Datasets:

Modalities:
Text
Formats:
json
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 37,306 Bytes
69d7a7e
 
252d8f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314880d
 
 
 
1618ed7
314880d
 
 
1618ed7
314880d
1618ed7
314880d
1618ed7
314880d
1618ed7
69d7a7e
252d8f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
---

license: apache-2.0
configs:
- config_name: abusive-founta
  data_files:
  - path: data/ABUSIVE/Founta/test.json
    split: test
  - path: data/ABUSIVE/Founta/train.json
    split: train
  - path: data/ABUSIVE/Founta/validation.json
    split: validation
- config_name: abusive-waseemsrw
  data_files:
  - path: data/ABUSIVE/WaseemSRW/test.json
    split: test
  - path: data/ABUSIVE/WaseemSRW/train.json
    split: train
  - path: data/ABUSIVE/WaseemSRW/validation.json
    split: validation
- config_name: chunking-ritter
  data_files:
  - path: data/CHUNKING/Ritter/test.json
    split: test
  - path: data/CHUNKING/Ritter/train.json
    split: train
  - path: data/CHUNKING/Ritter/validation.json
    split: validation
- config_name: ner-broad
  data_files:
  - path: data/NER/BROAD/test.json
    split: test
  - path: data/NER/BROAD/train.json
    split: train
  - path: data/NER/BROAD/validation.json
    split: validation
- config_name: ner-finin
  data_files:
  - path: data/NER/Finin/test.json
    split: test
  - path: data/NER/Finin/train.json
    split: train
- config_name: ner-hege
  data_files:
  - path: data/NER/Hege/test.json
    split: test
- config_name: ner-msm2013
  data_files:
  - path: data/NER/MSM2013/test.json
    split: test
  - path: data/NER/MSM2013/train.json
    split: train
- config_name: ner-multimodal
  data_files:
  - path: data/NER/MultiModal/test.json
    split: test
  - path: data/NER/MultiModal/train.json
    split: train
  - path: data/NER/MultiModal/validation.json
    split: validation
- config_name: ner-neel2016
  data_files:
  - path: data/NER/NEEL2016/test.json
    split: test
  - path: data/NER/NEEL2016/train.json
    split: train
  - path: data/NER/NEEL2016/validation.json
    split: validation
- config_name: ner-ritter
  data_files:
  - path: data/NER/Ritter/test.json
    split: test
  - path: data/NER/Ritter/train.json
    split: train
  - path: data/NER/Ritter/validation.json
    split: validation
- config_name: ner-wnut2016
  data_files:
  - path: data/NER/WNUT2016/test.json
    split: test
  - path: data/NER/WNUT2016/train.json
    split: train
  - path: data/NER/WNUT2016/validation.json
    split: validation
- config_name: ner-wnut2017
  data_files:
  - path: data/NER/WNUT2017/test.json
    split: test
  - path: data/NER/WNUT2017/train.json
    split: train
  - path: data/NER/WNUT2017/validation.json
    split: validation
- config_name: ner-yodie
  data_files:
  - path: data/NER/YODIE/test.json
    split: test
  - path: data/NER/YODIE/train.json
    split: train
- config_name: pos-dimsum2016
  data_files:
  - path: data/POS/DiMSUM2016/test.json
    split: test
  - path: data/POS/DiMSUM2016/train.json
    split: train
- config_name: pos-foster
  data_files:
  - path: data/POS/Foster/test.json
    split: test
- config_name: pos-lowlands
  data_files:
  - path: data/POS/lowlands/test.json
    split: test
- config_name: pos-owoputi
  data_files:
  - path: data/POS/Owoputi/test.json
    split: test
  - path: data/POS/Owoputi/train.json
    split: train
  - path: data/POS/Owoputi/validation.json
    split: validation
- config_name: pos-ritter
  data_files:
  - path: data/POS/Ritter/test.json
    split: test
  - path: data/POS/Ritter/train.json
    split: train
  - path: data/POS/Ritter/validation.json
    split: validation
- config_name: pos-tweetbankv2
  data_files:
  - path: data/POS/Tweetbankv2/test.json
    split: test
  - path: data/POS/Tweetbankv2/train.json
    split: train
  - path: data/POS/Tweetbankv2/validation.json
    split: validation
- config_name: pos-twitie
  data_files:
  - path: data/POS/TwitIE/test.json
    split: test
  - path: data/POS/TwitIE/validation.json
    split: validation
- config_name: sentiment-airline
  data_files:
  - path: data/SENTIMENT/Airline/test.json
    split: test
  - path: data/SENTIMENT/Airline/train.json
    split: train
  - path: data/SENTIMENT/Airline/validation.json
    split: validation
- config_name: sentiment-clarin
  data_files:
  - path: data/SENTIMENT/Clarin/test.json
    split: test
  - path: data/SENTIMENT/Clarin/train.json
    split: train
  - path: data/SENTIMENT/Clarin/validation.json
    split: validation
- config_name: sentiment-gop
  data_files:
  - path: data/SENTIMENT/GOP/test.json
    split: test
  - path: data/SENTIMENT/GOP/train.json
    split: train
  - path: data/SENTIMENT/GOP/validation.json
    split: validation
- config_name: sentiment-healthcare
  data_files:
  - path: data/SENTIMENT/Healthcare/test.json
    split: test
  - path: data/SENTIMENT/Healthcare/train.json
    split: train
  - path: data/SENTIMENT/Healthcare/validation.json
    split: validation
- config_name: sentiment-obama
  data_files:
  - path: data/SENTIMENT/Obama/test.json
    split: test
  - path: data/SENTIMENT/Obama/train.json
    split: train
  - path: data/SENTIMENT/Obama/validation.json
    split: validation
- config_name: sentiment-semeval
  data_files:
  - path: data/SENTIMENT/SemEval/test.json
    split: test
  - path: data/SENTIMENT/SemEval/train.json
    split: train
  - path: data/SENTIMENT/SemEval/validation.json
    split: validation
- config_name: supersense-johannsen2014
  data_files:
  - path: data/SUPERSENSE/Johannsen2014/test.json
    split: test
- config_name: supersense-ritter
  data_files:
  - path: data/SUPERSENSE/Ritter/test.json
    split: test
  - path: data/SUPERSENSE/Ritter/train.json
    split: train
  - path: data/SUPERSENSE/Ritter/validation.json
    split: validation
- config_name: uncertainity-riloff
  data_files:
  - path: data/UNCERTAINITY/Riloff/test.json
    split: test
  - path: data/UNCERTAINITY/Riloff/train.json
    split: train
  - path: data/UNCERTAINITY/Riloff/validation.json
    split: validation
- config_name: uncertainity-swamy
  data_files:
  - path: data/UNCERTAINITY/Swamy/test.json
    split: test
  - path: data/UNCERTAINITY/Swamy/train.json
    split: train
  - path: data/UNCERTAINITY/Swamy/validation.json
    split: validation

