text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
f = torch.randn(2).cuda(cuda2) # d.device, e.device, and f.device are all device(type='cuda', index=2) Checking for HIP Whether you are using PyTorch for CUDA or HIP, the result of calling "is_available()" will be the same. If you are using a PyTorch that has been built with GPU support, it will return True. If you must check which version of PyTorch you are using, refer to this example below: if torch.cuda.is_available() and torch.version.hip: # do something specific for HIP elif torch.cuda.is_available() and torch.version.cuda: # do something specific for CUDA TensorFloat-32(TF32) on ROCm TF32 is not supported on ROCm. Memory management PyTorch uses a caching memory allocator to speed up memory allocations. This allows fast memory deallocation without device synchronizations. However, the unused memory managed by the allocator will still show as if used in "rocm-smi". You can use
https://pytorch.org/docs/stable/notes/hip.html
pytorch docs
"memory_allocated()" and "max_memory_allocated()" to monitor memory occupied by tensors, and use "memory_reserved()" and "max_memory_reserved()" to monitor the total amount of memory managed by the caching allocator. Calling "empty_cache()" releases all unused cached memory from PyTorch so that those can be used by other GPU applications. However, the occupied GPU memory by tensors will not be freed so it can not increase the amount of GPU memory available for PyTorch. For more advanced users, we offer more comprehensive memory benchmarking via "memory_stats()". We also offer the capability to capture a complete snapshot of the memory allocator state via "memory_snapshot()", which can help you understand the underlying allocation patterns produced by your code. To debug memory errors, set "PYTORCH_NO_CUDA_MEMORY_CACHING=1" in your environment to disable caching. hipFFT/rocFFT plan cache Setting the size of the cache for hipFFT/rocFFT plans is not supported.
https://pytorch.org/docs/stable/notes/hip.html
pytorch docs
supported. torch.distributed backends Currently, only the "nccl" and "gloo" backends for torch.distributed are supported on ROCm. CUDA API to HIP API mappings in C++ Please refer: https://rocmdocs.amd.com/en/latest/Programming_Guides/H IP_API_Guide.html NOTE: The CUDA_VERSION macro, cudaRuntimeGetVersion and cudaDriverGetVersion APIs do not semantically map to the same values as HIP_VERSION macro, hipRuntimeGetVersion and hipDriverGetVersion APIs. Please do not use them interchangeably when doing version checks. For example: Instead of using "#if defined(CUDA_VERSION) && CUDA_VERSION >= 11000" to implicitly exclude ROCm/HIP, use the following to not take the code path for ROCm/HIP: "#if defined(CUDA_VERSION) && CUDA_VERSION >= 11000 && !defined(USE_ROCM)" Alternatively, if it is desired to take the code path for ROCm/HIP: "#if (defined(CUDA_VERSION) && CUDA_VERSION >= 11000) || defined(USE_ROCM)"
https://pytorch.org/docs/stable/notes/hip.html
pytorch docs
defined(USE_ROCM)" Or if it is desired to take the code path for ROCm/HIP only for specific HIP versions: "#if (defined(CUDA_VERSION) && CUDA_VERSION >= 11000) || (defined(USE_ROCM) && ROCM_VERSION >= 40300)" Refer to CUDA Semantics doc For any sections not listed here, please refer to the CUDA semantics doc: CUDA semantics Enabling kernel asserts Kernel asserts are supported on ROCm, but they are disabled due to performance overhead. It can be enabled by recompiling the PyTorch from source. Please add below line as an argument to cmake command parameters: -DROCM_FORCE_ENABLE_GPU_ASSERTS:BOOL=ON
https://pytorch.org/docs/stable/notes/hip.html
pytorch docs
Generic Join Context Manager The generic join context manager facilitates distributed training on uneven inputs. This page outlines the API of the relevant classes: "Join", "Joinable", and "JoinHook". For a tutorial, see Distributed Training with Uneven Inputs Using the Join Context Manager. class torch.distributed.algorithms.Join(joinables, enable=True, throw_on_early_termination=False, **kwargs) This class defines the generic join context manager, which allows custom hooks to be called after a process joins. These hooks should shadow the collective communications of non-joined processes to prevent hanging and erroring and to ensure algorithmic correctness. Refer to "JoinHook" for details about the hook definition. Warning: The context manager requires each participating "Joinable" to call the method "notify_join_context()" before its own per- iteration collective communications to ensure correctness. Warning:
https://pytorch.org/docs/stable/distributed.algorithms.join.html
pytorch docs
