Upload folder using huggingface_hub
Browse files- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/best-model.pt +3 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/dev.tsv +0 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/final-model.pt +3 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/loss.tsv +11 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/test.tsv +0 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/training.log +245 -0
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b40896df61adddfe57cfc4a53d91ebb1a34ca2f2a73cad6b64e81795f51bfbf3
|
3 |
+
size 443334288
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f352f546ed806b5eb91fc293a85b055ca51ec6a0723bd22b0ebe781cf7acbe93
|
3 |
+
size 443334491
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 13:41:36 0.0000 0.4968 0.1471 0.6404 0.7171 0.6766 0.5362
|
3 |
+
2 13:44:14 0.0000 0.1220 0.1313 0.7268 0.8047 0.7638 0.6439
|
4 |
+
3 13:46:53 0.0000 0.0744 0.1363 0.7903 0.7835 0.7869 0.6749
|
5 |
+
4 13:49:32 0.0000 0.0497 0.1498 0.8081 0.7984 0.8032 0.6987
|
6 |
+
5 13:52:11 0.0000 0.0370 0.1908 0.7692 0.8190 0.7933 0.6895
|
7 |
+
6 13:54:49 0.0000 0.0258 0.1992 0.7866 0.8276 0.8066 0.7045
|
8 |
+
7 13:57:28 0.0000 0.0184 0.2073 0.8067 0.8316 0.8190 0.7188
|
9 |
+
8 14:00:05 0.0000 0.0121 0.2242 0.8055 0.8373 0.8211 0.7234
|
10 |
+
9 14:02:44 0.0000 0.0089 0.2307 0.8168 0.8276 0.8222 0.7265
|
11 |
+
10 14:05:24 0.0000 0.0052 0.2313 0.8058 0.8270 0.8163 0.7184
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/training.log
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-09-04 13:39:01,977 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-09-04 13:39:01,978 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-09-04 13:39:01,979 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-09-04 13:39:01,979 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
|
53 |
+
2023-09-04 13:39:01,979 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-09-04 13:39:01,979 Train: 5901 sentences
|
55 |
+
2023-09-04 13:39:01,979 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-09-04 13:39:01,979 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-09-04 13:39:01,979 Training Params:
|
58 |
+
2023-09-04 13:39:01,979 - learning_rate: "5e-05"
|
59 |
+
2023-09-04 13:39:01,979 - mini_batch_size: "8"
|
60 |
+
2023-09-04 13:39:01,979 - max_epochs: "10"
|
61 |
+
2023-09-04 13:39:01,979 - shuffle: "True"
|
62 |
+
2023-09-04 13:39:01,979 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-09-04 13:39:01,979 Plugins:
|
64 |
+
2023-09-04 13:39:01,979 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-09-04 13:39:01,979 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-09-04 13:39:01,980 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-09-04 13:39:01,980 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-09-04 13:39:01,980 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-09-04 13:39:01,980 Computation:
|
70 |
+
2023-09-04 13:39:01,980 - compute on device: cuda:0
|
71 |
+
2023-09-04 13:39:01,980 - embedding storage: none
|
72 |
+
2023-09-04 13:39:01,980 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-09-04 13:39:01,980 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
|
74 |
+
2023-09-04 13:39:01,980 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-09-04 13:39:01,980 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-09-04 13:39:14,291 epoch 1 - iter 73/738 - loss 2.44326612 - time (sec): 12.31 - samples/sec: 1238.74 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-09-04 13:39:27,922 epoch 1 - iter 146/738 - loss 1.47856637 - time (sec): 25.94 - samples/sec: 1258.14 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-09-04 13:39:40,565 epoch 1 - iter 219/738 - loss 1.14694216 - time (sec): 38.58 - samples/sec: 1236.59 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-09-04 13:39:54,257 epoch 1 - iter 292/738 - loss 0.93905184 - time (sec): 52.28 - samples/sec: 1224.86 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-09-04 13:40:08,310 epoch 1 - iter 365/738 - loss 0.80096618 - time (sec): 66.33 - samples/sec: 1223.15 - lr: 0.000025 - momentum: 0.000000