dataset_info:
  features:
    - name: tweet_id
      dtype: string
    - name: id    
      dtype: int32
    - name: text
      dtype: string
    - name: label
      dtype: string
    - name: tokens
      sequence: string
    - name: ner_tags
      sequence: string
---


# SocialMediaIE - Social Media Information Extraction

# List of datasets used for training SocialMediaIE 

- [Dataset referencs](#dataset-referencs)
  * [Tagging datasets](#tagging-datasets)
- [Dataset statistics](#dataset-statistics)
  * [Sentiment](#sentiment)
  * [Abusive](#abusive)
  * [Uncertainity](#uncertainity)
  * [Part of Speech Tagging](#part-of-speech-tagging)
  * [Named Entity Recognition](#named-entity-recognition)
  * [Chunking](#chunking)
  * [Supersense Tagging](#supersense-tagging)
- [Dataset references](#dataset-references)

<small><i><a href='http://ecotrust-canada.github.io/markdown-toc/'>Table of contents generated with markdown-toc</a></i></small>



## Dataset referencs

### Tagging datasets

* **POS tagging:** [17,18] (OW), [7] (TIE), [20] (RT), [15](TB), [22] (DS), [12] (FS), and [12,13] (LW). 
* **NER:** [20] (RT), [23] (W16), [6] (W17), [9] (FN), [10] (HG),and [4] (BR), [24] (MM), [11] (YD), [21] (we do not evaluate on this) and [1] (MSM). 
* **Chunking:** [20] (RT) dataset. 
* **Supersense tagging:** [20] (RT) dataset, the [14] (JH) dataset.



