autotrain-flair-hipe2022-fr-hmbert / flair-fine-tuner.py
stefan-it's picture
Upload folder using huggingface_hub
344e033
raw
history blame
4.46 kB
import json
import logging
import sys
import flair
import torch
from typing import List
from flair.data import MultiCorpus
from flair.datasets import ColumnCorpus, NER_HIPE_2022, NER_ICDAR_EUROPEANA
from flair.embeddings import (
TokenEmbeddings,
StackedEmbeddings,
TransformerWordEmbeddings
)
from flair import set_seed
from flair.models import SequenceTagger
from flair.trainers import ModelTrainer
from utils import prepare_ajmc_corpus, prepare_clef_2020_corpus, prepare_newseye_fi_sv_corpus, prepare_newseye_de_fr_corpus
logger = logging.getLogger("flair")
logger.setLevel(level="INFO")
def run_experiment(seed: int, batch_size: int, epoch: int, learning_rate: float, subword_pooling: str,
hipe_datasets: List[str], json_config: dict):
hf_model = json_config["hf_model"]
context_size = json_config["context_size"]
layers = json_config["layers"] if "layers" in json_config else "-1"
use_crf = json_config["use_crf"] if "use_crf" in json_config else False
# Set seed for reproducibility
set_seed(seed)
corpus_list = []
# Dataset-related
for dataset in hipe_datasets:
dataset_name, language = dataset.split("/")
# E.g. topres19th needs no special preprocessing
preproc_fn = None
if dataset_name == "ajmc":
preproc_fn = prepare_ajmc_corpus
elif dataset_name == "hipe2020":
preproc_fn = prepare_clef_2020_corpus
elif dataset_name == "newseye" and language in ["fi", "sv"]:
preproc_fn = prepare_newseye_fi_sv_corpus
elif dataset_name == "newseye" and language in ["de", "fr"]:
preproc_fn = prepare_newseye_de_fr_corpus
if dataset_name == "icdar":
corpus_list.append(NER_ICDAR_EUROPEANA(language=language))
else:
corpus_list.append(NER_HIPE_2022(dataset_name=dataset_name, language=language, preproc_fn=preproc_fn,
add_document_separator=True))
if context_size == 0:
context_size = False
logger.info("FLERT Context: {}".format(context_size))
logger.info("Layers: {}".format(layers))
logger.info("Use CRF: {}".format(use_crf))
corpora: MultiCorpus = MultiCorpus(corpora=corpus_list, sample_missing_splits=False)
label_dictionary = corpora.make_label_dictionary(label_type="ner")
logger.info("Label Dictionary: {}".format(label_dictionary.get_items()))
embeddings = TransformerWordEmbeddings(
model=hf_model,
layers=layers,
subtoken_pooling=subword_pooling,
fine_tune=True,
use_context=context_size,
)
tagger: SequenceTagger = SequenceTagger(
hidden_size=256,
embeddings=embeddings,
tag_dictionary=label_dictionary,
tag_type="ner",
use_crf=use_crf,
use_rnn=False,
reproject_embeddings=False,
)
# Trainer
trainer: ModelTrainer = ModelTrainer(tagger, corpora)
datasets = "-".join([dataset for dataset in hipe_datasets])
trainer.fine_tune(
f"hmbench-{datasets}-{hf_model}-bs{batch_size}-ws{context_size}-e{epoch}-lr{learning_rate}-pooling{subword_pooling}-layers{layers}-crf{use_crf}-{seed}",
learning_rate=learning_rate,
mini_batch_size=batch_size,
max_epochs=epoch,
shuffle=True,
embeddings_storage_mode='none',
weight_decay=0.,
use_final_model_for_eval=False,
)
# Finally, print model card for information
tagger.print_model_card()
if __name__ == "__main__":
filename = sys.argv[1]
with open(filename, "rt") as f_p:
json_config = json.load(f_p)
seeds = json_config["seeds"]
batch_sizes = json_config["batch_sizes"]
epochs = json_config["epochs"]
learning_rates = json_config["learning_rates"]
subword_poolings = json_config["subword_poolings"]
hipe_datasets = json_config["hipe_datasets"] # Do not iterate over them
cuda = json_config["cuda"]
flair.device = f'cuda:{cuda}'
for seed in seeds:
for batch_size in batch_sizes:
for epoch in epochs:
for learning_rate in learning_rates:
for subword_pooling in subword_poolings:
run_experiment(seed, batch_size, epoch, learning_rate, subword_pooling, hipe_datasets,
json_config) # pylint: disable=no-value-for-parameter