Warning: The context manager requires that all "process_group" attributes in the "JoinHook" objects are the same. If there are multiple "JoinHook" objects, then the "device" of the first is used. The process group and device information is used for checking for non- joined processes and for notifying processes to throw an exception if "throw_on_early_termination" is enabled, both of which using an all- reduce. Parameters: * joinables (List[Joinable]) -- a list of the participating "Joinable" s; their hooks are iterated over in the given order. * **enable** (*bool*) -- a flag enabling uneven input detection; setting to "False" disables the context manager's functionality and should only be set when the user knows the inputs will not be uneven (default: "True"). * **throw_on_early_termination** (*bool*) -- a flag controlling whether to throw an exception upon detecting uneven inputs
https://pytorch.org/docs/stable/distributed.algorithms.join.html
pytorch docs
(default: "False"). Example: >>> import os >>> import torch >>> import torch.distributed as dist >>> import torch.multiprocessing as mp >>> import torch.nn.parallel.DistributedDataParallel as DDP >>> import torch.distributed.optim.ZeroRedundancyOptimizer as ZeRO >>> from torch.distributed.algorithms.join import Join >>> >>> # On each spawned worker >>> def worker(rank): >>> dist.init_process_group("nccl", rank=rank, world_size=2) >>> model = DDP(torch.nn.Linear(1, 1).to(rank), device_ids=[rank]) >>> optim = ZeRO(model.parameters(), torch.optim.Adam, lr=0.01) >>> # Rank 1 gets one more input than rank 0 >>> inputs = [torch.tensor([1.]).to(rank) for _ in range(10 + rank)] >>> with Join([model, optim]): >>> for input in inputs: >>> loss = model(input).sum() >>> loss.backward() >>> optim.step()
https://pytorch.org/docs/stable/distributed.algorithms.join.html
pytorch docs
optim.step() >>> # All ranks reach here without hanging/erroring static notify_join_context(joinable) Notifies the join context manager that the calling process has not yet joined; then, if "throw_on_early_termination=True", checks if uneven inputs have been detected (i.e. if one process has already joined) and throws an exception if so. This method should be called from a "Joinable" object before its per-iteration collective communications. For example, this should be called at the beginning of the forward pass in "DistributedDataParallel". Only the first "Joinable" object passed into the context manager performs the collective communications in this method, and for the others, this method is vacuous. Parameters: **joinable** (*Joinable*) -- the "Joinable" object calling this method. Returns: An async work handle for the all-reduce meant to notify the
https://pytorch.org/docs/stable/distributed.algorithms.join.html
pytorch docs
context manager that the process has not yet joined if "joinable" is the first one passed into the context manager; "None" otherwise. class torch.distributed.algorithms.Joinable This defines an abstract base class for joinable classes. A joinable class (inheriting from "Joinable") should implement "join_hook()", which returns a "JoinHook" instance, in addition to "join_device()" and "join_process_group()" that return device and process group information, respectively. abstract property join_device: device Returns the device from which to perform collective communications needed by the join context manager implementation itself. abstract join_hook(**kwargs) Returns a "JoinHook" instance for the given "Joinable". Parameters: **kwargs** (*dict*) -- a "dict" containing any keyword arguments to modify the behavior of the join hook at run time; all "Joinable" instances sharing the same join context
https://pytorch.org/docs/stable/distributed.algorithms.join.html
pytorch docs
manager are forwarded the same value for "kwargs". Return type: *JoinHook* abstract property join_process_group: Any Returns the process group for the collective communications needed by the join context manager itself. class torch.distributed.algorithms.JoinHook This defines a join hook, which provides two entry points in the join context manager: a main hook, which is called repeatedly while there exists a non-joined process, and a post-hook, which is called once all processes have joined. To implement a join hook for the generic join context manager, define a class that inherits from "JoinHook" and override "main_hook()" and "post_hook()" as appropriate. main_hook() This hook is called repeatedly while there exists a non-joined process to shadow collective communications in one training iteration (i.e. in one forward pass, backward pass, and optimizer step). post_hook(is_last_joiner)
https://pytorch.org/docs/stable/distributed.algorithms.join.html
pytorch docs
post_hook(is_last_joiner) This hook is called after all processes have joined. It is passed an additional "bool" argument "is_last_joiner", which indicates if the rank is one of the last to join. Parameters: **is_last_joiner** (*bool*) -- "True" if the rank is one of the last to join; "False" otherwise.
