stefan-it's picture
Upload folder using huggingface_hub
7113fa3
raw
history blame
24.2 kB
2023-09-04 14:37:10,223 ----------------------------------------------------------------------------------------------------
2023-09-04 14:37:10,224 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=21, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-09-04 14:37:10,224 ----------------------------------------------------------------------------------------------------
2023-09-04 14:37:10,224 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
2023-09-04 14:37:10,224 ----------------------------------------------------------------------------------------------------
2023-09-04 14:37:10,224 Train: 5901 sentences
2023-09-04 14:37:10,224 (train_with_dev=False, train_with_test=False)
2023-09-04 14:37:10,224 ----------------------------------------------------------------------------------------------------
2023-09-04 14:37:10,224 Training Params:
2023-09-04 14:37:10,225 - learning_rate: "5e-05"
2023-09-04 14:37:10,225 - mini_batch_size: "4"
2023-09-04 14:37:10,225 - max_epochs: "10"
2023-09-04 14:37:10,225 - shuffle: "True"
2023-09-04 14:37:10,225 ----------------------------------------------------------------------------------------------------
2023-09-04 14:37:10,225 Plugins:
2023-09-04 14:37:10,225 - LinearScheduler | warmup_fraction: '0.1'
2023-09-04 14:37:10,225 ----------------------------------------------------------------------------------------------------
2023-09-04 14:37:10,225 Final evaluation on model from best epoch (best-model.pt)
2023-09-04 14:37:10,225 - metric: "('micro avg', 'f1-score')"
2023-09-04 14:37:10,225 ----------------------------------------------------------------------------------------------------
2023-09-04 14:37:10,225 Computation:
2023-09-04 14:37:10,225 - compute on device: cuda:0
2023-09-04 14:37:10,225 - embedding storage: none
2023-09-04 14:37:10,225 ----------------------------------------------------------------------------------------------------
2023-09-04 14:37:10,225 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
2023-09-04 14:37:10,225 ----------------------------------------------------------------------------------------------------
2023-09-04 14:37:10,225 ----------------------------------------------------------------------------------------------------
2023-09-04 14:37:24,926 epoch 1 - iter 147/1476 - loss 2.05618754 - time (sec): 14.70 - samples/sec: 1042.48 - lr: 0.000005 - momentum: 0.000000
2023-09-04 14:37:40,726 epoch 1 - iter 294/1476 - loss 1.24591273 - time (sec): 30.50 - samples/sec: 1073.51 - lr: 0.000010 - momentum: 0.000000
2023-09-04 14:37:55,882 epoch 1 - iter 441/1476 - loss 0.96595507 - time (sec): 45.66 - samples/sec: 1053.60 - lr: 0.000015 - momentum: 0.000000
2023-09-04 14:38:11,770 epoch 1 - iter 588/1476 - loss 0.79301248 - time (sec): 61.54 - samples/sec: 1048.20 - lr: 0.000020 - momentum: 0.000000
2023-09-04 14:38:27,739 epoch 1 - iter 735/1476 - loss 0.68162646 - time (sec): 77.51 - samples/sec: 1050.21 - lr: 0.000025 - momentum: 0.000000
