File size: 38,232 Bytes
69d7a7e 252d8f7 314880d 1618ed7 314880d 1618ed7 314880d 1618ed7 314880d 1618ed7 314880d 1618ed7 69d7a7e 252d8f7 d65d844 252d8f7 d65d844 252d8f7 d65d844 252d8f7 d65d844 252d8f7 d50dde4 252d8f7 d65d844 252d8f7 d65d844 252d8f7 d65d844 252d8f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
---
license: apache-2.0
configs:
- config_name: abusive-founta
data_files:
- path: data/ABUSIVE/Founta/test.json
split: test
- path: data/ABUSIVE/Founta/train.json
split: train
- path: data/ABUSIVE/Founta/validation.json
split: validation
- config_name: abusive-waseemsrw
data_files:
- path: data/ABUSIVE/WaseemSRW/test.json
split: test
- path: data/ABUSIVE/WaseemSRW/train.json
split: train
- path: data/ABUSIVE/WaseemSRW/validation.json
split: validation
- config_name: chunking-ritter
data_files:
- path: data/CHUNKING/Ritter/test.json
split: test
- path: data/CHUNKING/Ritter/train.json
split: train
- path: data/CHUNKING/Ritter/validation.json
split: validation
- config_name: ner-broad
data_files:
- path: data/NER/BROAD/test.json
split: test
- path: data/NER/BROAD/train.json
split: train
- path: data/NER/BROAD/validation.json
split: validation
- config_name: ner-finin
data_files:
- path: data/NER/Finin/test.json
split: test
- path: data/NER/Finin/train.json
split: train
- config_name: ner-hege
data_files:
- path: data/NER/Hege/test.json
split: test
- config_name: ner-msm2013
data_files:
- path: data/NER/MSM2013/test.json
split: test
- path: data/NER/MSM2013/train.json
split: train
- config_name: ner-multimodal
data_files:
- path: data/NER/MultiModal/test.json
split: test
- path: data/NER/MultiModal/train.json
split: train
- path: data/NER/MultiModal/validation.json
split: validation
- config_name: ner-neel2016
data_files:
- path: data/NER/NEEL2016/test.json
split: test
- path: data/NER/NEEL2016/train.json
split: train
- path: data/NER/NEEL2016/validation.json
split: validation
- config_name: ner-ritter
data_files:
- path: data/NER/Ritter/test.json
split: test
- path: data/NER/Ritter/train.json
split: train
- path: data/NER/Ritter/validation.json
split: validation
- config_name: ner-wnut2016
data_files:
- path: data/NER/WNUT2016/test.json
split: test
- path: data/NER/WNUT2016/train.json
split: train
- path: data/NER/WNUT2016/validation.json
split: validation
- config_name: ner-wnut2017
data_files:
- path: data/NER/WNUT2017/test.json
split: test
- path: data/NER/WNUT2017/train.json
split: train
- path: data/NER/WNUT2017/validation.json
split: validation
- config_name: ner-yodie
data_files:
- path: data/NER/YODIE/test.json
split: test
- path: data/NER/YODIE/train.json
split: train
- config_name: pos-dimsum2016
data_files:
- path: data/POS/DiMSUM2016/test.json
split: test
- path: data/POS/DiMSUM2016/train.json
split: train
- config_name: pos-foster
data_files:
- path: data/POS/Foster/test.json
split: test
- config_name: pos-lowlands
data_files:
- path: data/POS/lowlands/test.json
split: test
- config_name: pos-owoputi
data_files:
- path: data/POS/Owoputi/test.json
split: test
- path: data/POS/Owoputi/train.json
split: train
- path: data/POS/Owoputi/validation.json
split: validation
- config_name: pos-ritter
data_files:
- path: data/POS/Ritter/test.json
split: test
- path: data/POS/Ritter/train.json
split: train
- path: data/POS/Ritter/validation.json
split: validation
- config_name: pos-tweetbankv2
data_files:
- path: data/POS/Tweetbankv2/test.json
split: test
- path: data/POS/Tweetbankv2/train.json