https://pytorch.org/docs/stable/distributed.algorithms.join.html
pytorch docs
torch.utils.tensorboard Before going further, more details on TensorBoard can be found at https://www.tensorflow.org/tensorboard/ Once you've installed TensorBoard, these utilities let you log PyTorch models and metrics into a directory for visualization within the TensorBoard UI. Scalars, images, histograms, graphs, and embedding visualizations are all supported for PyTorch models and tensors as well as Caffe2 nets and blobs. The SummaryWriter class is your main entry to log data for consumption and visualization by TensorBoard. For example: import torch import torchvision from torch.utils.tensorboard import SummaryWriter from torchvision import datasets, transforms # Writer will output to ./runs/ directory by default writer = SummaryWriter() transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = datasets.MNIST('mnist_train', train=True, download=True, transform=transform)
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) model = torchvision.models.resnet50(False) # Have ResNet model take in grayscale rather than RGB model.conv1 = torch.nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) images, labels = next(iter(trainloader)) grid = torchvision.utils.make_grid(images) writer.add_image('images', grid, 0) writer.add_graph(model, images) writer.close() This can then be visualized with TensorBoard, which should be installable and runnable with: pip install tensorboard tensorboard --logdir=runs Lots of information can be logged for one experiment. To avoid cluttering the UI and have better result clustering, we can group plots by naming them hierarchically. For example, "Loss/train" and "Loss/test" will be grouped together, while "Accuracy/train" and "Accuracy/test" will be grouped separately in the TensorBoard interface. from torch.utils.tensorboard import SummaryWriter import numpy as np
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
import numpy as np writer = SummaryWriter() for n_iter in range(100): writer.add_scalar('Loss/train', np.random.random(), n_iter) writer.add_scalar('Loss/test', np.random.random(), n_iter) writer.add_scalar('Accuracy/train', np.random.random(), n_iter) writer.add_scalar('Accuracy/test', np.random.random(), n_iter) Expected result: [image] class torch.utils.tensorboard.writer.SummaryWriter(log_dir=None, comment='', purge_step=None, max_queue=10, flush_secs=120, filename_suffix='') Writes entries directly to event files in the log_dir to be consumed by TensorBoard. The SummaryWriter class provides a high-level API to create an event file in a given directory and add summaries and events to it. The class updates the file contents asynchronously. This allows a training program to call methods to add data to the file directly from the training loop, without slowing down training.