2023-09-04 14:38:44,370 epoch 1 - iter 882/1476 - loss 0.59898767 - time (sec): 94.14 - samples/sec: 1052.37 - lr: 0.000030 - momentum: 0.000000
2023-09-04 14:39:01,175 epoch 1 - iter 1029/1476 - loss 0.54029039 - time (sec): 110.95 - samples/sec: 1049.30 - lr: 0.000035 - momentum: 0.000000
2023-09-04 14:39:16,723 epoch 1 - iter 1176/1476 - loss 0.49996949 - time (sec): 126.50 - samples/sec: 1045.64 - lr: 0.000040 - momentum: 0.000000
2023-09-04 14:39:33,925 epoch 1 - iter 1323/1476 - loss 0.46069672 - time (sec): 143.70 - samples/sec: 1044.79 - lr: 0.000045 - momentum: 0.000000
2023-09-04 14:39:49,637 epoch 1 - iter 1470/1476 - loss 0.43367918 - time (sec): 159.41 - samples/sec: 1040.69 - lr: 0.000050 - momentum: 0.000000
2023-09-04 14:39:50,208 ----------------------------------------------------------------------------------------------------
2023-09-04 14:39:50,208 EPOCH 1 done: loss 0.4331 - lr: 0.000050
2023-09-04 14:40:04,539 DEV : loss 0.14273743331432343 - f1-score (micro avg) 0.7029
2023-09-04 14:40:04,567 saving best model
2023-09-04 14:40:05,059 ----------------------------------------------------------------------------------------------------
2023-09-04 14:40:20,954 epoch 2 - iter 147/1476 - loss 0.15116667 - time (sec): 15.89 - samples/sec: 1053.78 - lr: 0.000049 - momentum: 0.000000
2023-09-04 14:40:37,208 epoch 2 - iter 294/1476 - loss 0.15377335 - time (sec): 32.15 - samples/sec: 1047.39 - lr: 0.000049 - momentum: 0.000000
2023-09-04 14:40:54,506 epoch 2 - iter 441/1476 - loss 0.15144934 - time (sec): 49.44 - samples/sec: 1055.90 - lr: 0.000048 - momentum: 0.000000
2023-09-04 14:41:09,751 epoch 2 - iter 588/1476 - loss 0.14514190 - time (sec): 64.69 - samples/sec: 1048.12 - lr: 0.000048 - momentum: 0.000000
2023-09-04 14:41:24,951 epoch 2 - iter 735/1476 - loss 0.14434703 - time (sec): 79.89 - samples/sec: 1044.53 - lr: 0.000047 - momentum: 0.000000
2023-09-04 14:41:42,059 epoch 2 - iter 882/1476 - loss 0.14095490 - time (sec): 97.00 - samples/sec: 1047.48 - lr: 0.000047 - momentum: 0.000000
2023-09-04 14:41:58,137 epoch 2 - iter 1029/1476 - loss 0.13849409 - time (sec): 113.08 - samples/sec: 1045.08 - lr: 0.000046 - momentum: 0.000000
2023-09-04 14:42:13,722 epoch 2 - iter 1176/1476 - loss 0.13600706 - time (sec): 128.66 - samples/sec: 1042.32 - lr: 0.000046 - momentum: 0.000000
2023-09-04 14:42:29,232 epoch 2 - iter 1323/1476 - loss 0.13703274 - time (sec): 144.17 - samples/sec: 1040.78 - lr: 0.000045 - momentum: 0.000000
2023-09-04 14:42:44,323 epoch 2 - iter 1470/1476 - loss 0.13820196 - time (sec): 159.26 - samples/sec: 1041.95 - lr: 0.000044 - momentum: 0.000000
2023-09-04 14:42:44,869 ----------------------------------------------------------------------------------------------------
2023-09-04 14:42:44,870 EPOCH 2 done: loss 0.1381 - lr: 0.000044
2023-09-04 14:43:02,487 DEV : loss 0.14158931374549866 - f1-score (micro avg) 0.745
2023-09-04 14:43:02,516 saving best model
2023-09-04 14:43:03,854 ----------------------------------------------------------------------------------------------------
2023-09-04 14:43:18,808 epoch 3 - iter 147/1476 - loss 0.07909018 - time (sec): 14.95 - samples/sec: 1023.67 - lr: 0.000044 - momentum: 0.000000