split: train
- path: data/POS/Tweetbankv2/validation.json
split: validation
- config_name: pos-twitie
data_files:
- path: data/POS/TwitIE/test.json
split: test
- path: data/POS/TwitIE/validation.json
split: validation
- config_name: sentiment-airline
data_files:
- path: data/SENTIMENT/Airline/test.json
split: test
- path: data/SENTIMENT/Airline/train.json
split: train
- path: data/SENTIMENT/Airline/validation.json
split: validation
- config_name: sentiment-clarin
data_files:
- path: data/SENTIMENT/Clarin/test.json
split: test
- path: data/SENTIMENT/Clarin/train.json
split: train
- path: data/SENTIMENT/Clarin/validation.json
split: validation
- config_name: sentiment-gop
data_files:
- path: data/SENTIMENT/GOP/test.json
split: test
- path: data/SENTIMENT/GOP/train.json
split: train
- path: data/SENTIMENT/GOP/validation.json
split: validation
- config_name: sentiment-healthcare
data_files:
- path: data/SENTIMENT/Healthcare/test.json
split: test
- path: data/SENTIMENT/Healthcare/train.json
split: train
- path: data/SENTIMENT/Healthcare/validation.json
split: validation
- config_name: sentiment-obama
data_files:
- path: data/SENTIMENT/Obama/test.json
split: test
- path: data/SENTIMENT/Obama/train.json
split: train
- path: data/SENTIMENT/Obama/validation.json
split: validation
- config_name: sentiment-semeval
data_files:
- path: data/SENTIMENT/SemEval/test.json
split: test
- path: data/SENTIMENT/SemEval/train.json
split: train
- path: data/SENTIMENT/SemEval/validation.json
split: validation
- config_name: supersense-johannsen2014
data_files:
- path: data/SUPERSENSE/Johannsen2014/test.json
split: test
- config_name: supersense-ritter
data_files:
- path: data/SUPERSENSE/Ritter/test.json
split: test
- path: data/SUPERSENSE/Ritter/train.json
split: train
- path: data/SUPERSENSE/Ritter/validation.json
split: validation
- config_name: uncertainity-riloff
data_files:
- path: data/UNCERTAINITY/Riloff/test.json
split: test
- path: data/UNCERTAINITY/Riloff/train.json
split: train
- path: data/UNCERTAINITY/Riloff/validation.json
split: validation
- config_name: uncertainity-swamy
data_files:
- path: data/UNCERTAINITY/Swamy/test.json
split: test
- path: data/UNCERTAINITY/Swamy/train.json
split: train
- path: data/UNCERTAINITY/Swamy/validation.json
split: validation
dataset_info:
features:
- name: tweet_id
dtype: string
- name: id
dtype: int32
- name: text
dtype: string
- name: label
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence: string
---
# SocialMediaIE - Social Media Information Extraction
# List of datasets used for training SocialMediaIE
- [Dataset referencs](#dataset-referencs)
* [Tagging datasets](#tagging-datasets)
- [Dataset statistics](#dataset-statistics)
* [Sentiment](#sentiment)
* [Abusive](#abusive)
* [Uncertainity](#uncertainity)
* [Part of Speech Tagging](#part-of-speech-tagging)
* [Named Entity Recognition](#named-entity-recognition)
* [Chunking](#chunking)
* [Supersense Tagging](#supersense-tagging)
- [Dataset references](#dataset-references)
<small><i><a href='http://ecotrust-canada.github.io/markdown-toc/'>Table of contents generated with markdown-toc</a></i></small>
## Dataset referencs
### Tagging datasets
* **POS tagging:** [17,18] (OW), [7] (TIE), [20] (RT), [15](TB), [22] (DS), [12] (FS), and [12,13] (LW).
* **NER:** [20] (RT), [23] (W16), [6] (W17), [9] (FN), [10] (HG),and [4] (BR), [24] (MM), [11] (YD), [21] (we do not evaluate on this) and [1] (MSM).