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
init(log_dir=None, comment='', purge_step=None, max_queue=10, flush_secs=120, filename_suffix='') Creates a *SummaryWriter* that will write out events and summaries to the event file. Parameters: * **log_dir** (*str*) -- Save directory location. Default is runs/**CURRENT_DATETIME_HOSTNAME**, which changes after each run. Use hierarchical folder structure to compare between runs easily. e.g. pass in 'runs/exp1', 'runs/exp2', etc. for each new experiment to compare across them. * **comment** (*str*) -- Comment log_dir suffix appended to the default "log_dir". If "log_dir" is assigned, this argument has no effect. * **purge_step** (*int*) -- When logging crashes at step T+X and restarts at step T, any events whose global_step larger or equal to T will be purged and hidden from TensorBoard. Note that crashed and resumed experiments should have the
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
same "log_dir". * **max_queue** (*int*) -- Size of the queue for pending events and summaries before one of the 'add' calls forces a flush to disk. Default is ten items. * **flush_secs** (*int*) -- How often, in seconds, to flush the pending events and summaries to disk. Default is every two minutes. * **filename_suffix** (*str*) -- Suffix added to all event filenames in the log_dir directory. More details on filename construction in tensorboard.summary.writer.event_ file_writer.EventFileWriter. Examples: from torch.utils.tensorboard import SummaryWriter # create a summary writer with automatically generated folder name. writer = SummaryWriter() # folder location: runs/May04_22-14-54_s-MacBook-Pro.local/ # create a summary writer using the specified folder name. writer = SummaryWriter("my_experiment")
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
writer = SummaryWriter("my_experiment") # folder location: my_experiment # create a summary writer with comment appended. writer = SummaryWriter(comment="LR_0.1_BATCH_16") # folder location: runs/May04_22-14-54_s-MacBook-Pro.localLR_0.1_BATCH_16/ add_scalar(tag, scalar_value, global_step=None, walltime=None, new_style=False, double_precision=False) Add scalar data to summary. Parameters: * **tag** (*str*) -- Data identifier * **scalar_value** (*float** or **string/blobname*) -- Value to save * **global_step** (*int*) -- Global step value to record * **walltime** (*float*) -- Optional override default walltime (time.time()) with seconds after epoch of event * **new_style** (*boolean*) -- Whether to use new style (tensor field) or old style (simple_value field). New style could lead to faster data loading. Examples:
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
Examples: from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter() x = range(100) for i in x: writer.add_scalar('y=2x', i * 2, i) writer.close() Expected result: [image] add_scalars(main_tag, tag_scalar_dict, global_step=None, walltime=None) Adds many scalar data to summary. Parameters: * **main_tag** (*str*) -- The parent name for the tags * **tag_scalar_dict** (*dict*) -- Key-value pair storing the tag and corresponding values * **global_step** (*int*) -- Global step value to record * **walltime** (*float*) -- Optional override default walltime (time.time()) seconds after epoch of event Examples: from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter() r = 5 for i in range(100): writer.add_scalars('run_14h', {'xsinx':i*np.sin(i/r),
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
'xcosx':i*np.cos(i/r), 'tanx': np.tan(i/r)}, i) writer.close() # This call adds three values to the same scalar plot with the tag # 'run_14h' in TensorBoard's scalar section. Expected result: [image] add_histogram(tag, values, global_step=None, bins='tensorflow', walltime=None, max_bins=None) Add histogram to summary. Parameters: * **tag** (*str*) -- Data identifier * **values** (*torch.Tensor**, **numpy.ndarray**, or **string/blobname*) -- Values to build histogram * **global_step** (*int*) -- Global step value to record * **bins** (*str*) -- One of {'tensorflow','auto', 'fd', ...}. This determines how the bins are made. You can find other options in: https://docs.scipy.org/doc/numpy/referen ce/generated/numpy.histogram.html
