File size: 1,233 Bytes
39425c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aadec8e
 
 
 
39425c3
 
aadec8e
 
 
 
39425c3
 
 
 
 
6b0565c
 
 
 
 
 
 
d3ff668
39425c3
53a9e5d
39425c3
6b0565c
 
53a9e5d
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
dataset_info:
  features:
  - name: Question
    dtype: string
  - name: Answer 1
    dtype: string
  - name: Answer 2
    dtype: string
  - name: Answer 3
    dtype: string
  - name: Answer 4
    dtype: string
  - name: Answer 5
    dtype: string
  - name: Answer 6
    dtype: string
  - name: 'Unnamed: 8'
    dtype: string
  - name: 'Unnamed: 9'
    dtype: string
  splits:
  - name: train
    num_bytes: 51635
    num_examples: 78
  download_size: 50291
  dataset_size: 51635
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
task_categories:
- question-answering
language:
- da
tags:
- social-media
pretty_name: Twitterhjerne
license: cc-by-4.0
---
# Dataset Card for "da-hashtag-twitterhjerne"

Danish questions asked on Twitter using the Hashtag  "#Twitterhjerne" ('Twitter brain') and their answers.

For each question tweet 2-6 answer tweets are included.

Further details can be found in Section 4.2.3 in the  [thesis](https://sorenmulli.github.io/thesis/thesis.pdf).

- Produced by: Søren Vejlgaard Holm under supervision of Lars Kai Hansen and Martin Carsten Nielsen.
- Usable for: Question Answering Evaluation.
- Contact: Søren Vejlgaard Holm at swiho@dtu.dk or swh@alvenir.ai.