* **Chunking:** [20] (RT) dataset.
* **Supersense tagging:** [20] (RT) dataset, the [14] (JH) dataset.
## Dataset statistics
### Sentiment
| | | tokens | tweets | vocab |
|------------:|-------:|--------:|--------:|-------:|
| data | split | | | |
| Airline | dev | 20079 | 981 | 3273 |
| | test | 50777 | 2452 | 5630 |
| | train | 182040 | 8825 | 11697 |
| Clarin | dev | 80672 | 4934 | 15387 |
| | test | 205126 | 12334 | 31373 |
| | train | 732743 | 44399 | 84279 |
| GOP | dev | 16339 | 803 | 3610 |
| | test | 41226 | 2006 | 6541 |
| | train | 148358 | 7221 | 14342 |
| Healthcare | dev | 15797 | 724 | 3304 |
| | test | 16022 | 717 | 3471 |
| | train | 14923 | 690 | 3511 |
| Obama | dev | 3472 | 209 | 1118 |
| | test | 8816 | 522 | 2043 |
| | train | 31074 | 1877 | 4349 |
| SemEval | dev | 105108 | 4583 | 14468 |
| | test | 528234 | 23103 | 43812 |
| | train | 281468 | 12245 | 29673 |
### Abusive
| | | tokens | tweets | vocab |
|-----------:|-------:|--------:|--------:|--------:|
| data | split | | | |
| Founta | dev | 102534 | 4663 | 22529 |
| | test | 256569 | 11657 | 44540 |
| | train | 922028 | 41961 | 118349 |
| WaseemSRW | dev | 25588 | 1464 | 5907 |
| | test | 64893 | 3659 | 10646 |
| | train | 234550 | 13172 | 23042 |
### Uncertainity
| | | tokens | tweets | vocab |
|--------:|-------:|--------:|--------:|-------:|
| data | split | | | |
| Riloff | dev | 2126 | 145 | 1002 |
| | test | 5576 | 362 | 1986 |
| | train | 19652 | 1301 | 5090 |
| Swamy | dev | 1597 | 73 | 738 |
| | test | 3909 | 183 | 1259 |
| | train | 14026 | 655 | 2921 |
### Part of Speech Tagging
| | | labels | labels_unique | sequences | tokens_unique | total_tokens |
|-------------:|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|---------------:|-----------:|---------------:|--------------:|
| data_key | split_prefix | | | | | |
| Owoputi | train | [!, #, $, &, ,, @, A, D, E, G, L, M, N, O, P, R, S, T, U, V, X, Y, Z, ^, ~] | 25 | 1547 | 6572 | 22326 |
| | dev | [!, #, $, &, ,, @, A, D, E, G, L, N, O, P, R, S, T, U, V, X, Z, ^, ~] | 23 | 327 | 2036 | 4823 |
| | test | [!, #, $, &, ,, @, A, D, E, G, L, N, O, P, R, S, T, U, V, X, Z, ^, ~] | 23 | 500 | 2754 | 7152 |
| Foster | test | [ADJ, ADP, ADV, CCONJ, DET, NOUN, NUM, PART, PRON, PUNCT, VERB, X] | 12 | 250 | 1068 | 2841 |
| TwitIE | dev | ['', (, ), ,, :, CC, CD, DT, FW, HT, IN, JJ, JJR, JJS, MD, NN, NNP, NNPS, NNS, PDT, POS, PRP, PRP$, PUNCT, RB, RBR, RBS, RP, RT, SYM, TO, UH, URL, USR, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WRB] | 43 | 269 | 1229 | 2998 |
