spktsagar commited on
Commit
824375b
1 Parent(s): cdfe677

add readme details

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md CHANGED
@@ -20,3 +20,89 @@ dataset_info:
20
  download_size: 5977562856
21
  dataset_size: 40431494
22
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  download_size: 5977562856
21
  dataset_size: 40431494
22
  ---
23
+
24
+ # Dataset Card for OpenSLR Nepali Large ASR Cleaned
25
+
26
+ ## Table of Contents
27
+ - [Dataset Card for OpenSLR Nepali Large ASR Cleaned](#dataset-card-for-openslr-nepali-large-asr-cleaned)
28
+ - [Table of Contents](#table-of-contents)
29
+ - [Dataset Description](#dataset-description)
30
+ - [Dataset Summary](#dataset-summary)
31
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
32
+ - [Languages](#languages)
33
+ - [Dataset Structure](#dataset-structure)
34
+ - [Data Instances](#data-instances)
35
+ - [Data Fields](#data-fields)
36
+ - [Data Splits](#data-splits)
37
+
38
+
39
+ ## Dataset Description
40
+
41
+ - **Homepage:** [Original OpenSLR Large Nepali ASR Dataset link](https://www.openslr.org/54/)
42
+ - **Repository:** [Needs More Information]
43
+ - **Paper:** [Needs More Information]
44
+ - **Leaderboard:** [Needs More Information]
45
+ - **Point of Contact:** [Sagar Sapkota](mailto:spkt.sagar@gmail.com)
46
+
47
+ ### Dataset Summary
48
+
49
+ This data set contains transcribed audio data for Nepali. The data set consists of flac files, and a TSV file. The file utt_spk_text.tsv contains a FileID, anonymized UserID and the transcription of audio in the file.
50
+ The data set has been manually quality-checked, but there might still be errors.
51
+
52
+ The audio files are sampled at a rate of 16KHz, and leading and trailing silences are trimmed using torchaudio's voice activity detection.
53
+
54
+ For your reference following was the function applied on each of the original openslr utterances.
55
+ ```python
56
+ import torchaudio
57
+
58
+ SAMPLING_RATE = 16000
59
+
60
+ def process_audio_file(orig_path, new_path):
61
+ """Read and process file in `orig_path` and save it to `new_path`"""
62
+ waveform, sampling_rate = torchaudio.load(orig_path)
63
+ if sampling_rate != SAMPLING_RATE:
64
+ waveform = torchaudio.functional.resample(waveform, sampling_rate, SAMPLING_RATE)
65
+ # trim end silences with Voice Activity Detection
66
+ waveform = torchaudio.functional.vad(waveform, sample_rate=SAMPLING_RATE)
67
+ torchaudio.save(new_path, waveform, sample_rate=SAMPLING_RATE)
68
+ ```
69
+
70
+ ### Supported Tasks and Leaderboards
71
+
72
+ - `automatic-speech-recognition`: The dataset can be used to train a model for Automatic Speech Recognition.
73
+
74
+ ### Languages
75
+
76
+ Nepali
77
+
78
+ ## Dataset Structure
79
+
80
+ ### Data Instances
81
+
82
+ ```js
83
+ {
84
+ 'utterance_id': 'e1c4d414df',
85
+ 'speaker_id': '09da0',
86
+ 'utterance': {
87
+ 'path': '/root/.cache/huggingface/datasets/downloads/extracted/e3cf9a618900289ecfd4a65356633d7438317f71c500cbed122960ab908e1e8a/cleaned/asr_nepali/data/e1/e1c4d414df.flac',
88
+ 'array': array([-0.00192261, -0.00204468, -0.00158691, ..., 0.00323486,
89
+ 0.00256348, 0.00262451], dtype=float32),
90
+ 'sampling_rate': 16000
91
+ },
92
+ 'transcription': 'hffk .> ,?$G'
93
+ }
94
+ ```
95
+
96
+ ### Data Fields
97
+
98
+ - utterance_id: a string identifying the utterances
99
+ - speaker_id: obfuscated unique id of the speaker whose utterances is in the current instance
100
+ - utterance:
101
+ - path: path to the utterance .flac file
102
+ - array: numpy array of the utterance
103
+ - sampling_rate: sample rate of the utterance
104
+ - transcription: Nepali text which spoken in the utterance
105
+
106
+ ### Data Splits
107
+
108
+ The dataset is not split. The consumer should split it as per their requirements.