## Dataset statistics

### Sentiment

|            	|       	| tokens 	| tweets 	| vocab 	|
|------------	|-------	|--------	|--------	|-------	|
| data       	| split 	|        	|        	|       	|
| Airline    	| dev   	| 20079  	| 981    	| 3273  	|
|            	| test  	| 50777  	| 2452   	| 5630  	|
|            	| train 	| 182040 	| 8825   	| 11697 	|
| Clarin     	| dev   	| 80672  	| 4934   	| 15387 	|
|            	| test  	| 205126 	| 12334  	| 31373 	|
|            	| train 	| 732743 	| 44399  	| 84279 	|
| GOP        	| dev   	| 16339  	| 803    	| 3610  	|
|            	| test  	| 41226  	| 2006   	| 6541  	|
|            	| train 	| 148358 	| 7221   	| 14342 	|
| Healthcare 	| dev   	| 15797  	| 724    	| 3304  	|
|            	| test  	| 16022  	| 717    	| 3471  	|
|            	| train 	| 14923  	| 690    	| 3511  	|
| Obama      	| dev   	| 3472   	| 209    	| 1118  	|
|            	| test  	| 8816   	| 522    	| 2043  	|
|            	| train 	| 31074  	| 1877   	| 4349  	|
| SemEval    	| dev   	| 105108 	| 4583   	| 14468 	|
|            	| test  	| 528234 	| 23103  	| 43812 	|
|            	| train 	| 281468 	| 12245  	| 29673 	|


### Abusive

|           	|       	| tokens 	| tweets 	| vocab  	|
|-----------	|-------	|--------	|--------	|--------	|
| data      	| split 	|        	|        	|        	|
| Founta    	| dev   	| 102534 	| 4663   	| 22529  	|
|           	| test  	| 256569 	| 11657  	| 44540  	|
|           	| train 	| 922028 	| 41961  	| 118349 	|
| WaseemSRW 	| dev   	| 25588  	| 1464   	| 5907   	|
|           	| test  	| 64893  	| 3659   	| 10646  	|
|           	| train 	| 234550 	| 13172  	| 23042  	|


### Uncertainity

|        	|       	| tokens 	| tweets 	| vocab 	|
|--------	|-------	|--------	|--------	|-------	|
| data   	| split 	|        	|        	|       	|
| Riloff 	| dev   	| 2126   	| 145    	| 1002  	|
|        	| test  	| 5576   	| 362    	| 1986  	|
|        	| train 	| 19652  	| 1301   	| 5090  	|
| Swamy  	| dev   	| 1597   	| 73     	| 738   	|
|        	| test  	| 3909   	| 183    	| 1259  	|
|        	| train 	| 14026  	| 655    	| 2921  	|


### Part of Speech Tagging

|             	|                                                                                                                                                                            	| labels                                                                                                                                                                                                 	| labels_unique 	| sequences 	| tokens_unique 	| total_tokens 	|

|-------------	|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------	|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	|---------------	|-----------	|---------------	|--------------	|

| data_key    	| split_prefix                                                                                                                                                               	|                                                                                                                                                                                                        	|               	|           	|               	|              	|

| Owoputi     	| train                                                                                                                                                                      	| [!, #, $, &, ,, @, A, D, E, G, L, M, N, O, P, R, S, T, U, V, X, Y, Z, ^, ~]                                                                                                                            	| 25            	| 1547      	| 6572          	| 22326        	|

|             	| dev                                                                                                                                                                        	| [!, #, $, &, ,, @, A, D, E, G, L, N, O, P, R, S, T, U, V, X, Z, ^, ~]                                                                                                                                  	| 23            	| 327       	| 2036          	| 4823         	|

|             	| test                                                                                                                                                                       	| [!, #, $, &, ,, @, A, D, E, G, L, N, O, P, R, S, T, U, V, X, Z, ^, ~]                                                                                                                                  	| 23            	| 500       	| 2754          	| 7152         	|

| Foster      	| test                                                                                                                                                                       	| [ADJ, ADP, ADV, CCONJ, DET, NOUN, NUM, PART, PRON, PUNCT, VERB, X]                                                                                                                                     	| 12            	| 250       	| 1068          	| 2841         	|

| TwitIE      	| dev                                                                                                                                                                        	| ['', (, ), ,, :, CC, CD, DT, FW, HT, IN, JJ, JJR, JJS, MD, NN, NNP, NNPS, NNS, PDT, POS, PRP, PRP$, PUNCT, RB, RBR, RBS, RP, RT, SYM, TO, UH, URL, USR, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WRB]     	| 43            	| 269       	| 1229          	| 2998         	|