| | test | ['', (, ), ,, :, CC, CD, DT, EX, FW, HT, IN, JJ, JJR, JJS, MD, NN, NNP, NNPS, NNS, PDT, POS, PRP, PRP#, PUNCT, RB, RBR, RBS, RP, RT, SYM, TO, UH, URL, USR, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WRB] | 45 | 632 | 3539 | 12196 |
|Ritter | dev | ['', (, ), ,, :, CC, CD, DT, HT, IN, JJ, JJR, JJS, MD, NN, NNP, NNS, POS, PRP, PRP$, PUNCT, RB, RBR, RP, RT, TO, UH, URL, USR, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WRB] | 38 | 71 | 695 | 1362 |
|| test | ['', (, ), ,, :, CC, CD, DT, EX, HT, IN, JJ, JJR, JJS, MD, NN, NNP, NNPS, NNS, PDT, POS, PRP, PRP$, PUNCT, RB, RBR, RP, RT, SYM, TO, UH, URL, USR, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WRB] | 41 | 84 | 735 | 1627 |
| lowlands | dev | [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X] | 17 | 710 | 3271 | 11759 |
| | test | [ADJ, ADP, ADV, CCONJ, DET, NOUN, NUM, PART, PRON, PUNCT, VERB, X] | 12 | 1318 | 4805 | 19794 |
| Tweetbankv2 | dev | [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X] | 17 | 710 | 3271 | 11759 |
| | train | [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X] | 17 | 1639 | 5632 | 24753 |
| | test | [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X] | 17 | 1201 | 4699 | 19095 |
| DiMSUM2016 | train | [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X] | 17 | 4799 | 9113 | 73826 |
| | test | [ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X] | 17 | 1000 | 4010 | 16500 |
### Named Entity Recognition
| | | boundaries | labels | labels_unique | sequences | tokens_unique | total_tokens |
|------------:|--------------:|------------:|---------------------------------------------------------------------------------------------------------------------------:|---------------:|-----------:|---------------:|--------------:|
| data_key | split_prefix | | | | | | |
| Finin | train | [I, B, O] | [LOC, PER, ORG] | 3 | 10000 | 19663 | 172188 |
| | test | [I, B, O] | [LOC, PER, ORG] | 3 | 5369 | 13027 | 97525 |
| Hege | test | [I, B, O] | [LOC, PER, ORG] | 3 | 1545 | 4552 | 20664 |
| Ritter | train | [I, B, O] | [COMPANY, OTHER, FACILITY, PERSON, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM] | 10 | 1900 | 7695 | 36936 |
| | dev | [I, B, O] | [COMPANY, OTHER, PERSON, FACILITY, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM] | 10 | 240 | 1731 | 4612 |
| | test | [I, B, O] | [COMPANY, OTHER, PERSON, FACILITY, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM] | 10 | 254 | 1776 | 4921 |
| YODIE | train | [I, B, O] | [COMPANY, OTHER, PERSON, LOCATION, FACILITY, MOVIE, MUSICARTIST, GEO-LOC, UNK, TVSHOW, PRODUCT, SPORTSTEAM, ORGANIZATION] | 13 | 396 | 2554 | 7905 |
| | test | [I, B, O] | [COMPANY, OTHER, FACILITY, LOCATION, PERSON, MOVIE, MUSICARTIST, GEO-LOC, UNK, TVSHOW, PRODUCT, SPORTSTEAM, ORGANIZATION] | 13 | 397 | 2578 | 8032 |
