text
stringlengths 0
1.73k
| source
stringlengths 35
119
| category
stringclasses 2
values |
---|---|---|
f = torch.randn(2).cuda(cuda2)
# d.device, e.device, and f.device are all device(type='cuda', index=2)
Checking for HIP
Whether you are using PyTorch for CUDA or HIP, the result of calling
"is_available()" will be the same. If you are using a PyTorch that has
been built with GPU support, it will return True. If you must check
which version of PyTorch you are using, refer to this example below:
if torch.cuda.is_available() and torch.version.hip:
# do something specific for HIP
elif torch.cuda.is_available() and torch.version.cuda:
# do something specific for CUDA
TensorFloat-32(TF32) on ROCm
TF32 is not supported on ROCm.
Memory management
PyTorch uses a caching memory allocator to speed up memory
allocations. This allows fast memory deallocation without device
synchronizations. However, the unused memory managed by the allocator
will still show as if used in "rocm-smi". You can use | https://pytorch.org/docs/stable/notes/hip.html | pytorch docs |
"memory_allocated()" and "max_memory_allocated()" to monitor memory
occupied by tensors, and use "memory_reserved()" and
"max_memory_reserved()" to monitor the total amount of memory managed
by the caching allocator. Calling "empty_cache()" releases all
unused cached memory from PyTorch so that those can be used by
other GPU applications. However, the occupied GPU memory by tensors
will not be freed so it can not increase the amount of GPU memory
available for PyTorch.
For more advanced users, we offer more comprehensive memory
benchmarking via "memory_stats()". We also offer the capability to
capture a complete snapshot of the memory allocator state via
"memory_snapshot()", which can help you understand the underlying
allocation patterns produced by your code.
To debug memory errors, set "PYTORCH_NO_CUDA_MEMORY_CACHING=1" in your
environment to disable caching.
hipFFT/rocFFT plan cache
Setting the size of the cache for hipFFT/rocFFT plans is not
supported. | https://pytorch.org/docs/stable/notes/hip.html | pytorch docs |
supported.
torch.distributed backends
Currently, only the "nccl" and "gloo" backends for torch.distributed
are supported on ROCm.
CUDA API to HIP API mappings in C++
Please refer: https://rocmdocs.amd.com/en/latest/Programming_Guides/H
IP_API_Guide.html
NOTE: The CUDA_VERSION macro, cudaRuntimeGetVersion and
cudaDriverGetVersion APIs do not semantically map to the same values
as HIP_VERSION macro, hipRuntimeGetVersion and hipDriverGetVersion
APIs. Please do not use them interchangeably when doing version
checks.
For example: Instead of using
"#if defined(CUDA_VERSION) && CUDA_VERSION >= 11000" to implicitly
exclude ROCm/HIP,
use the following to not take the code path for ROCm/HIP:
"#if defined(CUDA_VERSION) && CUDA_VERSION >= 11000 &&
!defined(USE_ROCM)"
Alternatively, if it is desired to take the code path for ROCm/HIP:
"#if (defined(CUDA_VERSION) && CUDA_VERSION >= 11000) ||
defined(USE_ROCM)" | https://pytorch.org/docs/stable/notes/hip.html | pytorch docs |
defined(USE_ROCM)"
Or if it is desired to take the code path for ROCm/HIP only for
specific HIP versions:
"#if (defined(CUDA_VERSION) && CUDA_VERSION >= 11000) ||
(defined(USE_ROCM) && ROCM_VERSION >= 40300)"
Refer to CUDA Semantics doc
For any sections not listed here, please refer to the CUDA semantics
doc: CUDA semantics
Enabling kernel asserts
Kernel asserts are supported on ROCm, but they are disabled due to
performance overhead. It can be enabled by recompiling the PyTorch
from source.