|
81 |
+
2023-09-04 13:40:22,630 epoch 1 - iter 438/738 - loss 0.70508476 - time (sec): 80.65 - samples/sec: 1216.96 - lr: 0.000030 - momentum: 0.000000
|
82 |
+
2023-09-04 13:40:38,180 epoch 1 - iter 511/738 - loss 0.63104936 - time (sec): 96.20 - samples/sec: 1203.40 - lr: 0.000035 - momentum: 0.000000
|
83 |
+
2023-09-04 13:40:51,146 epoch 1 - iter 584/738 - loss 0.58093276 - time (sec): 109.16 - samples/sec: 1203.18 - lr: 0.000039 - momentum: 0.000000
|
84 |
+
2023-09-04 13:41:07,323 epoch 1 - iter 657/738 - loss 0.53122241 - time (sec): 125.34 - samples/sec: 1190.77 - lr: 0.000044 - momentum: 0.000000
|
85 |
+
2023-09-04 13:41:20,266 epoch 1 - iter 730/738 - loss 0.49879954 - time (sec): 138.28 - samples/sec: 1190.28 - lr: 0.000049 - momentum: 0.000000
|
86 |
+
2023-09-04 13:41:22,063 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-09-04 13:41:22,064 EPOCH 1 done: loss 0.4968 - lr: 0.000049
|
88 |
+
2023-09-04 13:41:36,135 DEV : loss 0.14711907505989075 - f1-score (micro avg) 0.6766
|
89 |
+
2023-09-04 13:41:36,163 saving best model
|
90 |
+
2023-09-04 13:41:36,647 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-09-04 13:41:50,044 epoch 2 - iter 73/738 - loss 0.13120650 - time (sec): 13.40 - samples/sec: 1225.66 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-09-04 13:42:04,790 epoch 2 - iter 146/738 - loss 0.13558307 - time (sec): 28.14 - samples/sec: 1188.56 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-09-04 13:42:20,969 epoch 2 - iter 219/738 - loss 0.13389094 - time (sec): 44.32 - samples/sec: 1169.25 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-09-04 13:42:33,703 epoch 2 - iter 292/738 - loss 0.13115667 - time (sec): 57.05 - samples/sec: 1179.88 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-09-04 13:42:46,226 epoch 2 - iter 365/738 - loss 0.13074652 - time (sec): 69.58 - samples/sec: 1192.30 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-09-04 13:43:02,142 epoch 2 - iter 438/738 - loss 0.12915508 - time (sec): 85.49 - samples/sec: 1181.98 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-09-04 13:43:15,964 epoch 2 - iter 511/738 - loss 0.12777004 - time (sec): 99.32 - samples/sec: 1182.98 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-09-04 13:43:29,576 epoch 2 - iter 584/738 - loss 0.12429028 - time (sec): 112.93 - samples/sec: 1180.99 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-09-04 13:43:42,613 epoch 2 - iter 657/738 - loss 0.12318573 - time (sec): 125.96 - samples/sec: 1183.61 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-09-04 13:43:55,550 epoch 2 - iter 730/738 - loss 0.12152834 - time (sec): 138.90 - samples/sec: 1188.39 - lr: 0.000045 - momentum: 0.000000
|
101 |
+
2023-09-04 13:43:56,718 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-09-04 13:43:56,718 EPOCH 2 done: loss 0.1220 - lr: 0.000045
|
103 |
+
2023-09-04 13:44:14,588 DEV : loss 0.1313476413488388 - f1-score (micro avg) 0.7638
|
104 |
+
2023-09-04 13:44:14,617 saving best model
|
105 |
+
2023-09-04 13:44:15,947 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-09-04 13:44:28,284 epoch 3 - iter 73/738 - loss 0.05671349 - time (sec): 12.34 - samples/sec: 1230.07 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-09-04 13:44:41,649 epoch 3 - iter 146/738 - loss 0.06884812 - time (sec): 25.70 - samples/sec: 1238.47 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-09-04 13:44:55,404 epoch 3 - iter 219/738 - loss 0.07228850 - time (sec): 39.46 - samples/sec: 1222.20 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-09-04 13:45:11,524 epoch 3 - iter 292/738 - loss 0.06995531 - time (sec): 55.58 - samples/sec: 1213.70 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-09-04 13:45:26,135 epoch 3 - iter 365/738 - loss 0.07259794 - time (sec): 70.19 - samples/sec: 1194.49 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-09-04 13:45:38,808 epoch 3 - iter 438/738 - loss 0.07407768 - time (sec): 82.86 - samples/sec: 1200.50 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-09-04 13:45:53,814 epoch 3 - iter 511/738 - loss 0.07541008 - time (sec): 97.87 - samples/sec: 1193.07 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-09-04 13:46:06,906 epoch 3 - iter 584/738 - loss 0.07337803 - time (sec): 110.96 - samples/sec: 1195.41 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-09-04 13:46:20,624 epoch 3 - iter 657/738 - loss 0.07572131 - time (sec): 124.67 - samples/sec: 1194.47 - lr: 0.000040 - momentum: 0.000000
|
115 |
+
2023-09-04 13:46:34,123 epoch 3 - iter 730/738 - loss 0.07457011 - time (sec): 138.17 - samples/sec: 1191.28 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-09-04 13:46:35,620 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-09-04 13:46:35,620 EPOCH 3 done: loss 0.0744 - lr: 0.000039
|
118 |
+
2023-09-04 13:46:53,398 DEV : loss 0.13625338673591614 - f1-score (micro avg) 0.7869
|
119 |
+
2023-09-04 13:46:53,426 saving best model
|
120 |
+
2023-09-04 13:46:54,791 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-09-04 13:47:09,408 epoch 4 - iter 73/738 - loss 0.04743530 - time (sec): 14.61 - samples/sec: 1182.99 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-09-04 13:47:22,832 epoch 4 - iter 146/738 - loss 0.04786156 - time (sec): 28.04 - samples/sec: 1199.93 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-09-04 13:47:37,098 epoch 4 - iter 219/738 - loss 0.04448843 - time (sec): 42.31 - samples/sec: 1201.29 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-09-04 13:47:50,064 epoch 4 - iter 292/738 - loss 0.04481142 - time (sec): 55.27 - samples/sec: 1205.00 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-09-04 13:48:01,974 epoch 4 - iter 365/738 - loss 0.04460981 - time (sec): 67.18 - samples/sec: 1213.70 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-09-04 13:48:16,980 epoch 4 - iter 438/738 - loss 0.04525369 - time (sec): 82.19 - samples/sec: 1200.51 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-09-04 13:48:33,254 epoch 4 - iter 511/738 - loss 0.04819381 - time (sec): 98.46 - samples/sec: 1193.80 - lr: 0.000035 - momentum: 0.000000
|
128 |
+
2023-09-04 13:48:45,973 epoch 4 - iter 584/738 - loss 0.04935949 - time (sec): 111.18 - samples/sec: 1193.27 - lr: 0.000035 - momentum: 0.000000
|
129 |
+
2023-09-04 13:48:59,423 epoch 4 - iter 657/738 - loss 0.04824922 - time (sec): 124.63 - samples/sec: 1190.56 - lr: 0.000034 - momentum: 0.000000
|
130 |
+
2023-09-04 13:49:12,677 epoch 4 - iter 730/738 - loss 0.04996471 - time (sec): 137.88 - samples/sec: 1194.19 - lr: 0.000033 - momentum: 0.000000
|
131 |
+
2023-09-04 13:49:14,385 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-09-04 13:49:14,386 EPOCH 4 done: loss 0.0497 - lr: 0.000033
|
133 |
+
2023-09-04 13:49:32,177 DEV : loss 0.14975322782993317 - f1-score (micro avg) 0.8032
|
134 |
+
2023-09-04 13:49:32,205 saving best model
|
135 |
+
2023-09-04 13:49:33,547 ----------------------------------------------------------------------------------------------------
|
136 |
+
2023-09-04 13:49:48,290 epoch 5 - iter 73/738 - loss 0.04353647 - time (sec): 14.74 - samples/sec: 1227.44 - lr: 0.000033 - momentum: 0.000000
|
137 |
+
2023-09-04 13:50:01,528 epoch 5 - iter 146/738 - loss 0.03590759 - time (sec): 27.98 - samples/sec: 1215.28 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-09-04 13:50:16,811 epoch 5 - iter 219/738 - loss 0.03904111 - time (sec): 43.26 - samples/sec: 1187.85 - lr: 0.000032 - momentum: 0.000000
|
139 |
+