| WNUT2016 | train | [I, B, O] | [COMPANY, OTHER, FACILITY, PERSON, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM] | 10 | 2394 | 9068 | 46469 |
| | test | [I, B, O] | [COMPANY, OTHER, PERSON, FACILITY, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM] | 10 | 3850 | 16012 | 61908 |
| | dev | [I, B, O] | [COMPANY, OTHER, FACILITY, PERSON, MOVIE, MUSICARTIST, GEO-LOC, TVSHOW, PRODUCT, SPORTSTEAM] | 10 | 1000 | 5563 | 16261 |
| WNUT2017 | train | [I, B, O] | [GROUP, CORPORATION, PERSON, LOCATION, PRODUCT, CREATIVE-WORK] | 6 | 3394 | 12840 | 62730 |
| | dev | [I, B, O] | [GROUP, CORPORATION, PERSON, LOCATION, PRODUCT, CREATIVE-WORK] | 6 | 1009 | 3538 | 15733 |
| | test | [I, B, O] | [GROUP, CORPORATION, PERSON, LOCATION, PRODUCT, CREATIVE-WORK] | 6 | 1287 | 5759 | 23394 |
| MSM2013 | train | [I, B, O] | [LOC, MISC, PER, ORG] | 4 | 2815 | 8514 | 51521 |
| | test | [I, B, O] | [LOC, PER, ORG, MISC] | 4 | 1450 | 5701 | 29089 |
| NEEL2016 | train | [I, B, O] | [PERSON, THING, LOCATION, EVENT, PRODUCT, ORGANIZATION, CHARACTER] | 7 | 2588 | 9731 | 51669 |
| | dev | [I, B, O] | [PERSON, LOCATION, THING, EVENT, PRODUCT, ORGANIZATION, CHARACTER] | 7 | 88 | 762 | 1647 |
| | test | [I, B, O] | [PERSON, THING, LOCATION, EVENT, PRODUCT, ORGANIZATION, CHARACTER] | 7 | 2663 | 9894 | 47488 |
| BROAD | train | [I, B, O] | [LOC, PER, ORG] | 3 | 5605 | 19523 | 90060 |
| | dev | [I, B, O] | [LOC, PER, ORG] | 3 | 933 | 5312 | 15169 |
| | test | [I, B, O] | [LOC, PER, ORG] | 3 | 2802 | 11772 | 45159 |
| MultiModal | train | [I, B, O] | [LOC, PER, ORG, MISC] | 4 | 4000 | 20221 | 64439 |
| | dev | [I, B, O] | [LOC, MISC, PER, ORG] | 4 | 1000 | 6832 | 16178 |
| | test | [I, B, O] | [LOC, PER, ORG, MISC] | 4 | 3257 | 17381 | 52822 |
### Chunking
| | | boundaries | labels | labels_unique | sequences | tokens_unique | total_tokens |
|----------:|--------------:|------------:|--------------------------------------------------:|---------------:|-----------:|---------------:|--------------:|
| data_key | split_prefix | | | | | | |
| Ritter | train | [I, B, O] | [ADJP, PP, INTJ, ADVP, PRT, NP, SBAR, VP, CONJP] | 9 | 551 | 3158 | 10584 |
| | dev | [I, B, O] | [ADJP, PP, INTJ, ADVP, PRT, NP, SBAR, VP] | 8 | 118 | 994 | 2317 |
| | test | [I, B, O] | [ADJP, PP, INTJ, ADVP, PRT, NP, SBAR, VP] | 8 | 119 | 988 | 2310 |
### Supersense Tagging
| | | boundaries | labels | labels_unique | sequences | tokens_unique | total_tokens |
|---------------:|--------------:|------------:|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|---------------:|-----------:|---------------:|--------------:|
