Datasets:
File size: 14,681 Bytes
873721b e48a570 873721b e48a570 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
license:
- cc0-1.0
multilinguality:
- multilingual
size_categories:
ab:
- 10K<n<100K
ar:
- 100K<n<1M
as:
- 1K<n<10K
ast:
- 1K<n<10K
az:
- n<1K
ba:
- 100K<n<1M
bas:
- 1K<n<10K
be:
- 1M<n<10M
bg:
- 10K<n<100K
bn:
- 1M<n<10M
br:
- 10K<n<100K
ca:
- 1M<n<10M
ckb:
- 100K<n<1M
cnh:
- 1K<n<10K
cs:
- 100K<n<1M
cv:
- 10K<n<100K
cy:
- 100K<n<1M
da:
- 10K<n<100K
de:
- 100K<n<1M
dv:
- 10K<n<100K
dyu:
- n<1K
el:
- 10K<n<100K
en:
- 1M<n<10M
eo:
- 1M<n<10M
es:
- 1M<n<10M
et:
- 10K<n<100K
eu:
- 100K<n<1M
fa:
- 100K<n<1M
fi:
- 10K<n<100K
fr:
- 100K<n<1M
fy-NL:
- 100K<n<1M
ga-IE:
- 10K<n<100K
gl:
- 10K<n<100K
gn:
- 1K<n<10K
ha:
- 10K<n<100K
hi:
- 10K<n<100K
hsb:
- 1K<n<10K
hu:
- 10K<n<100K
hy-AM:
- 1K<n<10K
ia:
- 10K<n<100K
id:
- 10K<n<100K
ig:
- 1K<n<10K
is:
- n<1K
it:
- 100K<n<1M
ja:
- 100K<n<1M
ka:
- 10K<n<100K
kab:
- 100K<n<1M
kk:
- 1K<n<10K
kmr:
- 10K<n<100K
ko:
- 1K<n<10K
ky:
- 10K<n<100K
lg:
- 100K<n<1M
lo:
- n<1K
lt:
- 10K<n<100K
lv:
- 10K<n<100K
mdf:
- n<1K
mhr:
- 100K<n<1M
mk:
- n<1K
ml:
- 1K<n<10K
mn:
- 10K<n<100K
mr:
- 10K<n<100K
mrj:
- 10K<n<100K
mt:
- 10K<n<100K
myv:
- 1K<n<10K
nan-tw:
- 10K<n<100K
ne-NP:
- n<1K
nl:
- 10K<n<100K
nn-NO:
- n<1K
oc:
- 1K<n<10K
or:
- 1K<n<10K
pa-IN:
- 1K<n<10K
pl:
- 100K<n<1M
pt:
- 100K<n<1M
quy:
- n<1K
rm-sursilv:
- 1K<n<10K
rm-vallader:
- 1K<n<10K
ro:
- 10K<n<100K
ru:
- 100K<n<1M
rw:
- 1M<n<10M
sah:
- 1K<n<10K
sat:
- n<1K
sc:
- 1K<n<10K
sk:
- 10K<n<100K
skr:
- 1K<n<10K
sl:
- 10K<n<100K
sr:
- 1K<n<10K
sv-SE:
- 10K<n<100K
sw:
- 100K<n<1M
ta:
- 100K<n<1M
th:
- 100K<n<1M
ti:
- n<1K
tig:
- n<1K
tk:
- 1K<n<10K
tok:
- 10K<n<100K
tr:
- 10K<n<100K
tt:
- 10K<n<100K
tw:
- n<1K
ug:
- 10K<n<100K
uk:
- 10K<n<100K
ur:
- 100K<n<1M
uz:
- 100K<n<1M
vi:
- 10K<n<100K
vot:
- n<1K
yo:
- 1K<n<10K
yue:
- 10K<n<100K
zh-CN:
- 100K<n<1M
zh-HK:
- 100K<n<1M
zh-TW:
- 100K<n<1M
source_datasets:
- extended|common_voice
task_categories:
- automatic-speech-recognition
paperswithcode_id: common-voice
pretty_name: Common Voice Corpus 13.0
language_bcp47:
- ab
- ar
- as
- ast
- az
- ba
- bas
- be
- bg
- bn
- br
- ca
- ckb
- cnh
- cs
- cv
- cy
- da
- de
- dv
- dyu
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy-NL
- ga-IE
- gl
- gn
- ha
- hi
- hsb
- hu
- hy-AM
- ia
- id
- ig
- is
- it
- ja
- ka
- kab
- kk
- kmr
- ko
- ky
- lg
- lo
- lt
- lv
- mdf
- mhr
- mk
- ml
- mn
- mr
- mrj
- mt
- myv
- nan-tw
- ne-NP
- nl
- nn-NO
- oc
- or
- pa-IN
- pl
- pt
- quy
- rm-sursilv
- rm-vallader
- ro
- ru
- rw
- sah
- sat
- sc
- sk
- skr
- sl
- sr
- sv-SE
- sw
- ta
- th
- ti
- tig
- tk
- tok
- tr
- tt
- tw
- ug
- uk
- ur
- uz
- vi
- vot
- yo
- yue
- zh-CN
- zh-HK
- zh-TW
extra_gated_prompt: By clicking on “Access repository” below, you also agree to not
attempt to determine the identity of speakers in the Common Voice dataset.