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
ce/generated/numpy.histogram.html * **walltime** (*float*) -- Optional override default walltime (time.time()) seconds after epoch of event Examples: from torch.utils.tensorboard import SummaryWriter import numpy as np writer = SummaryWriter() for i in range(10): x = np.random.random(1000) writer.add_histogram('distribution centers', x + i, i) writer.close() Expected result: [image] add_image(tag, img_tensor, global_step=None, walltime=None, dataformats='CHW') Add image data to summary. Note that this requires the "pillow" package. Parameters: * **tag** (*str*) -- Data identifier * **img_tensor** (*torch.Tensor**, **numpy.ndarray**, or **string/blobname*) -- Image data * **global_step** (*int*) -- Global step value to record * **walltime** (*float*) -- Optional override default
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
walltime (time.time()) seconds after epoch of event * **dataformats** (*str*) -- Image data format specification of the form CHW, HWC, HW, WH, etc. Shape: img_tensor: Default is (3, H, W). You can use "torchvision.utils.make_grid()" to convert a batch of tensor into 3xHxW format or call "add_images" and let us do the job. Tensor with (1, H, W), (H, W), (H, W, 3) is also suitable as long as corresponding "dataformats" argument is passed, e.g. "CHW", "HWC", "HW". Examples: from torch.utils.tensorboard import SummaryWriter import numpy as np img = np.zeros((3, 100, 100)) img[0] = np.arange(0, 10000).reshape(100, 100) / 10000 img[1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000 img_HWC = np.zeros((100, 100, 3)) img_HWC[:, :, 0] = np.arange(0, 10000).reshape(100, 100) / 10000
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
img_HWC[:, :, 1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000 writer = SummaryWriter() writer.add_image('my_image', img, 0) # If you have non-default dimension setting, set the dataformats argument. writer.add_image('my_image_HWC', img_HWC, 0, dataformats='HWC') writer.close() Expected result: [image] add_images(tag, img_tensor, global_step=None, walltime=None, dataformats='NCHW') Add batched image data to summary. Note that this requires the "pillow" package. Parameters: * **tag** (*str*) -- Data identifier * **img_tensor** (*torch.Tensor**, **numpy.ndarray**, or **string/blobname*) -- Image data * **global_step** (*int*) -- Global step value to record * **walltime** (*float*) -- Optional override default walltime (time.time()) seconds after epoch of event * **dataformats** (*str*) -- Image data format specification
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
of the form NCHW, NHWC, CHW, HWC, HW, WH, etc. Shape: img_tensor: Default is (N, 3, H, W). If "dataformats" is specified, other shape will be accepted. e.g. NCHW or NHWC. Examples: from torch.utils.tensorboard import SummaryWriter import numpy as np img_batch = np.zeros((16, 3, 100, 100)) for i in range(16): img_batch[i, 0] = np.arange(0, 10000).reshape(100, 100) / 10000 / 16 * i img_batch[i, 1] = (1 - np.arange(0, 10000).reshape(100, 100) / 10000) / 16 * i writer = SummaryWriter() writer.add_images('my_image_batch', img_batch, 0) writer.close() Expected result: [image] add_figure(tag, figure, global_step=None, close=True, walltime=None) Render matplotlib figure into an image and add it to summary. Note that this requires the "matplotlib" package. Parameters: * **tag** (*str*) -- Data identifier
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