| data_key | split_prefix | | | | | | |
| Ritter | train | [I, B, O] | [NOUN.BODY, NOUN.STATE, NOUN.ARTIFACT, NOUN.ATTRIBUTE, NOUN.FOOD, NOUN.TOPS, NOUN.COGNITION, NOUN.EVENT, NOUN.OBJECT, NOUN.MOTIVE, NOUN.GROUP, VERB.COMMUNICATION, NOUN.PHENOMENON, VERB.POSSESSION, VERB.COMPETITION, NOUN.POSSESSION, NOUN.FEELING, VERB.SOCIAL, NOUN.ANIMAL, VERB.CREATION, VERB.CONSUMPTION, VERB.PERCEPTION, VERB.CONTACT, VERB.WEATHER, VERB.BODY, NOUN.LOCATION, NOUN.QUANTITY, NOUN.SUBSTANCE, NOUN.RELATION, NOUN.TIME, NOUN.PERSON, VERB.COGNITION, VERB.EMOTION, NOUN.PLANT, VERB.STATIVE, VERB.MOTION, NOUN.COMMUNICATION, NOUN.PROCESS, NOUN.ACT, VERB.CHANGE] | 40 | 551 | 3174 | 10652 |
| | dev | [I, B, O] | [NOUN.BODY, NOUN.STATE, NOUN.ARTIFACT, NOUN.ATTRIBUTE, NOUN.FOOD, NOUN.COGNITION, NOUN.EVENT, NOUN.OBJECT, NOUN.MOTIVE, NOUN.GROUP, VERB.COMMUNICATION, NOUN.PHENOMENON, VERB.COMPETITION, VERB.POSSESSION, NOUN.POSSESSION, NOUN.FEELING, VERB.SOCIAL, NOUN.ANIMAL, VERB.CREATION, VERB.CONSUMPTION, VERB.PERCEPTION, VERB.CONTACT, VERB.BODY, NOUN.LOCATION, NOUN.QUANTITY, NOUN.SUBSTANCE, NOUN.RELATION, NOUN.TIME, VERB.COGNITION, NOUN.PERSON, VERB.EMOTION, NOUN.PLANT, VERB.STATIVE, VERB.MOTION, NOUN.COMMUNICATION, NOUN.ACT, VERB.CHANGE] | 37 | 118 | 1014 | 2242 |
| | test | [I, B, O] | [NOUN.BODY, NOUN.STATE, NOUN.ARTIFACT, NOUN.ATTRIBUTE, NOUN.FOOD, NOUN.TOPS, NOUN.COGNITION, NOUN.EVENT, NOUN.OBJECT, NOUN.MOTIVE, NOUN.SHAPE, NOUN.GROUP, VERB.COMMUNICATION, NOUN.PHENOMENON, VERB.POSSESSION, NOUN.FEELING, NOUN.POSSESSION, VERB.COMPETITION, VERB.SOCIAL, NOUN.ANIMAL, VERB.CREATION, VERB.CONSUMPTION, VERB.PERCEPTION, VERB.CONTACT, VERB.WEATHER, VERB.BODY, NOUN.LOCATION, NOUN.QUANTITY, NOUN.SUBSTANCE, NOUN.RELATION, NOUN.TIME, NOUN.PERSON, VERB.COGNITION, VERB.EMOTION, VERB.STATIVE, VERB.MOTION, NOUN.COMMUNICATION, NOUN.PROCESS, NOUN.ACT, VERB.CHANGE] | 40 | 118 | 1011 | 2291 |
| Johannsen2014 | test | [I, B, O] | [NOUN.BODY, NOUN.STATE, NOUN.ARTIFACT, NOUN.ATTRIBUTE, NOUN.FOOD, NOUN.COGNITION, NOUN.EVENT, NOUN.OBJECT, NOUN.SHAPE, NOUN.GROUP, VERB.COMMUNICATION, NOUN.PHENOMENON, VERB.COMPETITION, VERB.POSSESSION, NOUN.FEELING, NOUN.POSSESSION, VERB.SOCIAL, NOUN.ANIMAL, VERB.CREATION, VERB.CONSUMPTION, VERB.PERCEPTION, VERB.CONTACT, VERB.BODY, NOUN.LOCATION, NOUN.QUANTITY, NOUN.SUBSTANCE, NOUN.RELATION, NOUN.TIME, NOUN.PERSON, VERB.COGNITION, VERB.EMOTION, VERB.STATIVE, VERB.MOTION, NOUN.COMMUNICATION, NOUN.PROCESS, NOUN.ACT, VERB.CHANGE] | 37 | 200 | 1249 | 3064 |
## Dataset references
* [1] Amparo Elizabeth Cano, Andrea Varga, Matthew Rowe, Milan Stankovic, and Aba-Sah Dadzie. 2013. Making Sense of Microposts (#MSM2013) Concept ExtractionChallenge. In#MSM.
