Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
License:
parquet-converter
commited on
Commit
·
73a5d66
1
Parent(s):
505fd27
Update parquet files
Browse files- .gitattributes +0 -37
- README.md +0 -201
- dataset_infos.json +0 -1
- default/sst2-test.parquet +3 -0
- default/sst2-train.parquet +3 -0
- default/sst2-validation.parquet +3 -0
- sst2.py +0 -105
.gitattributes
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
19 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
-
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
# Audio files - uncompressed
|
29 |
-
*.pcm filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.sam filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.raw filter=lfs diff=lfs merge=lfs -text
|
32 |
-
# Audio files - compressed
|
33 |
-
*.aac filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.flac filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
36 |
-
*.ogg filter=lfs diff=lfs merge=lfs -text
|
37 |
-
*.wav filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
---
|
2 |
-
annotations_creators:
|
3 |
-
- crowdsourced
|
4 |
-
language_creators:
|
5 |
-
- found
|
6 |
-
language:
|
7 |
-
- en
|
8 |
-
license:
|
9 |
-
- unknown
|
10 |
-
multilinguality:
|
11 |
-
- monolingual
|
12 |
-
size_categories:
|
13 |
-
- 10K<n<100K
|
14 |
-
source_datasets:
|
15 |
-
- original
|
16 |
-
task_categories:
|
17 |
-
- text-classification
|
18 |
-
task_ids:
|
19 |
-
- sentiment-classification
|
20 |
-
paperswithcode_id: sst
|
21 |
-
pretty_name: Stanford Sentiment Treebank v2
|
22 |
-
dataset_info:
|
23 |
-
features:
|
24 |
-
- name: idx
|
25 |
-
dtype: int32
|
26 |
-
- name: sentence
|
27 |
-
dtype: string
|
28 |
-
- name: label
|
29 |
-
dtype:
|
30 |
-
class_label:
|
31 |
-
names:
|
32 |
-
0: negative
|
33 |
-
1: positive
|
34 |
-
splits:
|
35 |
-
- name: train
|
36 |
-
num_bytes: 4690022
|
37 |
-
num_examples: 67349
|
38 |
-
- name: validation
|
39 |
-
num_bytes: 106361
|
40 |
-
num_examples: 872
|
41 |
-
- name: test
|
42 |
-
num_bytes: 216868
|
43 |
-
num_examples: 1821
|
44 |
-
download_size: 7439277
|
45 |
-
dataset_size: 5013251
|
46 |
-
---
|
47 |
-
|
48 |
-
# Dataset Card for [Dataset Name]
|
49 |
-
|
50 |
-
## Table of Contents
|
51 |
-
- [Table of Contents](#table-of-contents)
|
52 |
-
- [Dataset Description](#dataset-description)
|
53 |
-
- [Dataset Summary](#dataset-summary)
|
54 |
-
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
55 |
-
- [Languages](#languages)
|
56 |
-
- [Dataset Structure](#dataset-structure)
|
57 |
-
- [Data Instances](#data-instances)
|
58 |
-
- [Data Fields](#data-fields)
|
59 |
-
- [Data Splits](#data-splits)
|
60 |
-
- [Dataset Creation](#dataset-creation)
|
61 |
-
- [Curation Rationale](#curation-rationale)
|
62 |
-
- [Source Data](#source-data)
|
63 |
-
- [Annotations](#annotations)
|
64 |
-
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
65 |
-
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
66 |
-
- [Social Impact of Dataset](#social-impact-of-dataset)
|
67 |
-
- [Discussion of Biases](#discussion-of-biases)
|
68 |
-
- [Other Known Limitations](#other-known-limitations)
|
69 |
-
- [Additional Information](#additional-information)
|
70 |
-
- [Dataset Curators](#dataset-curators)
|
71 |
-
- [Licensing Information](#licensing-information)
|
72 |
-
- [Citation Information](#citation-information)
|
73 |
-
- [Contributions](#contributions)
|
74 |
-
|
75 |
-
## Dataset Description
|
76 |
-
|
77 |
-
- **Homepage:** https://nlp.stanford.edu/sentiment/
|
78 |
-
- **Repository:**
|
79 |
-
- **Paper:** [Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank](https://www.aclweb.org/anthology/D13-1170/)
|
80 |
-
- **Leaderboard:**
|
81 |
-
- **Point of Contact:**
|
82 |
-
|
83 |
-
### Dataset Summary
|
84 |
-
|
85 |
-
The Stanford Sentiment Treebank is a corpus with fully labeled parse trees that allows for a complete analysis of the
|
86 |
-
compositional effects of sentiment in language. The corpus is based on the dataset introduced by Pang and Lee (2005)
|
87 |
-
and consists of 11,855 single sentences extracted from movie reviews. It was parsed with the Stanford parser and
|
88 |
-
includes a total of 215,154 unique phrases from those parse trees, each annotated by 3 human judges.