|             	| test                                                                                                                                                                       	| ['', (, ), ,, :, CC, CD, DT, EX, FW, HT, IN, JJ, JJR, JJS, MD, NN, NNP, NNPS, NNS, PDT, POS, PRP, PRP#, PUNCT, RB, RBR, RBS, RP, RT, SYM, TO, UH, URL, USR, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WRB] 	| 45            	| 632       	| 3539          	| 12196        	|

| dev         	| ['', (, ), ,, :, CC, CD, DT, HT, IN, JJ, JJR, JJS, MD, NN, NNP, NNS, POS, PRP, PRP#, PUNCT, RB, RBR, RP, RT, SYM, TO, UH, URL, USR, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WRB] 	| 41                                                                                                                                                                                                     	| 84            	| 735       	| 1627          	|              	|

| lowlands    	| test                                                                                                                                                                       	| [ADJ, ADP, ADV, CCONJ, DET, NOUN, NUM, PART, PRON, PUNCT, VERB, X]                                                                                                                                     	| 12            	| 1318      	| 4805          	| 19794        	|

| Tweetbankv2 	| dev                                                                                                                                                                        	| [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X]                                                                                                       	| 17            	| 710       	| 3271          	| 11759        	|

|             	| train                                                                                                                                                                      	| [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X]                                                                                                       	| 17            	| 1639      	| 5632          	| 24753        	|

|             	| test                                                                                                                                                                       	| [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X]                                                                                                       	| 17            	| 1201      	| 4699          	| 19095        	|

| DiMSUM2016  	| train                                                                                                                                                                      	| [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X]                                                                                                       	| 17            	| 4799      	| 9113          	| 73826        	|

|             	| test                                                                                                                                                                       	| [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X]                                                                                                       	| 17            	| 1000      	| 4010          	| 16500        	|