Please add below line as an argument to cmake command parameters:
-DROCM_FORCE_ENABLE_GPU_ASSERTS:BOOL=ON | https://pytorch.org/docs/stable/notes/hip.html | pytorch docs |
Generic Join Context Manager
The generic join context manager facilitates distributed training on
uneven inputs. This page outlines the API of the relevant classes:
"Join", "Joinable", and "JoinHook". For a tutorial, see Distributed
Training with Uneven Inputs Using the Join Context Manager.
class torch.distributed.algorithms.Join(joinables, enable=True, throw_on_early_termination=False, **kwargs)
This class defines the generic join context manager, which allows
custom hooks to be called after a process joins. These hooks should
shadow the collective communications of non-joined processes to
prevent hanging and erroring and to ensure algorithmic correctness.
Refer to "JoinHook" for details about the hook definition.
Warning:
The context manager requires each participating "Joinable" to
call the method "notify_join_context()" before its own per-
iteration collective communications to ensure correctness.
Warning: | https://pytorch.org/docs/stable/distributed.algorithms.join.html | pytorch docs |
Warning:
The context manager requires that all "process_group" attributes
in the "JoinHook" objects are the same. If there are multiple
"JoinHook" objects, then the "device" of the first is used. The
process group and device information is used for checking for
non- joined processes and for notifying processes to throw an
exception if "throw_on_early_termination" is enabled, both of
which using an all- reduce.
Parameters:
* joinables (List[Joinable]) -- a list of the
participating "Joinable" s; their hooks are iterated over in
the given order.
* **enable** (*bool*) -- a flag enabling uneven input detection;
setting to "False" disables the context manager's
functionality and should only be set when the user knows the
inputs will not be uneven (default: "True").
* **throw_on_early_termination** (*bool*) -- a flag controlling
whether to throw an exception upon detecting uneven inputs
| https://pytorch.org/docs/stable/distributed.algorithms.join.html | pytorch docs |
(default: "False").
Example:
>>> import os
>>> import torch
>>> import torch.distributed as dist
>>> import torch.multiprocessing as mp
>>> import torch.nn.parallel.DistributedDataParallel as DDP
>>> import torch.distributed.optim.ZeroRedundancyOptimizer as ZeRO
>>> from torch.distributed.algorithms.join import Join
>>>
>>> # On each spawned worker
>>> def worker(rank):
>>> dist.init_process_group("nccl", rank=rank, world_size=2)
>>> model = DDP(torch.nn.Linear(1, 1).to(rank), device_ids=[rank])
>>> optim = ZeRO(model.parameters(), torch.optim.Adam, lr=0.01)
>>> # Rank 1 gets one more input than rank 0
>>> inputs = [torch.tensor([1.]).to(rank) for _ in range(10 + rank)]
>>> with Join([model, optim]):
>>> for input in inputs:
>>> loss = model(input).sum()
>>> loss.backward()
>>> optim.step()
| https://pytorch.org/docs/stable/distributed.algorithms.join.html | pytorch docs |
optim.step()
>>> # All ranks reach here without hanging/erroring
static notify_join_context(joinable)
Notifies the join context manager that the calling process has
not yet joined; then, if "throw_on_early_termination=True",
checks if uneven inputs have been detected (i.e. if one process
has already joined) and throws an exception if so.
This method should be called from a "Joinable" object before its
per-iteration collective communications. For example, this
should be called at the beginning of the forward pass in
"DistributedDataParallel".
Only the first "Joinable" object passed into the context manager
performs the collective communications in this method, and for
the others, this method is vacuous.
Parameters:
**joinable** (*Joinable*) -- the "Joinable" object calling
this method.
Returns:
An async work handle for the all-reduce meant to notify the
| https://pytorch.org/docs/stable/distributed.algorithms.join.html | pytorch docs |
context manager that the process has not yet joined if
"joinable" is the first one passed into the context manager;
"None" otherwise.
class torch.distributed.algorithms.Joinable
This defines an abstract base class for joinable classes. A
joinable class (inheriting from "Joinable") should implement
"join_hook()", which returns a "JoinHook" instance, in addition to
"join_device()" and "join_process_group()" that return device and
process group information, respectively.
abstract property join_device: device
Returns the device from which to perform collective
communications needed by the join context manager implementation
itself.
abstract join_hook(**kwargs)
Returns a "JoinHook" instance for the given "Joinable".
Parameters:
**kwargs** (*dict*) -- a "dict" containing any keyword
arguments to modify the behavior of the join hook at run
time; all "Joinable" instances sharing the same join context
| https://pytorch.org/docs/stable/distributed.algorithms.join.html | pytorch docs |
manager are forwarded the same value for "kwargs".