tag (str) -- Data identifier * **figure** (*matplotlib.pyplot.figure*) -- Figure or a list of figures * **global_step** (*int*) -- Global step value to record * **close** (*bool*) -- Flag to automatically close the figure * **walltime** (*float*) -- Optional override default walltime (time.time()) seconds after epoch of event add_video(tag, vid_tensor, global_step=None, fps=4, walltime=None) Add video data to summary. Note that this requires the "moviepy" package. Parameters: * **tag** (*str*) -- Data identifier * **vid_tensor** (*torch.Tensor*) -- Video data * **global_step** (*int*) -- Global step value to record * **fps** (*float** or **int*) -- Frames per second * **walltime** (*float*) -- Optional override default walltime (time.time()) seconds after epoch of event Shape:
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
Shape: vid_tensor: (N, T, C, H, W). The values should lie in [0, 255] for type uint8 or [0, 1] for type float. add_audio(tag, snd_tensor, global_step=None, sample_rate=44100, walltime=None) Add audio data to summary. Parameters: * **tag** (*str*) -- Data identifier * **snd_tensor** (*torch.Tensor*) -- Sound data * **global_step** (*int*) -- Global step value to record * **sample_rate** (*int*) -- sample rate in Hz * **walltime** (*float*) -- Optional override default walltime (time.time()) seconds after epoch of event Shape: snd_tensor: (1, L). The values should lie between [-1, 1]. add_text(tag, text_string, global_step=None, walltime=None) Add text data to summary. Parameters: * **tag** (*str*) -- Data identifier * **text_string** (*str*) -- String to save * **global_step** (*int*) -- Global step value to record
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
walltime (float) -- Optional override default walltime (time.time()) seconds after epoch of event Examples: writer.add_text('lstm', 'This is an lstm', 0) writer.add_text('rnn', 'This is an rnn', 10) add_graph(model, input_to_model=None, verbose=False, use_strict_trace=True) Add graph data to summary. Parameters: * **model** (*torch.nn.Module*) -- Model to draw. * **input_to_model** (*torch.Tensor** or **list of torch.Tensor*) -- A variable or a tuple of variables to be fed. * **verbose** (*bool*) -- Whether to print graph structure in console. * **use_strict_trace** (*bool*) -- Whether to pass keyword argument *strict* to *torch.jit.trace*. Pass False when you want the tracer to record your mutable container types (list, dict) add_embedding(mat, metadata=None, label_img=None, global_step=None, tag='default', metadata_header=None)
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
Add embedding projector data to summary. Parameters: * **mat** (*torch.Tensor** or **numpy.ndarray*) -- A matrix which each row is the feature vector of the data point * **metadata** (*list*) -- A list of labels, each element will be convert to string * **label_img** (*torch.Tensor*) -- Images correspond to each data point * **global_step** (*int*) -- Global step value to record * **tag** (*str*) -- Name for the embedding Shape: mat: (N, D), where N is number of data and D is feature dimension label_img: (N, C, H, W) Examples: import keyword import torch meta = [] while len(meta)<100: meta = meta+keyword.kwlist # get some strings meta = meta[:100] for i, v in enumerate(meta): meta[i] = v+str(i) label_img = torch.rand(100, 3, 10, 32) for i in range(100):
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
for i in range(100): label_img[i]*=i/100.0 writer.add_embedding(torch.randn(100, 5), metadata=meta, label_img=label_img) writer.add_embedding(torch.randn(100, 5), label_img=label_img) writer.add_embedding(torch.randn(100, 5), metadata=meta) add_pr_curve(tag, labels, predictions, global_step=None, num_thresholds=127, weights=None, walltime=None) Adds precision recall curve. Plotting a precision-recall curve lets you understand your model's performance under different threshold settings. With this function, you provide the ground truth labeling (T/F) and prediction confidence (usually the output of your model) for each target. The TensorBoard UI will let you choose the threshold interactively. Parameters: * **tag** (*str*) -- Data identifier * **labels** (*torch.Tensor**, **numpy.ndarray**, or **string/blobname*) -- Ground truth data. Binary label for each element.
