinew Ali Ayele and Nedjma Ousidhoum and David Ifeoluwa Adelani and Seid Muhie Yimam and Ibrahim Sa'id Ahmad and Meriem Beloucif and Saif Mohammad and Sebastian Ruder and Oumaima Hourrane and Pavel Brazdil and Felermino D'ario M'ario Ant'onio Ali and Davis Davis and Salomey Osei and Bello Shehu Bello and Falalu Ibrahim and Tajuddeen Gwadabe and Samuel Rutunda and Tadesse Belay and Wendimu Baye Messelle and Hailu Beshada Balcha and Sisay Adugna Chala and Hagos Tesfahun Gebremichael and Bernard Opoku and Steven Arthur},
  year={2023}
}
```


```
@article{muhammad2023semeval,
  title={SemEval-2023 Task 12: Sentiment Analysis for African Languages (AfriSenti-SemEval)},
  author={Muhammad, Shamsuddeen Hassan and Abdulmumin, Idris and Yimam, Seid Muhie and Adelani, David Ifeoluwa and Ahmad, Ibrahim Sa'id and Ousidhoum, Nedjma and Ayele, Abinew and Mohammad, Saif M and Beloucif, Meriem},
  journal={arXiv preprint arXiv:2304.06845},
  year={2023}
}
```


### Contributions

[More Information Needed]