Return type:
*JoinHook*
abstract property join_process_group: Any
Returns the process group for the collective communications
needed by the join context manager itself.
class torch.distributed.algorithms.JoinHook
This defines a join hook, which provides two entry points in the
join context manager: a main hook, which is called repeatedly while
there exists a non-joined process, and a post-hook, which is called
once all processes have joined.
To implement a join hook for the generic join context manager,
define a class that inherits from "JoinHook" and override
"main_hook()" and "post_hook()" as appropriate.
main_hook()
This hook is called repeatedly while there exists a non-joined
process to shadow collective communications in one training
iteration (i.e. in one forward pass, backward pass, and
optimizer step).
post_hook(is_last_joiner) | https://pytorch.org/docs/stable/distributed.algorithms.join.html | pytorch docs |
post_hook(is_last_joiner)
This hook is called after all processes have joined. It is
passed an additional "bool" argument "is_last_joiner", which
indicates if the rank is one of the last to join.
Parameters:
**is_last_joiner** (*bool*) -- "True" if the rank is one of
the last to join; "False" otherwise.
| https://pytorch.org/docs/stable/distributed.algorithms.join.html | pytorch docs |
torch.utils.tensorboard
Before going further, more details on TensorBoard can be found at
https://www.tensorflow.org/tensorboard/
Once you've installed TensorBoard, these utilities let you log PyTorch
models and metrics into a directory for visualization within the
TensorBoard UI. Scalars, images, histograms, graphs, and embedding
visualizations are all supported for PyTorch models and tensors as
well as Caffe2 nets and blobs.
The SummaryWriter class is your main entry to log data for consumption
and visualization by TensorBoard. For example:
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms
# Writer will output to ./runs/ directory by default
writer = SummaryWriter()
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
trainset = datasets.MNIST('mnist_train', train=True, download=True, transform=transform) | https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
model = torchvision.models.resnet50(False)
# Have ResNet model take in grayscale rather than RGB
model.conv1 = torch.nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
images, labels = next(iter(trainloader))
grid = torchvision.utils.make_grid(images)
writer.add_image('images', grid, 0)
writer.add_graph(model, images)
writer.close()
This can then be visualized with TensorBoard, which should be
installable and runnable with:
pip install tensorboard
tensorboard --logdir=runs
Lots of information can be logged for one experiment. To avoid
cluttering the UI and have better result clustering, we can group
plots by naming them hierarchically. For example, "Loss/train" and
"Loss/test" will be grouped together, while "Accuracy/train" and
"Accuracy/test" will be grouped separately in the TensorBoard
interface.
from torch.utils.tensorboard import SummaryWriter
import numpy as np | https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
import numpy as np
writer = SummaryWriter()
for n_iter in range(100):
writer.add_scalar('Loss/train', np.random.random(), n_iter)
writer.add_scalar('Loss/test', np.random.random(), n_iter)
writer.add_scalar('Accuracy/train', np.random.random(), n_iter)
writer.add_scalar('Accuracy/test', np.random.random(), n_iter)
Expected result:
[image]
class torch.utils.tensorboard.writer.SummaryWriter(log_dir=None, comment='', purge_step=None, max_queue=10, flush_secs=120, filename_suffix='')
Writes entries directly to event files in the log_dir to be
consumed by TensorBoard.
The SummaryWriter class provides a high-level API to create an
event file in a given directory and add summaries and events to it.
The class updates the file contents asynchronously. This allows a
training program to call methods to add data to the file directly
from the training loop, without slowing down training. | https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
init(log_dir=None, comment='', purge_step=None, max_queue=10, flush_secs=120, filename_suffix='')
Creates a *SummaryWriter* that will write out events and
summaries to the event file.
Parameters:
* **log_dir** (*str*) -- Save directory location. Default is
runs/**CURRENT_DATETIME_HOSTNAME**, which changes after
each run. Use hierarchical folder structure to compare
between runs easily. e.g. pass in 'runs/exp1', 'runs/exp2',
etc. for each new experiment to compare across them.