2023-09-04 14:43:34,437 epoch 3 - iter 294/1476 - loss 0.08191834 - time (sec): 30.58 - samples/sec: 1045.44 - lr: 0.000043 - momentum: 0.000000
2023-09-04 14:43:50,338 epoch 3 - iter 441/1476 - loss 0.08482425 - time (sec): 46.48 - samples/sec: 1047.71 - lr: 0.000043 - momentum: 0.000000
2023-09-04 14:44:07,807 epoch 3 - iter 588/1476 - loss 0.08414229 - time (sec): 63.95 - samples/sec: 1063.02 - lr: 0.000042 - momentum: 0.000000
2023-09-04 14:44:23,918 epoch 3 - iter 735/1476 - loss 0.09109558 - time (sec): 80.06 - samples/sec: 1055.09 - lr: 0.000042 - momentum: 0.000000
2023-09-04 14:44:39,104 epoch 3 - iter 882/1476 - loss 0.08957885 - time (sec): 95.25 - samples/sec: 1049.41 - lr: 0.000041 - momentum: 0.000000
2023-09-04 14:44:55,966 epoch 3 - iter 1029/1476 - loss 0.09154050 - time (sec): 112.11 - samples/sec: 1050.53 - lr: 0.000041 - momentum: 0.000000
2023-09-04 14:45:11,162 epoch 3 - iter 1176/1476 - loss 0.09076679 - time (sec): 127.31 - samples/sec: 1047.21 - lr: 0.000040 - momentum: 0.000000
2023-09-04 14:45:27,181 epoch 3 - iter 1323/1476 - loss 0.09308992 - time (sec): 143.33 - samples/sec: 1044.41 - lr: 0.000039 - momentum: 0.000000
2023-09-04 14:45:42,897 epoch 3 - iter 1470/1476 - loss 0.09133680 - time (sec): 159.04 - samples/sec: 1042.38 - lr: 0.000039 - momentum: 0.000000
2023-09-04 14:45:43,490 ----------------------------------------------------------------------------------------------------
2023-09-04 14:45:43,490 EPOCH 3 done: loss 0.0911 - lr: 0.000039
2023-09-04 14:46:01,014 DEV : loss 0.17265217006206512 - f1-score (micro avg) 0.8048
2023-09-04 14:46:01,044 saving best model
2023-09-04 14:46:02,399 ----------------------------------------------------------------------------------------------------
2023-09-04 14:46:18,579 epoch 4 - iter 147/1476 - loss 0.05488287 - time (sec): 16.18 - samples/sec: 1072.38 - lr: 0.000038 - momentum: 0.000000
2023-09-04 14:46:34,303 epoch 4 - iter 294/1476 - loss 0.05976011 - time (sec): 31.90 - samples/sec: 1069.41 - lr: 0.000038 - momentum: 0.000000
2023-09-04 14:46:50,518 epoch 4 - iter 441/1476 - loss 0.06373628 - time (sec): 48.12 - samples/sec: 1061.96 - lr: 0.000037 - momentum: 0.000000
2023-09-04 14:47:06,011 epoch 4 - iter 588/1476 - loss 0.06645004 - time (sec): 63.61 - samples/sec: 1051.93 - lr: 0.000037 - momentum: 0.000000
2023-09-04 14:47:21,374 epoch 4 - iter 735/1476 - loss 0.06599255 - time (sec): 78.97 - samples/sec: 1038.79 - lr: 0.000036 - momentum: 0.000000
2023-09-04 14:47:38,022 epoch 4 - iter 882/1476 - loss 0.06576644 - time (sec): 95.62 - samples/sec: 1036.93 - lr: 0.000036 - momentum: 0.000000
2023-09-04 14:47:55,574 epoch 4 - iter 1029/1476 - loss 0.06729119 - time (sec): 113.17 - samples/sec: 1046.71 - lr: 0.000035 - momentum: 0.000000
2023-09-04 14:48:10,738 epoch 4 - iter 1176/1476 - loss 0.06894602 - time (sec): 128.34 - samples/sec: 1041.22 - lr: 0.000034 - momentum: 0.000000
2023-09-04 14:48:26,358 epoch 4 - iter 1323/1476 - loss 0.06675886 - time (sec): 143.96 - samples/sec: 1037.88 - lr: 0.000034 - momentum: 0.000000