* [2] Richard A. Caruana. 1993. Multitask Learning: A Knowledge-Based Source ofInductive Bias. InMachine Learning Proceedings 1993. Elsevier, 41–48. https://doi.org/10.1016/b978-1-55860-307-3.50012-5
* [3] Ronan Collbert, Jason Weston, LÃľon Bottou, Michael Karlen, Koray Kavukcuoglu,and Pavel Kuksa. 2011. Natural Language Processing (Almost) from Scratch.Journal ofMachine Learning Research12 (2 2011), 2493–2537. http://dl.acm.org/citation.cfm?id=2078186
* [4] Leon Derczynski, Kalina Bontcheva, and Ian Roberts. 2016.Broad Twit-ter Corpus: A Diverse Named Entity Recognition Resource.Proceedings ofCOLING 2016, the 26th International Conference on Computational Linguis-tics: Technical Papers(2016), 1169–1179.http://aclanthology.info/papers/broad-twitter-corpus-a-diverse-named-entity-recognition-resource
* [5] Leon Derczynski, Diana Maynard, Niraj Aswani, and Kalina Bontcheva. 2013.Microblog-genre Noise and Impact on Semantic Annotation Accuracy. InPro-ceedings of the 24th ACM Conference on Hypertext and Social Media (HT ’13). ACM,New York, NY, USA, 21–30. https://doi.org/10.1145/2481492.2481495
* [6] Leon Derczynski, Eric Nichols, Marieke van Erp, and Nut Limsopatham. 2017.Results of the WNUT2017 Shared Task on Novel and Emerging Entity Recognition.InProceedings of the 3rd Workshop on Noisy User-generated Text. Association forComputational Linguistics, Copenhagen, Denmark, 140–147. https://doi.org/10.18653/v1/W17-4418
* [7] Leon Derczynski, Alan Ritter, Sam Clark, and Kalina Bontcheva. 2013. Twit-ter Part-of-Speech Tagging for All: Overcoming Sparse and Noisy Data.Pro-ceedings of the International Conference Recent Advances in Natural LanguageProcessing RANLP 2013(2013), 198–206.http://aclanthology.info/papers/twitter-part-of-speech-tagging-for-all-overcoming-sparse-and-noisy-data
* [8] Jacob Eisenstein. 2013. What to do about bad language on the internet. InProceedings of the 2013 Conference of the North American Chapter of the Associationfor Computational Linguistics: Human Language Technologies. Association forComputational Linguistics, Atlanta, Georgia, 359–369. https://www.aclweb.org/anthology/N13-1037
* [9] Tim Finin, William Murnane, Anand Karandikar, Nicholas Keller, Justin Mar-tineau, and Mark Dredze. 2010. Annotating Named Entities in Twitter Data withCrowdsourcing.Proceedings of the NAACL HLT 2010 Workshop on Creating Speechand Language Data with Amazon’s Mechanical Turk2010, January, 80–88.
* [10] Hege Fromreide, Dirk Hovy, and Anders Søgaard. 2014. Crowdsourcing and anno-tating NER for Twitter #drift. InProceedings of the Ninth International Conferenceon Language Resources and Evaluation (LREC’14). European language resourcesdistribution agency, 2544–2547. http://www.lrec-conf.org/proceedings/lrec2014/pdf/421_Paper.pdf
* [11] Genevieve Gorrell, Johann Petrak, and Kalina Bontcheva. 2015. Using @TwitterConventions to Improve #LOD-Based Named Entity Disambiguation. Springer,Cham, 171–186. https://doi.org/10.1007/978-3-319-18818-8{_}11
* [12] Dirk Hovy, Barbara Plank, and Anders Søgaard. 2014. Experiments with crowd-sourced re-annotation of a POS tagging data set. InProceedings of the 52ndAnnual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Association for Computational Linguistics, Baltimore, Maryland, 377–382.https://doi.org/10.3115/v1/P14-2062
* [13] Dirk Hovy, Barbara Plank, and Anders Søgaard. 2014. When POS data setsdon’t add up: Combatting sample bias.Proceedings of the Ninth InternationalConference on Language Resources and Evaluation (LREC-2014)(2014). https://aclanthology.coli.uni-saarland.de/papers/L14-1402/l14-1402