* **comment** (*str*) -- Comment log_dir suffix appended to
the default "log_dir". If "log_dir" is assigned, this
argument has no effect.
* **purge_step** (*int*) -- When logging crashes at step T+X
and restarts at step T, any events whose global_step larger
or equal to T will be purged and hidden from TensorBoard.
Note that crashed and resumed experiments should have the
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
same "log_dir".
* **max_queue** (*int*) -- Size of the queue for pending
events and summaries before one of the 'add' calls forces a
flush to disk. Default is ten items.
* **flush_secs** (*int*) -- How often, in seconds, to flush
the pending events and summaries to disk. Default is every
two minutes.
* **filename_suffix** (*str*) -- Suffix added to all event
filenames in the log_dir directory. More details on
filename construction in tensorboard.summary.writer.event_
file_writer.EventFileWriter.
Examples:
from torch.utils.tensorboard import SummaryWriter
# create a summary writer with automatically generated folder name.
writer = SummaryWriter()
# folder location: runs/May04_22-14-54_s-MacBook-Pro.local/
# create a summary writer using the specified folder name.
writer = SummaryWriter("my_experiment")
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
writer = SummaryWriter("my_experiment")
# folder location: my_experiment
# create a summary writer with comment appended.
writer = SummaryWriter(comment="LR_0.1_BATCH_16")
# folder location: runs/May04_22-14-54_s-MacBook-Pro.localLR_0.1_BATCH_16/
add_scalar(tag, scalar_value, global_step=None, walltime=None, new_style=False, double_precision=False)
Add scalar data to summary.
Parameters:
* **tag** (*str*) -- Data identifier
* **scalar_value** (*float** or **string/blobname*) -- Value
to save
* **global_step** (*int*) -- Global step value to record
* **walltime** (*float*) -- Optional override default
walltime (time.time()) with seconds after epoch of event
* **new_style** (*boolean*) -- Whether to use new style
(tensor field) or old style (simple_value field). New style
could lead to faster data loading.
Examples:
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
Examples:
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
x = range(100)
for i in x:
writer.add_scalar('y=2x', i * 2, i)
writer.close()
Expected result:
[image]
add_scalars(main_tag, tag_scalar_dict, global_step=None, walltime=None)
Adds many scalar data to summary.
Parameters:
* **main_tag** (*str*) -- The parent name for the tags
* **tag_scalar_dict** (*dict*) -- Key-value pair storing the
tag and corresponding values
* **global_step** (*int*) -- Global step value to record
* **walltime** (*float*) -- Optional override default
walltime (time.time()) seconds after epoch of event
Examples:
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
r = 5
for i in range(100):
writer.add_scalars('run_14h', {'xsinx':i*np.sin(i/r),
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
'xcosx':i*np.cos(i/r),
'tanx': np.tan(i/r)}, i)
writer.close()
# This call adds three values to the same scalar plot with the tag
# 'run_14h' in TensorBoard's scalar section.
Expected result:
[image]
add_histogram(tag, values, global_step=None, bins='tensorflow', walltime=None, max_bins=None)
Add histogram to summary.
Parameters:
* **tag** (*str*) -- Data identifier
* **values** (*torch.Tensor**, **numpy.ndarray**, or
**string/blobname*) -- Values to build histogram
* **global_step** (*int*) -- Global step value to record
* **bins** (*str*) -- One of {'tensorflow','auto', 'fd',
...}. This determines how the bins are made. You can find
other options in: https://docs.scipy.org/doc/numpy/referen
ce/generated/numpy.histogram.html
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
ce/generated/numpy.histogram.html
* **walltime** (*float*) -- Optional override default
walltime (time.time()) seconds after epoch of event
Examples:
from torch.utils.tensorboard import SummaryWriter
import numpy as np
writer = SummaryWriter()
for i in range(10):
x = np.random.random(1000)
writer.add_histogram('distribution centers', x + i, i)
writer.close()
Expected result:
[image]
add_image(tag, img_tensor, global_step=None, walltime=None, dataformats='CHW')
Add image data to summary.
Note that this requires the "pillow" package.
