File size: 1,797 Bytes
12a9135
9611226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12a9135
9611226
 
 
 
 
ee32925
 
9611226
 
cb3064d
 
 
5a6a6e6
cb3064d
 
 
6685505
 
9611226
 
 
 
 
 
 
 
024a426
 
9611226
 
 
 
 
cb3064d
9611226
cb3064d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
annotations_creators: []
language: []
language_creators: []
license:
- cc0-1.0
multilinguality: []
pretty_name: Anime Segmentation
size_categories:
- 10K<n<100K
source_datasets:
- original
tags: []
task_categories:
- image-segmentation
task_ids:
- semantic-segmentation
---

## Dataset Description

A segmentation dataset for anime character

My project: [anime-segmentation](https://github.com/SkyTNT/anime-segmentation)

### Dataset Summary

| Dir  | Description                               | Format | Images |
| ---- | ----                                      | ----   | ----   |
| bg   | background images                         | jpg    | 8057   |
| fg   | foreground images, transparent background | png    | 11802  |
| imgs | real images with background and foreground| jpg    | 1111   |
| masks| labels for imgs                           | jpg    | 1111   |

Total size: 18GB

### Collection Method

Collect background from [character_bg_seg_data](https://github.com/ShuhongChen/bizarre-pose-estimator#download)

Collect foreground from danbooru website.

Collect imgs and masks from [AniSeg](https://github.com/jerryli27/AniSeg#about-the-models) and danbooru website.

I use [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) to restore the background images.

I clean the dataset using [DeepDanbooru](https://github.com/KichangKim/DeepDanbooru) first then manually, to make sue all foreground is anime character.

### Contributions

Thanks to [@SkyTNT](https://github.com/SkyTNT) for adding this dataset.

Thanks to [@ShuhongChen](https://github.com/ShuhongChen) for [character_bg_seg_data](https://github.com/ShuhongChen/bizarre-pose-estimator#download)

Thanks to [@jerryli27](https://github.com/jerryli27) for [AniSeg](https://github.com/jerryli27/AniSeg#about-the-models)