2023-09-04 14:48:42,090 epoch 4 - iter 1470/1476 - loss 0.06721274 - time (sec): 159.69 - samples/sec: 1039.16 - lr: 0.000033 - momentum: 0.000000
2023-09-04 14:48:42,677 ----------------------------------------------------------------------------------------------------
2023-09-04 14:48:42,677 EPOCH 4 done: loss 0.0671 - lr: 0.000033
2023-09-04 14:49:00,334 DEV : loss 0.16335846483707428 - f1-score (micro avg) 0.8012
2023-09-04 14:49:00,363 ----------------------------------------------------------------------------------------------------
2023-09-04 14:49:17,015 epoch 5 - iter 147/1476 - loss 0.06622027 - time (sec): 16.65 - samples/sec: 1101.78 - lr: 0.000033 - momentum: 0.000000
2023-09-04 14:49:33,050 epoch 5 - iter 294/1476 - loss 0.06049103 - time (sec): 32.69 - samples/sec: 1066.31 - lr: 0.000032 - momentum: 0.000000
2023-09-04 14:49:49,544 epoch 5 - iter 441/1476 - loss 0.06035344 - time (sec): 49.18 - samples/sec: 1053.86 - lr: 0.000032 - momentum: 0.000000
2023-09-04 14:50:04,750 epoch 5 - iter 588/1476 - loss 0.05825611 - time (sec): 64.39 - samples/sec: 1044.43 - lr: 0.000031 - momentum: 0.000000
2023-09-04 14:50:20,107 epoch 5 - iter 735/1476 - loss 0.05285723 - time (sec): 79.74 - samples/sec: 1040.13 - lr: 0.000031 - momentum: 0.000000
2023-09-04 14:50:35,859 epoch 5 - iter 882/1476 - loss 0.05168682 - time (sec): 95.50 - samples/sec: 1033.23 - lr: 0.000030 - momentum: 0.000000
2023-09-04 14:50:51,736 epoch 5 - iter 1029/1476 - loss 0.05200072 - time (sec): 111.37 - samples/sec: 1033.81 - lr: 0.000029 - momentum: 0.000000
2023-09-04 14:51:07,167 epoch 5 - iter 1176/1476 - loss 0.05045599 - time (sec): 126.80 - samples/sec: 1030.80 - lr: 0.000029 - momentum: 0.000000
2023-09-04 14:51:22,293 epoch 5 - iter 1323/1476 - loss 0.04917480 - time (sec): 141.93 - samples/sec: 1032.43 - lr: 0.000028 - momentum: 0.000000
2023-09-04 14:51:39,898 epoch 5 - iter 1470/1476 - loss 0.04897805 - time (sec): 159.53 - samples/sec: 1039.41 - lr: 0.000028 - momentum: 0.000000
2023-09-04 14:51:40,447 ----------------------------------------------------------------------------------------------------
2023-09-04 14:51:40,447 EPOCH 5 done: loss 0.0493 - lr: 0.000028
2023-09-04 14:51:58,018 DEV : loss 0.20086710155010223 - f1-score (micro avg) 0.8012
2023-09-04 14:51:58,049 ----------------------------------------------------------------------------------------------------
2023-09-04 14:52:14,830 epoch 6 - iter 147/1476 - loss 0.04119602 - time (sec): 16.78 - samples/sec: 1079.19 - lr: 0.000027 - momentum: 0.000000
2023-09-04 14:52:31,506 epoch 6 - iter 294/1476 - loss 0.03794587 - time (sec): 33.46 - samples/sec: 1062.89 - lr: 0.000027 - momentum: 0.000000
2023-09-04 14:52:48,721 epoch 6 - iter 441/1476 - loss 0.03922280 - time (sec): 50.67 - samples/sec: 1069.35 - lr: 0.000026 - momentum: 0.000000
2023-09-04 14:53:04,208 epoch 6 - iter 588/1476 - loss 0.03951086 - time (sec): 66.16 - samples/sec: 1059.47 - lr: 0.000026 - momentum: 0.000000
2023-09-04 14:53:19,700 epoch 6 - iter 735/1476 - loss 0.03815692 - time (sec): 81.65 - samples/sec: 1054.77 - lr: 0.000025 - momentum: 0.000000