Parameters:
* **tag** (*str*) -- Data identifier
* **img_tensor** (*torch.Tensor**, **numpy.ndarray**, or
**string/blobname*) -- Image data
* **global_step** (*int*) -- Global step value to record
* **walltime** (*float*) -- Optional override default
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
walltime (time.time()) seconds after epoch of event
* **dataformats** (*str*) -- Image data format specification
of the form CHW, HWC, HW, WH, etc.
Shape:
img_tensor: Default is (3, H, W). You can use
"torchvision.utils.make_grid()" to convert a batch of tensor
into 3xHxW format or call "add_images" and let us do the job.
Tensor with (1, H, W), (H, W), (H, W, 3) is also suitable as
long as corresponding "dataformats" argument is passed, e.g.
"CHW", "HWC", "HW".
Examples:
from torch.utils.tensorboard import SummaryWriter
import numpy as np
img = np.zeros((3, 100, 100))
img[0] = np.arange(0, 10000).reshape(100, 100) / 10000
img[1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000
img_HWC = np.zeros((100, 100, 3))
img_HWC[:, :, 0] = np.arange(0, 10000).reshape(100, 100) / 10000
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
img_HWC[:, :, 1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000
writer = SummaryWriter()
writer.add_image('my_image', img, 0)
# If you have non-default dimension setting, set the dataformats argument.
writer.add_image('my_image_HWC', img_HWC, 0, dataformats='HWC')
writer.close()
Expected result:
[image]
add_images(tag, img_tensor, global_step=None, walltime=None, dataformats='NCHW')
Add batched image data to summary.
Note that this requires the "pillow" package.
Parameters:
* **tag** (*str*) -- Data identifier
* **img_tensor** (*torch.Tensor**, **numpy.ndarray**, or
**string/blobname*) -- Image data
* **global_step** (*int*) -- Global step value to record
* **walltime** (*float*) -- Optional override default
walltime (time.time()) seconds after epoch of event
* **dataformats** (*str*) -- Image data format specification
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
of the form NCHW, NHWC, CHW, HWC, HW, WH, etc.
Shape:
img_tensor: Default is (N, 3, H, W). If "dataformats" is
specified, other shape will be accepted. e.g. NCHW or NHWC.
Examples:
from torch.utils.tensorboard import SummaryWriter
import numpy as np
img_batch = np.zeros((16, 3, 100, 100))
for i in range(16):
img_batch[i, 0] = np.arange(0, 10000).reshape(100, 100) / 10000 / 16 * i
img_batch[i, 1] = (1 - np.arange(0, 10000).reshape(100, 100) / 10000) / 16 * i
writer = SummaryWriter()
writer.add_images('my_image_batch', img_batch, 0)
writer.close()
Expected result:
[image]
add_figure(tag, figure, global_step=None, close=True, walltime=None)
Render matplotlib figure into an image and add it to summary.
Note that this requires the "matplotlib" package.
Parameters:
* **tag** (*str*) -- Data identifier
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
tag (str) -- Data identifier * **figure** (*matplotlib.pyplot.figure*) -- Figure or a list
of figures
* **global_step** (*int*) -- Global step value to record
* **close** (*bool*) -- Flag to automatically close the
figure
* **walltime** (*float*) -- Optional override default
walltime (time.time()) seconds after epoch of event
add_video(tag, vid_tensor, global_step=None, fps=4, walltime=None)
Add video data to summary.
Note that this requires the "moviepy" package.
Parameters:
* **tag** (*str*) -- Data identifier
* **vid_tensor** (*torch.Tensor*) -- Video data
* **global_step** (*int*) -- Global step value to record
* **fps** (*float** or **int*) -- Frames per second
* **walltime** (*float*) -- Optional override default
walltime (time.time()) seconds after epoch of event
Shape:
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
Shape:
vid_tensor: (N, T, C, H, W). The values should lie in [0,
255] for type uint8 or [0, 1] for type float.
add_audio(tag, snd_tensor, global_step=None, sample_rate=44100, walltime=None)
Add audio data to summary.