### Named Entity Recognition



|            	|              	| boundaries 	| labels                                                                                                                    	| labels_unique 	| sequences 	| tokens_unique 	| total_tokens 	|
|------------	|--------------	|------------	|---------------------------------------------------------------------------------------------------------------------------	|---------------	|-----------	|---------------	|--------------	|
| data_key   	| split_prefix 	|            	|                                                                                                                           	|               	|           	|               	|              	|
| Finin      	| train        	| [I, B, O]  	| [LOC, PER, ORG]                                                                                                           	| 3             	| 10000     	| 19663         	| 172188       	|
|            	| test         	| [I, B, O]  	| [LOC, PER, ORG]                                                                                                           	| 3             	| 5369      	| 13027         	| 97525        	|
| Hege       	| test         	| [I, B, O]  	| [LOC, PER, ORG]                                                                                                           	| 3             	| 1545      	| 4552          	| 20664        	|
| Ritter     	| train        	| [I, B, O]  	| [COMPANY, OTHER, FACILITY, PERSON, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM]                              	| 10            	| 1900      	| 7695          	| 36936        	|
|            	| dev          	| [I, B, O]  	| [COMPANY, OTHER, PERSON, FACILITY, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM]                              	| 10            	| 240       	| 1731          	| 4612         	|
|            	| test         	| [I, B, O]  	| [COMPANY, OTHER, PERSON, FACILITY, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM]                              	| 10            	| 254       	| 1776          	| 4921         	|
| YODIE      	| train        	| [I, B, O]  	| [COMPANY, OTHER, PERSON, LOCATION, FACILITY, MOVIE, MUSICARTIST, GEO-LOC, UNK, TVSHOW, PRODUCT, SPORTSTEAM, ORGANIZATION] 	| 13            	| 396       	| 2554          	| 7905         	|
|            	| test         	| [I, B, O]  	| [COMPANY, OTHER, FACILITY, LOCATION, PERSON, MOVIE, MUSICARTIST, GEO-LOC, UNK, TVSHOW, PRODUCT, SPORTSTEAM, ORGANIZATION] 	| 13            	| 397       	| 2578          	| 8032         	|
| WNUT2016   	| train        	| [I, B, O]  	| [COMPANY, OTHER, FACILITY, PERSON, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM]                              	| 10            	| 2394      	| 9068          	| 46469        	|
|            	| test         	| [I, B, O]  	| [COMPANY, OTHER, PERSON, FACILITY, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM]                              	| 10            	| 3850      	| 16012         	| 61908        	|
|            	| dev          	| [I, B, O]  	| [COMPANY, OTHER, FACILITY, PERSON, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM]                              	| 10            	| 1000      	| 5563          	| 16261        	|
| WNUT2017   	| train        	| [I, B, O]  	| [GROUP, CORPORATION, PERSON, LOCATION, PRODUCT, CREATIVE-WORK]                                                            	| 6             	| 3394      	| 12840         	| 62730        	|
|            	| dev          	| [I, B, O]  	| [GROUP, CORPORATION, PERSON, LOCATION, PRODUCT, CREATIVE-WORK]                                                            	| 6             	| 1009      	| 3538          	| 15733        	|
|            	| test         	| [I, B, O]  	| [GROUP, CORPORATION, PERSON, LOCATION, PRODUCT, CREATIVE-WORK]                                                            	| 6             	| 1287      	| 5759          	| 23394        	|
| MSM2013    	| train        	| [I, B, O]  	| [LOC, MISC, PER, ORG]                                                                                                     	| 4             	| 2815      	| 8514          	| 51521        	|
|            	| test         	| [I, B, O]  	| [LOC, PER, ORG, MISC]                                                                                                     	| 4             	| 1450      	| 5701          	| 29089        	|
| NEEL2016   	| train        	| [I, B, O]  	| [PERSON, THING, LOCATION, EVENT, PRODUCT, ORGANIZATION, CHARACTER]                                                        	| 7             	| 2588      	| 9731          	| 51669        	|
|            	| dev          	| [I, B, O]  	| [PERSON, LOCATION, THING, EVENT, PRODUCT, ORGANIZATION, CHARACTER]                                                        	| 7             	| 88        	| 762           	| 1647         	|
|            	| test         	| [I, B, O]  	| [PERSON, THING, LOCATION, EVENT, PRODUCT, ORGANIZATION, CHARACTER]                                                        	| 7             	| 2663      	| 9894          	| 47488        	|
| BROAD      	| train        	| [I, B, O]  	| [LOC, PER, ORG]                                                                                                           	| 3             	| 5605      	| 19523         	| 90060        	|
|            	| dev          	| [I, B, O]  	| [LOC, PER, ORG]                                                                                                           	| 3             	| 933       	| 5312          	| 15169        	|
|            	| test         	| [I, B, O]  	| [LOC, PER, ORG]                                                                                                           	| 3             	| 2802      	| 11772         	| 45159        	|
| MultiModal 	| train        	| [I, B, O]  	| [LOC, PER, ORG, MISC]                                                                                                     	| 4             	| 4000      	| 20221         	| 64439        	|
|            	| dev          	| [I, B, O]  	| [LOC, MISC, PER, ORG]                                                                                                     	| 4             	| 1000      	| 6832          	| 16178        	|
|            	| test         	| [I, B, O]  	| [LOC, PER, ORG, MISC]                                                                                                     	| 4             	| 3257      	| 17381         	| 52822        	|


### Chunking

|          	|              	| boundaries 	| labels                                           	| labels_unique 	| sequences 	| tokens_unique 	| total_tokens 	|

|----------	|--------------	|------------	|--------------------------------------------------	|---------------	|-----------	|---------------	|--------------	|

| data_key 	| split_prefix 	|            	|                                                  	|               	|           	|               	|              	|

| Ritter   	| train        	| [I, B, O]  	| [ADJP, PP, INTJ, ADVP, PRT, NP, SBAR, VP, CONJP] 	| 9             	| 551       	| 3158          	| 10584        	|

|          	| dev          	| [I, B, O]  	| [ADJP, PP, INTJ, ADVP, PRT, NP, SBAR, VP]        	| 8             	| 118       	| 994           	| 2317         	|

|          	| test         	| [I, B, O]  	| [ADJP, PP, INTJ, ADVP, PRT, NP, SBAR, VP]        	| 8             	| 119       	| 988           	| 2310         	|