2023-09-04 14:53:35,869 epoch 6 - iter 882/1476 - loss 0.03838285 - time (sec): 97.82 - samples/sec: 1048.69 - lr: 0.000024 - momentum: 0.000000
2023-09-04 14:53:51,797 epoch 6 - iter 1029/1476 - loss 0.03735327 - time (sec): 113.75 - samples/sec: 1043.81 - lr: 0.000024 - momentum: 0.000000
2023-09-04 14:54:06,862 epoch 6 - iter 1176/1476 - loss 0.03668080 - time (sec): 128.81 - samples/sec: 1039.34 - lr: 0.000023 - momentum: 0.000000
2023-09-04 14:54:22,232 epoch 6 - iter 1323/1476 - loss 0.03692170 - time (sec): 144.18 - samples/sec: 1037.47 - lr: 0.000023 - momentum: 0.000000
2023-09-04 14:54:37,600 epoch 6 - iter 1470/1476 - loss 0.03657753 - time (sec): 159.55 - samples/sec: 1039.55 - lr: 0.000022 - momentum: 0.000000
2023-09-04 14:54:38,166 ----------------------------------------------------------------------------------------------------
2023-09-04 14:54:38,167 EPOCH 6 done: loss 0.0365 - lr: 0.000022
2023-09-04 14:54:55,735 DEV : loss 0.2203623205423355 - f1-score (micro avg) 0.8002
2023-09-04 14:54:55,763 ----------------------------------------------------------------------------------------------------
2023-09-04 14:55:10,434 epoch 7 - iter 147/1476 - loss 0.01642304 - time (sec): 14.67 - samples/sec: 1057.19 - lr: 0.000022 - momentum: 0.000000
2023-09-04 14:55:27,264 epoch 7 - iter 294/1476 - loss 0.01866675 - time (sec): 31.50 - samples/sec: 1055.62 - lr: 0.000021 - momentum: 0.000000
2023-09-04 14:55:41,753 epoch 7 - iter 441/1476 - loss 0.02584884 - time (sec): 45.99 - samples/sec: 1044.53 - lr: 0.000021 - momentum: 0.000000
2023-09-04 14:55:58,660 epoch 7 - iter 588/1476 - loss 0.02482793 - time (sec): 62.90 - samples/sec: 1044.61 - lr: 0.000020 - momentum: 0.000000
2023-09-04 14:56:13,767 epoch 7 - iter 735/1476 - loss 0.02488488 - time (sec): 78.00 - samples/sec: 1040.00 - lr: 0.000019 - momentum: 0.000000
2023-09-04 14:56:28,980 epoch 7 - iter 882/1476 - loss 0.02516712 - time (sec): 93.22 - samples/sec: 1035.35 - lr: 0.000019 - momentum: 0.000000
2023-09-04 14:56:48,543 epoch 7 - iter 1029/1476 - loss 0.02511757 - time (sec): 112.78 - samples/sec: 1050.84 - lr: 0.000018 - momentum: 0.000000
2023-09-04 14:57:03,738 epoch 7 - iter 1176/1476 - loss 0.02533099 - time (sec): 127.97 - samples/sec: 1045.97 - lr: 0.000018 - momentum: 0.000000
2023-09-04 14:57:19,755 epoch 7 - iter 1323/1476 - loss 0.02626783 - time (sec): 143.99 - samples/sec: 1043.52 - lr: 0.000017 - momentum: 0.000000
2023-09-04 14:57:35,009 epoch 7 - iter 1470/1476 - loss 0.02547683 - time (sec): 159.24 - samples/sec: 1041.10 - lr: 0.000017 - momentum: 0.000000
2023-09-04 14:57:35,579 ----------------------------------------------------------------------------------------------------
2023-09-04 14:57:35,579 EPOCH 7 done: loss 0.0255 - lr: 0.000017
2023-09-04 14:57:53,132 DEV : loss 0.22496868669986725 - f1-score (micro avg) 0.8145
2023-09-04 14:57:53,160 saving best model
2023-09-04 14:57:54,555 ----------------------------------------------------------------------------------------------------
2023-09-04 14:58:10,369 epoch 8 - iter 147/1476 - loss 0.01023728 - time (sec): 15.81 - samples/sec: 1072.20 - lr: 0.000016 - momentum: 0.000000