Parameters:
* **tag** (*str*) -- Data identifier
* **snd_tensor** (*torch.Tensor*) -- Sound data
* **global_step** (*int*) -- Global step value to record
* **sample_rate** (*int*) -- sample rate in Hz
* **walltime** (*float*) -- Optional override default
walltime (time.time()) seconds after epoch of event
Shape:
snd_tensor: (1, L). The values should lie between [-1, 1].
add_text(tag, text_string, global_step=None, walltime=None)
Add text data to summary.
Parameters:
* **tag** (*str*) -- Data identifier
* **text_string** (*str*) -- String to save
* **global_step** (*int*) -- Global step value to record
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
walltime (float) -- Optional override default
walltime (time.time()) seconds after epoch of event
Examples:
writer.add_text('lstm', 'This is an lstm', 0)
writer.add_text('rnn', 'This is an rnn', 10)
add_graph(model, input_to_model=None, verbose=False, use_strict_trace=True)
Add graph data to summary.
Parameters:
* **model** (*torch.nn.Module*) -- Model to draw.
* **input_to_model** (*torch.Tensor** or **list of
torch.Tensor*) -- A variable or a tuple of variables to be
fed.
* **verbose** (*bool*) -- Whether to print graph structure in
console.
* **use_strict_trace** (*bool*) -- Whether to pass keyword
argument *strict* to *torch.jit.trace*. Pass False when you
want the tracer to record your mutable container types
(list, dict)
add_embedding(mat, metadata=None, label_img=None, global_step=None, tag='default', metadata_header=None) | https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
Add embedding projector data to summary.
Parameters:
* **mat** (*torch.Tensor** or **numpy.ndarray*) -- A matrix
which each row is the feature vector of the data point
* **metadata** (*list*) -- A list of labels, each element
will be convert to string
* **label_img** (*torch.Tensor*) -- Images correspond to each
data point
* **global_step** (*int*) -- Global step value to record
* **tag** (*str*) -- Name for the embedding
Shape:
mat: (N, D), where N is number of data and D is feature
dimension
label_img: (N, C, H, W)
Examples:
import keyword
import torch
meta = []
while len(meta)<100:
meta = meta+keyword.kwlist # get some strings
meta = meta[:100]
for i, v in enumerate(meta):
meta[i] = v+str(i)
label_img = torch.rand(100, 3, 10, 32)
for i in range(100):
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
for i in range(100):
label_img[i]*=i/100.0
writer.add_embedding(torch.randn(100, 5), metadata=meta, label_img=label_img)
writer.add_embedding(torch.randn(100, 5), label_img=label_img)
writer.add_embedding(torch.randn(100, 5), metadata=meta)
add_pr_curve(tag, labels, predictions, global_step=None, num_thresholds=127, weights=None, walltime=None)
Adds precision recall curve. Plotting a precision-recall curve
lets you understand your model's performance under different
threshold settings. With this function, you provide the ground
truth labeling (T/F) and prediction confidence (usually the
output of your model) for each target. The TensorBoard UI will
let you choose the threshold interactively.
Parameters:
* **tag** (*str*) -- Data identifier
* **labels** (*torch.Tensor**, **numpy.ndarray**, or
**string/blobname*) -- Ground truth data. Binary label for
each element.
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
each element.
* **predictions** (*torch.Tensor**, **numpy.ndarray**, or
**string/blobname*) -- The probability that an element be
classified as true. Value should be in [0, 1]
* **global_step** (*int*) -- Global step value to record
* **num_thresholds** (*int*) -- Number of thresholds used to
draw the curve.
* **walltime** (*float*) -- Optional override default
walltime (time.time()) seconds after epoch of event
Examples:
from torch.utils.tensorboard import SummaryWriter
import numpy as np
labels = np.random.randint(2, size=100) # binary label
predictions = np.random.rand(100)
writer = SummaryWriter()
writer.add_pr_curve('pr_curve', labels, predictions, 0)
writer.close()
add_custom_scalars(layout)
Create special chart by collecting charts tags in 'scalars'.
Note that this function can only be called once for each
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
SummaryWriter() object. Because it only provides metadata to
tensorboard, the function can be called before or after the
training loop.