|
89 |
-
|
90 |
-
Binary classification experiments on full sentences (negative or somewhat negative vs somewhat positive or positive
|
91 |
-
with neutral sentences discarded) refer to the dataset as SST-2 or SST binary.
|
92 |
-
|
93 |
-
### Supported Tasks and Leaderboards
|
94 |
-
|
95 |
-
- `sentiment-classification`
|
96 |
-
|
97 |
-
### Languages
|
98 |
-
|
99 |
-
The text in the dataset is in English (`en`).
|
100 |
-
|
101 |
-
## Dataset Structure
|
102 |
-
|
103 |
-
### Data Instances
|
104 |
-
|
105 |
-
```
|
106 |
-
{'idx': 0,
|
107 |
-
'sentence': 'hide new secretions from the parental units ',
|
108 |
-
'label': 0}
|
109 |
-
```
|
110 |
-
|
111 |
-
### Data Fields
|
112 |
-
|
113 |
-
- `idx`: Monotonically increasing index ID.
|
114 |
-
- `sentence`: Complete sentence expressing an opinion about a film.
|
115 |
-
- `label`: Sentiment of the opinion, either "negative" (0) or positive (1).
|
116 |
-
|
117 |
-
### Data Splits
|
118 |
-
|
119 |
-
| | train | validation | test |
|
120 |
-
|--------------------|---------:|-----------:|-----:|
|
121 |
-
| Number of examples | 67349 | 872 | 1821 |
|
122 |
-
|
123 |
-
## Dataset Creation
|
124 |
-
|
125 |
-
### Curation Rationale
|
126 |
-
|
127 |
-
[More Information Needed]
|
128 |
-
|
129 |
-
### Source Data
|
130 |
-
|
131 |
-
#### Initial Data Collection and Normalization
|
132 |
-
|
133 |
-
[More Information Needed]
|
134 |
-
|
135 |
-
#### Who are the source language producers?
|
136 |
-
|
137 |
-
Rotten Tomatoes reviewers.
|
138 |
-
|
139 |
-
### Annotations
|
140 |
-
|
141 |
-
#### Annotation process
|
142 |
-
|
143 |
-
[More Information Needed]
|
144 |
-
|
145 |
-
#### Who are the annotators?
|
146 |
-
|
147 |
-
[More Information Needed]
|
148 |
-
|
149 |
-
### Personal and Sensitive Information
|
150 |
-
|
151 |
-
[More Information Needed]
|
152 |
-
|
153 |
-
## Considerations for Using the Data
|
154 |
-
|
155 |
-
### Social Impact of Dataset
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Discussion of Biases
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
### Other Known Limitations
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
## Additional Information
|
168 |
-
|
169 |
-
### Dataset Curators
|
170 |
-
|
171 |
-
[More Information Needed]
|
172 |
-
|
173 |
-
### Licensing Information
|
174 |
-
|
175 |
-
Unknown.
|
176 |
-
|
177 |
-
### Citation Information
|
178 |
-
|
179 |
-
```bibtex
|
180 |
-
@inproceedings{socher-etal-2013-recursive,
|
181 |
-
title = "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank",
|
182 |
-
author = "Socher, Richard and
|
183 |
-
Perelygin, Alex and
|
184 |
-
Wu, Jean and
|
185 |
-
Chuang, Jason and
|
186 |
-
Manning, Christopher D. and
|
187 |
-
Ng, Andrew and
|
188 |
-
Potts, Christopher",
|
189 |
-
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
|
190 |
-
month = oct,
|
191 |
-
year = "2013",
|
192 |
-
address = "Seattle, Washington, USA",
|
193 |
-
publisher = "Association for Computational Linguistics",
|
194 |
-
url = "https://www.aclweb.org/anthology/D13-1170",
|
195 |
-
pages = "1631--1642",
|
196 |
-
}
|
197 |
-
```
|
198 |
-
|
199 |
-
### Contributions
|
200 |
-
|
201 |
-
Thanks to [@albertvillanova](https://github.com/albertvillanova) for adding this dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "The Stanford Sentiment Treebank consists of sentences from movie reviews and\nhuman annotations of their sentiment. The task is to predict the sentiment of a\ngiven sentence. We use the two-way (positive/negative) class split, and use only\nsentence-level labels.\n", "citation": "@inproceedings{socher2013recursive,\n title={Recursive deep models for semantic compositionality over a sentiment treebank},\n author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},\n booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},\n pages={1631--1642},\n year={2013}\n}\n", "homepage": "https://nlp.stanford.edu/sentiment/", "license": "Unknown", "features": {"idx": {"dtype": "int32", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["negative", "positive"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "sst2", "config_name": "default", "version": {"version_str": "2.0.0", "description": null, "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4690022, "num_examples": 67349, "dataset_name": "sst2"}, "validation": {"name": "validation", "num_bytes": 106361, "num_examples": 872, "dataset_name": "sst2"}, "test": {"name": "test", "num_bytes": 216868, "num_examples": 1821, "dataset_name": "sst2"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/SST-2.zip": {"num_bytes": 7439277, "checksum": "d67e16fb55739c1b32cdce9877596db1c127dc322d93c082281f64057c16deaa"}}, "download_size": 7439277, "post_processing_size": null, "dataset_size": 5013251, "size_in_bytes": 12452528}}
|
|
|
|
default/sst2-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3daad2315d7a8ec2f91db0a6d032e6d277d8f49405fd60ef6c86049b371ca47b
|
3 |
+
size 147786
|
default/sst2-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3811f7223cbabd449b2ce95e8aa4ef9ebe3d27627f9dd0383d3497f2338c003
|
3 |
+
size 3110457
|
default/sst2-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98f971906bc299d17edbb001cbf48b6afab96b6dd9fb3da4879a852ee40f4386
|
3 |
+
size 72812
|
sst2.py
DELETED
@@ -1,105 +0,0 @@
|
|
1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""SST-2 (Stanford Sentiment Treebank v2) dataset."""