### Supersense Tagging



|               	|              	| boundaries 	| labels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      	| labels_unique 	| sequences 	| tokens_unique 	| total_tokens 	|
|---------------	|--------------	|------------	|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	|---------------	|-----------	|---------------	|--------------	|
| data_key      	| split_prefix 	|            	|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             	|               	|           	|               	|              	|
| Ritter        	| train        	| [I, B, O]  	| [NOUN.BODY, NOUN.STATE, NOUN.ARTIFACT, NOUN.ATTRIBUTE, NOUN.FOOD, NOUN.TOPS, NOUN.COGNITION, NOUN.EVENT, NOUN.OBJECT, NOUN.MOTIVE, NOUN.GROUP, VERB.COMMUNICATION, NOUN.PHENOMENON, VERB.POSSESSION, VERB.COMPETITION, NOUN.POSSESSION, NOUN.FEELING, VERB.SOCIAL, NOUN.ANIMAL, VERB.CREATION, VERB.CONSUMPTION, VERB.PERCEPTION, VERB.CONTACT, VERB.WEATHER, VERB.BODY, NOUN.LOCATION, NOUN.QUANTITY, NOUN.SUBSTANCE, NOUN.RELATION, NOUN.TIME, NOUN.PERSON, VERB.COGNITION, VERB.EMOTION, NOUN.PLANT, VERB.STATIVE, VERB.MOTION, NOUN.COMMUNICATION, NOUN.PROCESS, NOUN.ACT, VERB.CHANGE] 	| 40            	| 551       	| 3174          	| 10652        	|
|               	| dev          	| [I, B, O]  	| [NOUN.BODY, NOUN.STATE, NOUN.ARTIFACT, NOUN.ATTRIBUTE, NOUN.FOOD, NOUN.COGNITION, NOUN.EVENT, NOUN.OBJECT, NOUN.MOTIVE, NOUN.GROUP, VERB.COMMUNICATION, NOUN.PHENOMENON, VERB.COMPETITION, VERB.POSSESSION, NOUN.POSSESSION, NOUN.FEELING, VERB.SOCIAL, NOUN.ANIMAL, VERB.CREATION, VERB.CONSUMPTION, VERB.PERCEPTION, VERB.CONTACT, VERB.BODY, NOUN.LOCATION, NOUN.QUANTITY, NOUN.SUBSTANCE, NOUN.RELATION, NOUN.TIME, VERB.COGNITION, NOUN.PERSON, VERB.EMOTION, NOUN.PLANT, VERB.STATIVE, VERB.MOTION, NOUN.COMMUNICATION, NOUN.ACT, VERB.CHANGE]                                        	| 37            	| 118       	| 1014          	| 2242         	|
|               	| test         	| [I, B, O]  	| [NOUN.BODY, NOUN.STATE, NOUN.ARTIFACT, NOUN.ATTRIBUTE, NOUN.FOOD, NOUN.TOPS, NOUN.COGNITION, NOUN.EVENT, NOUN.OBJECT, NOUN.MOTIVE, NOUN.SHAPE, NOUN.GROUP, VERB.COMMUNICATION, NOUN.PHENOMENON, VERB.POSSESSION, NOUN.FEELING, NOUN.POSSESSION, VERB.COMPETITION, VERB.SOCIAL, NOUN.ANIMAL, VERB.CREATION, VERB.CONSUMPTION, VERB.PERCEPTION, VERB.CONTACT, VERB.WEATHER, VERB.BODY, NOUN.LOCATION, NOUN.QUANTITY, NOUN.SUBSTANCE, NOUN.RELATION, NOUN.TIME, NOUN.PERSON, VERB.COGNITION, VERB.EMOTION, VERB.STATIVE, VERB.MOTION, NOUN.COMMUNICATION, NOUN.PROCESS, NOUN.ACT, VERB.CHANGE] 	| 40            	| 118       	| 1011          	| 2291         	|
| Johannsen2014 	| test         	| [I, B, O]  	| [NOUN.BODY, NOUN.STATE, NOUN.ARTIFACT, NOUN.ATTRIBUTE, NOUN.FOOD, NOUN.COGNITION, NOUN.EVENT, NOUN.OBJECT, NOUN.SHAPE, NOUN.GROUP, VERB.COMMUNICATION, NOUN.PHENOMENON, VERB.COMPETITION, VERB.POSSESSION, NOUN.FEELING, NOUN.POSSESSION, VERB.SOCIAL, NOUN.ANIMAL, VERB.CREATION, VERB.CONSUMPTION, VERB.PERCEPTION, VERB.CONTACT, VERB.BODY, NOUN.LOCATION, NOUN.QUANTITY, NOUN.SUBSTANCE, NOUN.RELATION, NOUN.TIME, NOUN.PERSON, VERB.COGNITION, VERB.EMOTION, VERB.STATIVE, VERB.MOTION, NOUN.COMMUNICATION, NOUN.PROCESS, NOUN.ACT, VERB.CHANGE]                                       	| 37            	| 200       	| 1249          	| 3064         	|