Parameters:
**layout** (*dict*) -- {categoryName: *charts*}, where
*charts* is also a dictionary {chartName:
*ListOfProperties*}. The first element in *ListOfProperties*
is the chart's type (one of **Multiline** or **Margin**) and
the second element should be a list containing the tags you
have used in add_scalar function, which will be collected
into the new chart.
Examples:
layout = {'Taiwan':{'twse':['Multiline',['twse/0050', 'twse/2330']]},
'USA':{ 'dow':['Margin', ['dow/aaa', 'dow/bbb', 'dow/ccc']],
'nasdaq':['Margin', ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']]}}
writer.add_custom_scalars(layout)
add_mesh(tag, vertices, colors=None, faces=None, config_dict=None, global_step=None, walltime=None) | https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
Add meshes or 3D point clouds to TensorBoard. The visualization
is based on Three.js, so it allows users to interact with the
rendered object. Besides the basic definitions such as vertices,
faces, users can further provide camera parameter, lighting
condition, etc. Please check https://threejs.org/docs/index.htm
l#manual/en/introduction/Creating-a-scene for advanced usage.
Parameters:
* **tag** (*str*) -- Data identifier
* **vertices** (*torch.Tensor*) -- List of the 3D coordinates
of vertices.
* **colors** (*torch.Tensor*) -- Colors for each vertex
* **faces** (*torch.Tensor*) -- Indices of vertices within
each triangle. (Optional)
* **config_dict** -- Dictionary with ThreeJS classes names
and configuration.
* **global_step** (*int*) -- Global step value to record
* **walltime** (*float*) -- Optional override default
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
walltime (time.time()) seconds after epoch of event
Shape:
vertices: (B, N, 3). (batch, number_of_vertices, channels)
colors: (B, N, 3). The values should lie in [0, 255] for type
*uint8* or [0, 1] for type *float*.
faces: (B, N, 3). The values should lie in [0,
number_of_vertices] for type *uint8*.
Examples:
from torch.utils.tensorboard import SummaryWriter
vertices_tensor = torch.as_tensor([
[1, 1, 1],
[-1, -1, 1],
[1, -1, -1],
[-1, 1, -1],
], dtype=torch.float).unsqueeze(0)
colors_tensor = torch.as_tensor([
[255, 0, 0],
[0, 255, 0],
[0, 0, 255],
[255, 0, 255],
], dtype=torch.int).unsqueeze(0)
faces_tensor = torch.as_tensor([
[0, 2, 3],
[0, 3, 1],
[0, 1, 2],
[1, 3, 2],
], dtype=torch.int).unsqueeze(0)
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
], dtype=torch.int).unsqueeze(0)
writer = SummaryWriter()
writer.add_mesh('my_mesh', vertices=vertices_tensor, colors=colors_tensor, faces=faces_tensor)
writer.close()
add_hparams(hparam_dict, metric_dict, hparam_domain_discrete=None, run_name=None)
Add a set of hyperparameters to be compared in TensorBoard.
Parameters:
* **hparam_dict** (*dict*) -- Each key-value pair in the
dictionary is the name of the hyper parameter and it's
corresponding value. The type of the value can be one of
*bool*, *string*, *float*, *int*, or *None*.
* **metric_dict** (*dict*) -- Each key-value pair in the
dictionary is the name of the metric and it's corresponding
value. Note that the key used here should be unique in the
tensorboard record. Otherwise the value you added by
"add_scalar" will be displayed in hparam plugin. In most
cases, this is unwanted.
| https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |
cases, this is unwanted.
* **hparam_domain_discrete** -- (Optional[Dict[str,
List[Any]]]) A dictionary that contains names of the
hyperparameters and all discrete values they can hold
* **run_name** (*str*) -- Name of the run, to be included as
part of the logdir. If unspecified, will use current
timestamp.
Examples:
from torch.utils.tensorboard import SummaryWriter
with SummaryWriter() as w:
for i in range(5):
w.add_hparams({'lr': 0.1*i, 'bsize': i},
{'hparam/accuracy': 10*i, 'hparam/loss': 10*i})
Expected result:
[image]
flush()
Flushes the event file to disk. Call this method to make sure
that all pending events have been written to disk.
close() | https://pytorch.org/docs/stable/tensorboard.html | pytorch docs |