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
each element. * **predictions** (*torch.Tensor**, **numpy.ndarray**, or **string/blobname*) -- The probability that an element be classified as true. Value should be in [0, 1] * **global_step** (*int*) -- Global step value to record * **num_thresholds** (*int*) -- Number of thresholds used to draw the curve. * **walltime** (*float*) -- Optional override default walltime (time.time()) seconds after epoch of event Examples: from torch.utils.tensorboard import SummaryWriter import numpy as np labels = np.random.randint(2, size=100) # binary label predictions = np.random.rand(100) writer = SummaryWriter() writer.add_pr_curve('pr_curve', labels, predictions, 0) writer.close() add_custom_scalars(layout) Create special chart by collecting charts tags in 'scalars'. Note that this function can only be called once for each
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
SummaryWriter() object. Because it only provides metadata to tensorboard, the function can be called before or after the training loop. Parameters: **layout** (*dict*) -- {categoryName: *charts*}, where *charts* is also a dictionary {chartName: *ListOfProperties*}. The first element in *ListOfProperties* is the chart's type (one of **Multiline** or **Margin**) and the second element should be a list containing the tags you have used in add_scalar function, which will be collected into the new chart. Examples: layout = {'Taiwan':{'twse':['Multiline',['twse/0050', 'twse/2330']]}, 'USA':{ 'dow':['Margin', ['dow/aaa', 'dow/bbb', 'dow/ccc']], 'nasdaq':['Margin', ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']]}} writer.add_custom_scalars(layout) add_mesh(tag, vertices, colors=None, faces=None, config_dict=None, global_step=None, walltime=None)
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
Add meshes or 3D point clouds to TensorBoard. The visualization is based on Three.js, so it allows users to interact with the rendered object. Besides the basic definitions such as vertices, faces, users can further provide camera parameter, lighting condition, etc. Please check https://threejs.org/docs/index.htm l#manual/en/introduction/Creating-a-scene for advanced usage. Parameters: * **tag** (*str*) -- Data identifier * **vertices** (*torch.Tensor*) -- List of the 3D coordinates of vertices. * **colors** (*torch.Tensor*) -- Colors for each vertex * **faces** (*torch.Tensor*) -- Indices of vertices within each triangle. (Optional) * **config_dict** -- Dictionary with ThreeJS classes names and configuration. * **global_step** (*int*) -- Global step value to record * **walltime** (*float*) -- Optional override default
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
walltime (time.time()) seconds after epoch of event Shape: vertices: (B, N, 3). (batch, number_of_vertices, channels) colors: (B, N, 3). The values should lie in [0, 255] for type *uint8* or [0, 1] for type *float*. faces: (B, N, 3). The values should lie in [0, number_of_vertices] for type *uint8*. Examples: from torch.utils.tensorboard import SummaryWriter vertices_tensor = torch.as_tensor([ [1, 1, 1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1], ], dtype=torch.float).unsqueeze(0) colors_tensor = torch.as_tensor([ [255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 0, 255], ], dtype=torch.int).unsqueeze(0) faces_tensor = torch.as_tensor([ [0, 2, 3], [0, 3, 1], [0, 1, 2], [1, 3, 2], ], dtype=torch.int).unsqueeze(0)
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
], dtype=torch.int).unsqueeze(0) writer = SummaryWriter() writer.add_mesh('my_mesh', vertices=vertices_tensor, colors=colors_tensor, faces=faces_tensor) writer.close() add_hparams(hparam_dict, metric_dict, hparam_domain_discrete=None, run_name=None) Add a set of hyperparameters to be compared in TensorBoard. Parameters: * **hparam_dict** (*dict*) -- Each key-value pair in the dictionary is the name of the hyper parameter and it's corresponding value. The type of the value can be one of *bool*, *string*, *float*, *int*, or *None*. * **metric_dict** (*dict*) -- Each key-value pair in the dictionary is the name of the metric and it's corresponding value. Note that the key used here should be unique in the tensorboard record. Otherwise the value you added by "add_scalar" will be displayed in hparam plugin. In most cases, this is unwanted.
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs
cases, this is unwanted. * **hparam_domain_discrete** -- (Optional[Dict[str, List[Any]]]) A dictionary that contains names of the hyperparameters and all discrete values they can hold * **run_name** (*str*) -- Name of the run, to be included as part of the logdir. If unspecified, will use current timestamp. Examples: from torch.utils.tensorboard import SummaryWriter with SummaryWriter() as w: for i in range(5): w.add_hparams({'lr': 0.1*i, 'bsize': i}, {'hparam/accuracy': 10*i, 'hparam/loss': 10*i}) Expected result: [image] flush() Flushes the event file to disk. Call this method to make sure that all pending events have been written to disk. close()
https://pytorch.org/docs/stable/tensorboard.html
pytorch docs