2023-09-04 14:58:26,766 epoch 8 - iter 294/1476 - loss 0.01604023 - time (sec): 32.21 - samples/sec: 1066.02 - lr: 0.000016 - momentum: 0.000000
2023-09-04 14:58:43,662 epoch 8 - iter 441/1476 - loss 0.02054301 - time (sec): 49.11 - samples/sec: 1072.53 - lr: 0.000015 - momentum: 0.000000
2023-09-04 14:58:59,911 epoch 8 - iter 588/1476 - loss 0.02120702 - time (sec): 65.35 - samples/sec: 1066.61 - lr: 0.000014 - momentum: 0.000000
2023-09-04 14:59:15,831 epoch 8 - iter 735/1476 - loss 0.01961425 - time (sec): 81.27 - samples/sec: 1057.21 - lr: 0.000014 - momentum: 0.000000
2023-09-04 14:59:32,105 epoch 8 - iter 882/1476 - loss 0.01762423 - time (sec): 97.55 - samples/sec: 1056.12 - lr: 0.000013 - momentum: 0.000000
2023-09-04 14:59:47,161 epoch 8 - iter 1029/1476 - loss 0.01750371 - time (sec): 112.60 - samples/sec: 1053.32 - lr: 0.000013 - momentum: 0.000000
2023-09-04 15:00:02,623 epoch 8 - iter 1176/1476 - loss 0.01730821 - time (sec): 128.07 - samples/sec: 1047.60 - lr: 0.000012 - momentum: 0.000000
2023-09-04 15:00:17,134 epoch 8 - iter 1323/1476 - loss 0.01677759 - time (sec): 142.58 - samples/sec: 1043.05 - lr: 0.000012 - momentum: 0.000000
2023-09-04 15:00:33,610 epoch 8 - iter 1470/1476 - loss 0.01729207 - time (sec): 159.05 - samples/sec: 1042.65 - lr: 0.000011 - momentum: 0.000000
2023-09-04 15:00:34,162 ----------------------------------------------------------------------------------------------------
2023-09-04 15:00:34,162 EPOCH 8 done: loss 0.0172 - lr: 0.000011
2023-09-04 15:00:51,816 DEV : loss 0.20783096551895142 - f1-score (micro avg) 0.824
2023-09-04 15:00:51,845 saving best model
2023-09-04 15:00:53,192 ----------------------------------------------------------------------------------------------------
2023-09-04 15:01:10,602 epoch 9 - iter 147/1476 - loss 0.01460204 - time (sec): 17.41 - samples/sec: 1033.48 - lr: 0.000011 - momentum: 0.000000
2023-09-04 15:01:26,925 epoch 9 - iter 294/1476 - loss 0.01077039 - time (sec): 33.73 - samples/sec: 1040.12 - lr: 0.000010 - momentum: 0.000000
2023-09-04 15:01:42,542 epoch 9 - iter 441/1476 - loss 0.01075809 - time (sec): 49.35 - samples/sec: 1025.31 - lr: 0.000009 - momentum: 0.000000
2023-09-04 15:01:58,486 epoch 9 - iter 588/1476 - loss 0.01065765 - time (sec): 65.29 - samples/sec: 1027.65 - lr: 0.000009 - momentum: 0.000000
2023-09-04 15:02:13,294 epoch 9 - iter 735/1476 - loss 0.01255226 - time (sec): 80.10 - samples/sec: 1020.74 - lr: 0.000008 - momentum: 0.000000
2023-09-04 15:02:29,925 epoch 9 - iter 882/1476 - loss 0.01202051 - time (sec): 96.73 - samples/sec: 1023.62 - lr: 0.000008 - momentum: 0.000000
2023-09-04 15:02:46,444 epoch 9 - iter 1029/1476 - loss 0.01258727 - time (sec): 113.25 - samples/sec: 1030.10 - lr: 0.000007 - momentum: 0.000000
2023-09-04 15:03:01,498 epoch 9 - iter 1176/1476 - loss 0.01267641 - time (sec): 128.30 - samples/sec: 1035.35 - lr: 0.000007 - momentum: 0.000000
2023-09-04 15:03:16,907 epoch 9 - iter 1323/1476 - loss 0.01223326 - time (sec): 143.71 - samples/sec: 1036.81 - lr: 0.000006 - momentum: 0.000000
