import requests import json def fetch_ai_response(): url = "https://api.deepinfra.com/v1/openai/chat/completions" headers = { "Accept-Language": "fr-FR,fr;q=0.9,en-US;q=0.8,en;q=0.7", "Connection": "keep-alive", "Content-Type": "application/json", "Origin": "https://deepinfra.com", "Referer": "https://deepinfra.com/", "Sec-Fetch-Dest": "empty", "Sec-Fetch-Mode": "cors", "Sec-Fetch-Site": "same-site", "User-Agent": "Mozilla/5.0 (Linux; Android 11.0; Surface Duo) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Mobile Safari/537.36", "X-Deepinfra-Source": "model-embed", "accept": "text/event-stream", "sec-ch-ua": "\"Chromium\";v=\"128\", \"Not;A=Brand\";v=\"24\", \"Google Chrome\";v=\"128\"", "sec-ch-ua-mobile": "?1", "sec-ch-ua-platform": "\"Android\"" } data = { "model": "meta-llama/Meta-Llama-3.1-405B-Instruct", "messages": [{"role": "user", "content": "c'est quoi un trou noir ?"}], "temperature": 0.1, "max_tokens": 100000, "stream": True } response = requests.post(url, headers=headers, json=data, stream=True) if response.status_code != 200: print(f"Erreur lors de la requĂȘte : {response.status_code}") return # Initialisation des variables full_text = [] output_size = 0 for line in response.iter_lines(): if line: try: decoded_line = line.decode('utf-8') if decoded_line.startswith('data:'): json_data = decoded_line[5:].strip() if json_data == '[DONE]': break parsed_data = json.loads(json_data) # Extraction du texte choices = parsed_data.get("choices", []) for choice in choices: delta = choice.get("delta", {}) content = delta.get("content", "") if content: full_text.append(content) output_size += len(content) except json.JSONDecodeError: continue # Affichage du texte complet et des informations supplĂ©mentaires complete_text = ''.join(full_text) print(complete_text) if __name__ == "__main__": fetch_ai_response()