---
# Dataset Card for Common Voice Corpus 13.0
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [How to use](#how-to-use)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://commonvoice.mozilla.org/en/datasets
- **Repository:** https://github.com/common-voice/common-voice
- **Paper:** https://arxiv.org/abs/1912.06670
- **Leaderboard:** https://paperswithcode.com/dataset/common-voice
- **Point of Contact:** [Vaibhav Srivastav](mailto:vaibhav@huggingface.co)
### Dataset Summary
The Common Voice dataset consists of a unique MP3 and corresponding text file.
Many of the 27141 recorded hours in the dataset also include demographic metadata like age, sex, and accent
that can help improve the accuracy of speech recognition engines.
The dataset currently consists of 17689 validated hours in 108 languages, but more voices and languages are always added.
Take a look at the [Languages](https://commonvoice.mozilla.org/en/languages) page to request a language or start contributing.
### Supported Tasks and Leaderboards
The results for models trained on the Common Voice datasets are available via the
[🤗 Autoevaluate Leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards?dataset=mozilla-foundation%2Fcommon_voice_11_0&only_verified=0&task=automatic-speech-recognition&config=ar&split=test&metric=wer)
### Languages
```
Abkhaz, Arabic, Armenian, Assamese, Asturian, Azerbaijani, Basaa, Bashkir, Basque, Belarusian, Bengali, Breton, Bulgarian, Cantonese, Catalan, Central Kurdish, Chinese (China), Chinese (Hong Kong), Chinese (Taiwan), Chuvash, Czech, Danish, Dhivehi, Dioula, Dutch, English, Erzya, Esperanto, Estonian, Finnish, French, Frisian, Galician, Georgian, German, Greek, Guarani, Hakha Chin, Hausa, Hill Mari, Hindi, Hungarian, Icelandic, Igbo, Indonesian, Interlingua, Irish, Italian, Japanese, Kabyle, Kazakh, Kinyarwanda, Korean, Kurmanji Kurdish, Kyrgyz, Lao, Latvian, Lithuanian, Luganda, Macedonian, Malayalam, Maltese, Marathi, Meadow Mari, Moksha, Mongolian, Nepali, Norwegian Nynorsk, Occitan, Odia, Persian, Polish, Portuguese, Punjabi, Quechua Chanka, Romanian, Romansh Sursilvan, Romansh Vallader, Russian, Sakha, Santali (Ol Chiki), Saraiki, Sardinian, Serbian, Slovak, Slovenian, Sorbian, Upper, Spanish, Swahili, Swedish, Taiwanese (Minnan), Tamil, Tatar, Thai, Tigre, Tigrinya, Toki Pona, Turkish, Turkmen, Twi, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Votic, Welsh, Yoruba
```
## How to use
The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function.
For example, to download the Hindi config, simply specify the corresponding language config name (i.e., "hi" for Hindi):
```python
from datasets import load_dataset
cv_13 = load_dataset("mozilla-foundation/common_voice_13_0", "hi", split="train")
```
Using the datasets library, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.
```python
from datasets import load_dataset
cv_13 = load_dataset("mozilla-foundation/common_voice_13_0", "hi", split="train", streaming=True)
print(next(iter(cv_13)))
```
*Bonus*: create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your own datasets (local/streamed).