## Dataset references

* [1] Amparo Elizabeth Cano, Andrea Varga, Matthew Rowe, Milan Stankovic, and Aba-Sah Dadzie. 2013. Making Sense of Microposts (#MSM2013) Concept ExtractionChallenge. In#MSM.
* [2] Richard A. Caruana. 1993.  Multitask Learning: A Knowledge-Based Source ofInductive Bias.  InMachine Learning Proceedings 1993. Elsevier, 41–48.   https://doi.org/10.1016/b978-1-55860-307-3.50012-5
* [3] Ronan Collbert, Jason Weston, LÃľon Bottou, Michael Karlen, Koray Kavukcuoglu,and Pavel Kuksa. 2011.  Natural Language Processing (Almost) from Scratch.Journal ofMachine Learning Research12 (2 2011), 2493–2537.   http://dl.acm.org/citation.cfm?id=2078186
* [4] Leon  Derczynski,  Kalina  Bontcheva,  and  Ian  Roberts.  2016.Broad  Twit-ter  Corpus:  A  Diverse  Named  Entity  Recognition  Resource.Proceedings ofCOLING 2016, the 26th International Conference on Computational Linguis-tics: Technical Papers(2016),  1169–1179.http://aclanthology.info/papers/broad-twitter-corpus-a-diverse-named-entity-recognition-resource
* [5] Leon Derczynski, Diana Maynard, Niraj Aswani, and Kalina Bontcheva. 2013.Microblog-genre Noise and Impact on Semantic Annotation Accuracy. InPro-ceedings of the 24th ACM Conference on Hypertext and Social Media (HT ’13). ACM,New York, NY, USA, 21–30.   https://doi.org/10.1145/2481492.2481495
* [6] Leon Derczynski, Eric Nichols, Marieke van Erp, and Nut Limsopatham. 2017.Results of the WNUT2017 Shared Task on Novel and Emerging Entity Recognition.InProceedings of the 3rd Workshop on Noisy User-generated Text. Association forComputational Linguistics, Copenhagen, Denmark, 140–147.  https://doi.org/10.18653/v1/W17-4418
* [7] Leon Derczynski, Alan Ritter, Sam Clark, and Kalina Bontcheva. 2013.  Twit-ter Part-of-Speech Tagging for All: Overcoming Sparse and Noisy Data.Pro-ceedings of the International Conference Recent Advances in Natural LanguageProcessing RANLP 2013(2013),  198–206.http://aclanthology.info/papers/twitter-part-of-speech-tagging-for-all-overcoming-sparse-and-noisy-data
* [8] Jacob Eisenstein. 2013.   What to do about bad language on the internet. InProceedings of the 2013 Conference of the North American Chapter of the Associationfor Computational Linguistics: Human Language Technologies. Association forComputational Linguistics, Atlanta, Georgia, 359–369.   https://www.aclweb.org/anthology/N13-1037
* [9] Tim Finin, William Murnane, Anand Karandikar, Nicholas Keller, Justin Mar-tineau, and Mark Dredze. 2010. Annotating Named Entities in Twitter Data withCrowdsourcing.Proceedings of the NAACL HLT 2010 Workshop on Creating Speechand Language Data with Amazon’s Mechanical Turk2010, January, 80–88.
* [10] Hege Fromreide, Dirk Hovy, and Anders Søgaard. 2014. Crowdsourcing and anno-tating NER for Twitter #drift. InProceedings of the Ninth International Conferenceon Language Resources and Evaluation (LREC’14). European language resourcesdistribution agency, 2544–2547.   http://www.lrec-conf.org/proceedings/lrec2014/pdf/421_Paper.pdf

