add new metadata
Browse files- README.md +10 -7
- openslr-nepali-asr-cleaned.py +2 -0
README.md
CHANGED
@@ -12,13 +12,15 @@ dataset_info:
|
|
12 |
sampling_rate: 16000
|
13 |
- name: transcription
|
14 |
dtype: string
|
|
|
|
|
15 |
config_name: all
|
16 |
splits:
|
17 |
- name: train
|
18 |
-
num_bytes:
|
19 |
num_examples: 157905
|
20 |
-
download_size:
|
21 |
-
dataset_size:
|
22 |
---
|
23 |
|
24 |
# Dataset Card for OpenSLR Nepali Large ASR Cleaned
|
@@ -51,7 +53,7 @@ The data set has been manually quality-checked, but there might still be errors.
|
|
51 |
|
52 |
The audio files are sampled at a rate of 16KHz, and leading and trailing silences are trimmed using torchaudio's voice activity detection.
|
53 |
|
54 |
-
For your reference following was the function applied on each of the original openslr utterances.
|
55 |
```python
|
56 |
import torchaudio
|
57 |
|
@@ -85,11 +87,11 @@ Nepali
|
|
85 |
'speaker_id': '09da0',
|
86 |
'utterance': {
|
87 |
'path': '/root/.cache/huggingface/datasets/downloads/extracted/e3cf9a618900289ecfd4a65356633d7438317f71c500cbed122960ab908e1e8a/cleaned/asr_nepali/data/e1/e1c4d414df.flac',
|
88 |
-
'array': array([-0.00192261, -0.00204468, -0.00158691, ..., 0.00323486,
|
89 |
-
0.00256348, 0.00262451], dtype=float32),
|
90 |
'sampling_rate': 16000
|
91 |
},
|
92 |
-
'transcription': '२००५ मा बिते'
|
|
|
93 |
}
|
94 |
```
|
95 |
|
@@ -102,6 +104,7 @@ Nepali
|
|
102 |
- array: numpy array of the utterance
|
103 |
- sampling_rate: sample rate of the utterance
|
104 |
- transcription: Nepali text which spoken in the utterance
|
|
|
105 |
|
106 |
### Data Splits
|
107 |
|
|
|
12 |
sampling_rate: 16000
|
13 |
- name: transcription
|
14 |
dtype: string
|
15 |
+
- name: num_frames
|
16 |
+
dtype: int32
|
17 |
config_name: all
|
18 |
splits:
|
19 |
- name: train
|
20 |
+
num_bytes: 41063364
|
21 |
num_examples: 157905
|
22 |
+
download_size: 5978669282
|
23 |
+
dataset_size: 41063364
|
24 |
---
|
25 |
|
26 |
# Dataset Card for OpenSLR Nepali Large ASR Cleaned
|
|
|
53 |
|
54 |
The audio files are sampled at a rate of 16KHz, and leading and trailing silences are trimmed using torchaudio's voice activity detection.
|
55 |
|
56 |
+
For your reference, following was the function applied on each of the original openslr utterances.
|
57 |
```python
|
58 |
import torchaudio
|
59 |
|
|
|
87 |
'speaker_id': '09da0',
|
88 |
'utterance': {
|
89 |
'path': '/root/.cache/huggingface/datasets/downloads/extracted/e3cf9a618900289ecfd4a65356633d7438317f71c500cbed122960ab908e1e8a/cleaned/asr_nepali/data/e1/e1c4d414df.flac',
|
90 |
+
'array': array([-0.00192261, -0.00204468, -0.00158691, ..., 0.00323486, 0.00256348, 0.00262451], dtype=float32),
|
|
|
91 |
'sampling_rate': 16000
|
92 |
},
|
93 |
+
'transcription': '२००५ मा बिते',
|
94 |
+
'num_frames': 42300
|
95 |
}
|
96 |
```
|
97 |
|
|
|
104 |
- array: numpy array of the utterance
|
105 |
- sampling_rate: sample rate of the utterance
|
106 |
- transcription: Nepali text which spoken in the utterance
|
107 |
+
- num_frames: length of waveform array
|
108 |
|
109 |
### Data Splits
|
110 |
|
openslr-nepali-asr-cleaned.py
CHANGED
@@ -80,6 +80,7 @@ class OpenslrNepaliAsrCleaned(datasets.GeneratorBasedBuilder):
|
|
80 |
"speaker_id": datasets.Value("string"),
|
81 |
"utterance": datasets.Audio(sampling_rate=16000),
|
82 |
"transcription": datasets.Value("string"),
|
|
|
83 |
}
|
84 |
)
|
85 |
return datasets.DatasetInfo(
|
@@ -124,4 +125,5 @@ class OpenslrNepaliAsrCleaned(datasets.GeneratorBasedBuilder):
|
|
124 |
"speaker_id": row['speaker_id'],
|
125 |
"utterance": path,
|
126 |
"transcription": row['transcription'],
|
|
|
127 |
}
|
|
|
80 |
"speaker_id": datasets.Value("string"),
|
81 |
"utterance": datasets.Audio(sampling_rate=16000),
|
82 |
"transcription": datasets.Value("string"),
|
83 |
+
"num_frames": datasets.Value(dtype='int32'),
|
84 |
}
|
85 |
)
|
86 |
return datasets.DatasetInfo(
|
|
|
125 |
"speaker_id": row['speaker_id'],
|
126 |
"utterance": path,
|
127 |
"transcription": row['transcription'],
|
128 |
+
"num_frames": int(row['num_frames']),
|
129 |
}
|