### Local
```python
from datasets import load_dataset
from torch.utils.data.sampler import BatchSampler, RandomSampler
cv_13 = load_dataset("mozilla-foundation/common_voice_13_0", "hi", split="train")
batch_sampler = BatchSampler(RandomSampler(cv_13), batch_size=32, drop_last=False)
dataloader = DataLoader(cv_13, batch_sampler=batch_sampler)
```
### Streaming
```python
from datasets import load_dataset
from torch.utils.data import DataLoader
cv_13 = load_dataset("mozilla-foundation/common_voice_13_0", "hi", split="train")
dataloader = DataLoader(cv_13, batch_size=32)
```
To find out more about loading and preparing audio datasets, head over to [hf.co/blog/audio-datasets](https://huggingface.co/blog/audio-datasets).
### Example scripts
Train your own CTC or Seq2Seq Automatic Speech Recognition models on Common Voice 13 with `transformers` - [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition).
## Dataset Structure
### Data Instances
A typical data point comprises the `path` to the audio file and its `sentence`.
Additional fields include `accent`, `age`, `client_id`, `up_votes`, `down_votes`, `gender`, `locale` and `segment`.
```python
{
'client_id': 'd59478fbc1ee646a28a3c652a119379939123784d99131b865a89f8b21c81f69276c48bd574b81267d9d1a77b83b43e6d475a6cfc79c232ddbca946ae9c7afc5',
'path': 'et/clips/common_voice_et_18318995.mp3',
'audio': {
'path': 'et/clips/common_voice_et_18318995.mp3',
'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32),
'sampling_rate': 48000
},
'sentence': 'Tasub kokku saada inimestega, keda tunned juba ammust ajast saati.',
'up_votes': 2,
'down_votes': 0,
'age': 'twenties',
'gender': 'male',
'accent': '',
'locale': 'et',
'segment': ''
}
```
### Data Fields
`client_id` (`string`): An id for which client (voice) made the recording
`path` (`string`): The path to the audio file
`audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
`sentence` (`string`): The sentence the user was prompted to speak
`up_votes` (`int64`): How many upvotes the audio file has received from reviewers
`down_votes` (`int64`): How many downvotes the audio file has received from reviewers
`age` (`string`): The age of the speaker (e.g. `teens`, `twenties`, `fifties`)
`gender` (`string`): The gender of the speaker
`accent` (`string`): Accent of the speaker
`locale` (`string`): The locale of the speaker
`segment` (`string`): Usually an empty field
### Data Splits
The speech material has been subdivided into portions for dev, train, test, validated, invalidated, reported and other.
The validated data is data that has been validated with reviewers and received upvotes that the data is of high quality.
The invalidated data is data has been invalidated by reviewers
and received downvotes indicating that the data is of low quality.
The reported data is data that has been reported, for different reasons.
The other data is data that has not yet been reviewed.
The dev, test, train are all data that has been reviewed, deemed of high quality and split into dev, test and train.
## Data Preprocessing Recommended by Hugging Face
The following are data preprocessing steps advised by the Hugging Face team. They are accompanied by an example code snippet that shows how to put them to practice.
Many examples in this dataset have trailing quotations marks, e.g _“the cat sat on the mat.“_. These trailing quotation marks do not change the actual meaning of the sentence, and it is near impossible to infer whether a sentence is a quotation or not a quotation from audio data alone. In these cases, it is advised to strip the quotation marks, leaving: _the cat sat on the mat_.
In addition, the majority of training sentences end in punctuation ( . or ? or ! ), whereas just a small proportion do not. In the dev set, **almost all** sentences end in punctuation. Thus, it is recommended to append a full-stop ( . ) to the end of the small number of training examples that do not end in punctuation.
```python
from datasets import load_dataset
ds = load_dataset("mozilla-foundation/common_voice_13_0", "en", use_auth_token=True)
def prepare_dataset(batch):
"""Function to preprocess the dataset with the .map method"""
transcription = batch["sentence"]
if transcription.startswith('"') and transcription.endswith('"'):
# we can remove trailing quotation marks as they do not affect the transcription
transcription = transcription[1:-1]
if transcription[-1] not in [".", "?", "!"]:
# append a full-stop to sentences that do not end in punctuation
transcription = transcription + "."
batch["sentence"] = transcription
return batch
ds = ds.map(prepare_dataset, desc="preprocess dataset")
```
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in the Common Voice dataset.
## Considerations for Using the Data
### Social Impact of Dataset
The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in the Common Voice dataset.
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Public Domain, [CC-0](https://creativecommons.org/share-your-work/public-domain/cc0/)
### Citation Information
```
@inproceedings{commonvoice:2020,
author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
title = {Common Voice: A Massively-Multilingual Speech Corpus},
booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
pages = {4211--4215},
year = 2020
}
``` |