* [11] Genevieve Gorrell, Johann Petrak, and Kalina Bontcheva. 2015. Using @TwitterConventions to Improve #LOD-Based Named Entity Disambiguation. Springer,Cham, 171–186.  https://doi.org/10.1007/978-3-319-18818-8{_}11
* [12] Dirk Hovy, Barbara Plank, and Anders Søgaard. 2014. Experiments with crowd-sourced re-annotation of a POS tagging data set. InProceedings of the 52ndAnnual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Association for Computational Linguistics, Baltimore, Maryland, 377–382.https://doi.org/10.3115/v1/P14-2062
* [13] Dirk Hovy, Barbara Plank, and Anders Søgaard. 2014.   When POS data setsdon’t add up: Combatting sample bias.Proceedings of the Ninth InternationalConference on Language Resources and Evaluation (LREC-2014)(2014).   https://aclanthology.coli.uni-saarland.de/papers/L14-1402/l14-1402
* [14] Anders Johannsen, Dirk Hovy, HÃľctor Martínez Alonso, Barbara Plank, andAnders Søgaard. 2014.  More or less supervised supersense tagging of Twitter.InProceedings of the Third Joint Conference on Lexical and Computational Se-mantics (*SEM 2014). Association for Computational Linguistics and Dublin CityUniversity, Stroudsburg, PA, USA, 1–11.  https://doi.org/10.3115/v1/S14-1001

* [15] Yijia Liu, Yi Zhu, Wanxiang Che, Bing Qin, Nathan Schneider, and Noah A. Smith.2018.  Parsing Tweets into Universal Dependencies. InProceedings of the 2018Conference of the North American Chapter of the Association for ComputationalLinguistics: Human Language Technologies, Volume 1 (Long Papers). Associationfor Computational Linguistics, New Orleans, Louisiana, 965–975.   https://doi.org/10.18653/v1/N18-1088
* [16] Héctor Martínez Alonso and Barbara Plank. 2017. When is multitask learningeffective? Semantic sequence prediction under varying data conditions. InPro-ceedings of the 15th Conference of the European Chapter of the Association forComputational Linguistics: Volume 1, Long Papers. Association for ComputationalLinguistics, Valencia, Spain, 44–53.  https://www.aclweb.org/anthology/E17-1005
* [17] Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin Gimpel, and NathanSchneider. 2012. Part-of-Speech Tagging for Twitter: Word Clusters and OtherAdvances.Cmu-Ml-12-107(2012).
* [18] Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin Gimpel, Nathan Schnei-der, and Noah a Smith. 2013.   Improved Part-of-Speech Tagging for OnlineConversational Text with Word Clusters.Proceedings of NAACL-HLT 2013June(2013), 380–390.   https://doi.org/10.1.1.343.3572
* [19] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,Kenton Lee, and Luke Zettlemoyer. 2018.  Deep Contextualized Word Repre-sentations. InProceedings of the 2018 Conference of the North American Chapterof the Association for Computational Linguistics: Human Language Technologies,Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans,Louisiana, 2227–2237.  https://doi.org/10.18653/v1/N18-1202
* [20] Alan Ritter, Sam Clark, and Oren Etzioni. 2011.  Named entity recognition intweets: an experimental study. InProceedings of Emperical Methods for NaturalLangauge Processing. 1524–1534.   https://doi.org/10.1075/li.30.1.03nad
* [21] Giuseppe Rizzo, Marieke van Erp, Julien Plu, and RaphaÃńl Troncy. 2016. MakingSense of Microposts (#Microposts2016) Named Entity rEcognition and Linking(NEEL) Challenge. InWorkshop on Making Sense of Microposts (#Microposts2016).Montréal.   http://ceur-ws.org/Vol-1691/microposts2016_neel-challenge-report/http://ceur-ws.org/Vol-1691/microposts2016_neel-challenge-report/microposts2016_neel-challenge-report.pdfhttp://microposts2016.seas.upenn.edu/challenge.htmlhttp://ceur-ws.org/Vol-1691/mic

* [22] Nathan Schneider and Noah A. Smith. 2015.  A Corpus and Model IntegratingMultiword Expressions and Supersenses. InProceedings of the 2015 Conference ofthe North American Chapter of the Association for Computational Linguistics: Hu-man Language Technologies. Association for Computational Linguistics, Denver,Colorado, 1537–1547.  https://doi.org/10.3115/v1/N15-1177

* [23] Benjamin  Strauss,  Bethany  Toma,  Alan  Ritter,  Marie-Catherine  de  Marn-effe,  and  Wei  Xu.  2016.Results  of  the  WNUT16  Named  Entity  Recog-nition  Shared  Task.Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT)(2016),  138–144.http://aclanthology.info/papers/results-of-the-wnut16-named-entity-recognition-shared-task

* [24] Qi Zhang, Jinlan Fu, Xiaoyu Liu, and Xuanjing Huang. 2018.   Adaptive Co-attention Network for Named Entity Recognition in Tweets.   https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16432