|
15 |
-
|
16 |
-
|
17 |
-
import csv
|
18 |
-
import os
|
19 |
-
|
20 |
-
import datasets
|
21 |
-
|
22 |
-
|
23 |
-
_CITATION = """\
|
24 |
-
@inproceedings{socher2013recursive,
|
25 |
-
title={Recursive deep models for semantic compositionality over a sentiment treebank},
|
26 |
-
author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},
|
27 |
-
booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},
|
28 |
-
pages={1631--1642},
|
29 |
-
year={2013}
|
30 |
-
}
|
31 |
-
"""
|
32 |
-
|
33 |
-
_DESCRIPTION = """\
|
34 |
-
The Stanford Sentiment Treebank consists of sentences from movie reviews and
|
35 |
-
human annotations of their sentiment. The task is to predict the sentiment of a
|
36 |
-
given sentence. We use the two-way (positive/negative) class split, and use only
|
37 |
-
sentence-level labels.
|
38 |
-
"""
|
39 |
-
|
40 |
-
_HOMEPAGE = "https://nlp.stanford.edu/sentiment/"
|
41 |
-
|
42 |
-
_LICENSE = "Unknown"
|
43 |
-
|
44 |
-
_URL = "https://dl.fbaipublicfiles.com/glue/data/SST-2.zip"
|
45 |
-
|
46 |
-
|
47 |
-
class Sst2(datasets.GeneratorBasedBuilder):
|
48 |
-
"""SST-2 dataset."""
|
49 |
-
|
50 |
-
VERSION = datasets.Version("2.0.0")
|
51 |
-
|
52 |
-
def _info(self):
|
53 |
-
features = datasets.Features(
|
54 |
-
{
|
55 |
-
"idx": datasets.Value("int32"),
|
56 |
-
"sentence": datasets.Value("string"),
|
57 |
-
"label": datasets.features.ClassLabel(names=["negative", "positive"]),
|
58 |
-
}
|
59 |
-
)
|
60 |
-
return datasets.DatasetInfo(
|
61 |
-
description=_DESCRIPTION,
|
62 |
-
features=features,
|
63 |
-
homepage=_HOMEPAGE,
|
64 |
-
license=_LICENSE,
|
65 |
-
citation=_CITATION,
|
66 |
-
)
|
67 |
-
|
68 |
-
def _split_generators(self, dl_manager):
|
69 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
70 |
-
return [
|
71 |
-
datasets.SplitGenerator(
|
72 |
-
name=datasets.Split.TRAIN,
|
73 |
-
gen_kwargs={
|
74 |
-
"file_paths": dl_manager.iter_files(dl_dir),
|
75 |
-
"data_filename": "train.tsv",
|
76 |
-
},
|
77 |
-
),
|
78 |
-
datasets.SplitGenerator(
|
79 |
-
name=datasets.Split.VALIDATION,
|
80 |
-
gen_kwargs={
|
81 |
-
"file_paths": dl_manager.iter_files(dl_dir),
|
82 |
-
"data_filename": "dev.tsv",
|
83 |
-
},
|
84 |
-
),
|
85 |
-
datasets.SplitGenerator(
|
86 |
-
name=datasets.Split.TEST,
|
87 |
-
gen_kwargs={
|
88 |
-
"file_paths": dl_manager.iter_files(dl_dir),
|
89 |
-
"data_filename": "test.tsv",
|
90 |
-
},
|
91 |
-
),
|
92 |
-
]
|
93 |
-
|
94 |
-
def _generate_examples(self, file_paths, data_filename):
|
95 |
-
for file_path in file_paths:
|
96 |
-
filename = os.path.basename(file_path)
|
97 |
-
if filename == data_filename:
|
98 |
-
with open(file_path, encoding="utf8") as f:
|
99 |
-
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
100 |
-
for idx, row in enumerate(reader):
|
101 |
-
yield idx, {
|
102 |
-
"idx": row["index"] if "index" in row else idx,
|
103 |
-
"sentence": row["sentence"],
|
104 |
-
"label": int(row["label"]) if "label" in row else -1,
|
105 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|