* [14] Anders Johannsen, Dirk Hovy, HÃľctor Martínez Alonso, Barbara Plank, andAnders Søgaard. 2014. More or less supervised supersense tagging of Twitter.InProceedings of the Third Joint Conference on Lexical and Computational Se-mantics (*SEM 2014). Association for Computational Linguistics and Dublin CityUniversity, Stroudsburg, PA, USA, 1–11. https://doi.org/10.3115/v1/S14-1001
* [15] Yijia Liu, Yi Zhu, Wanxiang Che, Bing Qin, Nathan Schneider, and Noah A. Smith.2018. Parsing Tweets into Universal Dependencies. InProceedings of the 2018Conference of the North American Chapter of the Association for ComputationalLinguistics: Human Language Technologies, Volume 1 (Long Papers). Associationfor Computational Linguistics, New Orleans, Louisiana, 965–975. https://doi.org/10.18653/v1/N18-1088
* [16] Héctor Martínez Alonso and Barbara Plank. 2017. When is multitask learningeffective? Semantic sequence prediction under varying data conditions. InPro-ceedings of the 15th Conference of the European Chapter of the Association forComputational Linguistics: Volume 1, Long Papers. Association for ComputationalLinguistics, Valencia, Spain, 44–53. https://www.aclweb.org/anthology/E17-1005
* [17] Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin Gimpel, and NathanSchneider. 2012. Part-of-Speech Tagging for Twitter: Word Clusters and OtherAdvances.Cmu-Ml-12-107(2012).
* [18] Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin Gimpel, Nathan Schnei-der, and Noah a Smith. 2013. Improved Part-of-Speech Tagging for OnlineConversational Text with Word Clusters.Proceedings of NAACL-HLT 2013June(2013), 380–390. https://doi.org/10.1.1.343.3572
* [19] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Repre-sentations. InProceedings of the 2018 Conference of the North American Chapterof the Association for Computational Linguistics: Human Language Technologies,Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans,Louisiana, 2227–2237. https://doi.org/10.18653/v1/N18-1202
* [20] Alan Ritter, Sam Clark, and Oren Etzioni. 2011. Named entity recognition intweets: an experimental study. InProceedings of Emperical Methods for NaturalLangauge Processing. 1524–1534. https://doi.org/10.1075/li.30.1.03nad
* [21] Giuseppe Rizzo, Marieke van Erp, Julien Plu, and RaphaÃńl Troncy. 2016. MakingSense of Microposts (#Microposts2016) Named Entity rEcognition and Linking(NEEL) Challenge. InWorkshop on Making Sense of Microposts (#Microposts2016).Montréal. http://ceur-ws.org/Vol-1691/microposts2016_neel-challenge-report/http://ceur-ws.org/Vol-1691/microposts2016_neel-challenge-report/microposts2016_neel-challenge-report.pdfhttp://microposts2016.seas.upenn.edu/challenge.htmlhttp://ceur-ws.org/Vol-1691/mic
* [22] Nathan Schneider and Noah A. Smith. 2015. A Corpus and Model IntegratingMultiword Expressions and Supersenses. InProceedings of the 2015 Conference ofthe North American Chapter of the Association for Computational Linguistics: Hu-man Language Technologies. Association for Computational Linguistics, Denver,Colorado, 1537–1547. https://doi.org/10.3115/v1/N15-1177
* [23] Benjamin Strauss, Bethany Toma, Alan Ritter, Marie-Catherine de Marn-effe, and Wei Xu. 2016.Results of the WNUT16 Named Entity Recog-nition Shared Task.Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT)(2016), 138–144.http://aclanthology.info/papers/results-of-the-wnut16-named-entity-recognition-shared-task
* [24] Qi Zhang, Jinlan Fu, Xiaoyu Liu, and Xuanjing Huang. 2018. Adaptive Co-attention Network for Named Entity Recognition in Tweets. https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16432 |