2023-09-04 15:03:33,731 epoch 9 - iter 1470/1476 - loss 0.01227625 - time (sec): 160.54 - samples/sec: 1033.07 - lr: 0.000006 - momentum: 0.000000
2023-09-04 15:03:34,325 ----------------------------------------------------------------------------------------------------
2023-09-04 15:03:34,325 EPOCH 9 done: loss 0.0122 - lr: 0.000006
2023-09-04 15:03:52,069 DEV : loss 0.21233657002449036 - f1-score (micro avg) 0.8289
2023-09-04 15:03:52,098 saving best model
2023-09-04 15:03:53,446 ----------------------------------------------------------------------------------------------------
2023-09-04 15:04:09,986 epoch 10 - iter 147/1476 - loss 0.00749491 - time (sec): 16.54 - samples/sec: 1086.47 - lr: 0.000005 - momentum: 0.000000
2023-09-04 15:04:25,082 epoch 10 - iter 294/1476 - loss 0.00470430 - time (sec): 31.64 - samples/sec: 1045.80 - lr: 0.000004 - momentum: 0.000000
2023-09-04 15:04:41,524 epoch 10 - iter 441/1476 - loss 0.00519274 - time (sec): 48.08 - samples/sec: 1044.30 - lr: 0.000004 - momentum: 0.000000
2023-09-04 15:04:57,211 epoch 10 - iter 588/1476 - loss 0.00563998 - time (sec): 63.76 - samples/sec: 1028.16 - lr: 0.000003 - momentum: 0.000000
2023-09-04 15:05:14,292 epoch 10 - iter 735/1476 - loss 0.00672732 - time (sec): 80.85 - samples/sec: 1045.90 - lr: 0.000003 - momentum: 0.000000
2023-09-04 15:05:29,635 epoch 10 - iter 882/1476 - loss 0.00659474 - time (sec): 96.19 - samples/sec: 1044.69 - lr: 0.000002 - momentum: 0.000000
2023-09-04 15:05:45,611 epoch 10 - iter 1029/1476 - loss 0.00694730 - time (sec): 112.16 - samples/sec: 1044.52 - lr: 0.000002 - momentum: 0.000000
2023-09-04 15:06:01,416 epoch 10 - iter 1176/1476 - loss 0.00708200 - time (sec): 127.97 - samples/sec: 1049.01 - lr: 0.000001 - momentum: 0.000000
2023-09-04 15:06:16,546 epoch 10 - iter 1323/1476 - loss 0.00670365 - time (sec): 143.10 - samples/sec: 1047.88 - lr: 0.000001 - momentum: 0.000000
2023-09-04 15:06:32,906 epoch 10 - iter 1470/1476 - loss 0.00690620 - time (sec): 159.46 - samples/sec: 1040.07 - lr: 0.000000 - momentum: 0.000000
2023-09-04 15:06:33,489 ----------------------------------------------------------------------------------------------------
2023-09-04 15:06:33,489 EPOCH 10 done: loss 0.0069 - lr: 0.000000
2023-09-04 15:06:51,186 DEV : loss 0.22755871713161469 - f1-score (micro avg) 0.8257
2023-09-04 15:06:51,686 ----------------------------------------------------------------------------------------------------
2023-09-04 15:06:51,687 Loading model from best epoch ...
2023-09-04 15:06:53,562 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
2023-09-04 15:07:08,305
Results:
- F-score (micro) 0.7862
- F-score (macro) 0.6798
- Accuracy 0.6733
By class:
precision recall f1-score support
loc 0.8512 0.8531 0.8522 858
pers 0.7548 0.8026 0.7780 537
org 0.5461 0.5833 0.5641 132
time 0.5224 0.6481 0.5785 54
prod 0.6667 0.5902 0.6261 61
micro avg 0.7744 0.7984 0.7862 1642
macro avg 0.6682 0.6955 0.6798 1642
weighted avg 0.7775 0.7984 0.7873 1642
2023-09-04 15:07:08,305 ----------------------------------------------------------------------------------------------------