2023-09-04 13:50:29,758 epoch 5 - iter 292/738 - loss 0.03738277 - time (sec): 56.21 - samples/sec: 1187.90 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-09-04 13:50:42,348 epoch 5 - iter 365/738 - loss 0.03701919 - time (sec): 68.80 - samples/sec: 1195.49 - lr: 0.000031 - momentum: 0.000000
|
141 |
+
2023-09-04 13:50:55,788 epoch 5 - iter 438/738 - loss 0.03547966 - time (sec): 82.24 - samples/sec: 1188.77 - lr: 0.000030 - momentum: 0.000000
|
142 |
+
2023-09-04 13:51:10,184 epoch 5 - iter 511/738 - loss 0.03745342 - time (sec): 96.64 - samples/sec: 1182.32 - lr: 0.000030 - momentum: 0.000000
|
143 |
+
2023-09-04 13:51:23,925 epoch 5 - iter 584/738 - loss 0.03628508 - time (sec): 110.38 - samples/sec: 1177.95 - lr: 0.000029 - momentum: 0.000000
|
144 |
+
2023-09-04 13:51:36,527 epoch 5 - iter 657/738 - loss 0.03647575 - time (sec): 122.98 - samples/sec: 1183.22 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-09-04 13:51:52,693 epoch 5 - iter 730/738 - loss 0.03683964 - time (sec): 139.14 - samples/sec: 1183.49 - lr: 0.000028 - momentum: 0.000000
|
146 |
+
2023-09-04 13:51:54,084 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-09-04 13:51:54,084 EPOCH 5 done: loss 0.0370 - lr: 0.000028
|
148 |
+
2023-09-04 13:52:11,957 DEV : loss 0.19077804684638977 - f1-score (micro avg) 0.7933
|
149 |
+
2023-09-04 13:52:11,986 ----------------------------------------------------------------------------------------------------
|
150 |
+
2023-09-04 13:52:27,594 epoch 6 - iter 73/738 - loss 0.02834930 - time (sec): 15.61 - samples/sec: 1157.16 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-09-04 13:52:42,613 epoch 6 - iter 146/738 - loss 0.02133025 - time (sec): 30.63 - samples/sec: 1156.70 - lr: 0.000027 - momentum: 0.000000
|
152 |
+
2023-09-04 13:52:58,195 epoch 6 - iter 219/738 - loss 0.02769820 - time (sec): 46.21 - samples/sec: 1163.21 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-09-04 13:53:11,283 epoch 6 - iter 292/738 - loss 0.02666574 - time (sec): 59.30 - samples/sec: 1175.44 - lr: 0.000026 - momentum: 0.000000
|
154 |
+
2023-09-04 13:53:24,476 epoch 6 - iter 365/738 - loss 0.02534577 - time (sec): 72.49 - samples/sec: 1181.85 - lr: 0.000025 - momentum: 0.000000
|
155 |
+
2023-09-04 13:53:38,741 epoch 6 - iter 438/738 - loss 0.02624624 - time (sec): 86.75 - samples/sec: 1175.51 - lr: 0.000025 - momentum: 0.000000
|
156 |
+
2023-09-04 13:53:52,542 epoch 6 - iter 511/738 - loss 0.02536390 - time (sec): 100.56 - samples/sec: 1175.88 - lr: 0.000024 - momentum: 0.000000
|
157 |
+
2023-09-04 13:54:05,072 epoch 6 - iter 584/738 - loss 0.02502495 - time (sec): 113.09 - samples/sec: 1178.87 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-09-04 13:54:17,863 epoch 6 - iter 657/738 - loss 0.02611623 - time (sec): 125.88 - samples/sec: 1181.91 - lr: 0.000023 - momentum: 0.000000
|
159 |
+
2023-09-04 13:54:30,487 epoch 6 - iter 730/738 - loss 0.02596158 - time (sec): 138.50 - samples/sec: 1187.68 - lr: 0.000022 - momentum: 0.000000
|
160 |
+
2023-09-04 13:54:31,774 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-09-04 13:54:31,774 EPOCH 6 done: loss 0.0258 - lr: 0.000022
|
162 |
+
2023-09-04 13:54:49,616 DEV : loss 0.19920460879802704 - f1-score (micro avg) 0.8066
|
163 |
+
2023-09-04 13:54:49,656 saving best model
|
164 |
+
2023-09-04 13:54:51,032 ----------------------------------------------------------------------------------------------------
|
165 |
+
2023-09-04 13:55:02,883 epoch 7 - iter 73/738 - loss 0.00733074 - time (sec): 11.85 - samples/sec: 1297.71 - lr: 0.000022 - momentum: 0.000000
|
166 |
+
2023-09-04 13:55:18,108 epoch 7 - iter 146/738 - loss 0.01089914 - time (sec): 27.07 - samples/sec: 1219.12 - lr: 0.000021 - momentum: 0.000000
|
167 |
+
2023-09-04 13:55:29,575 epoch 7 - iter 219/738 - loss 0.01512421 - time (sec): 38.54 - samples/sec: 1240.06 - lr: 0.000021 - momentum: 0.000000
|
168 |
+
2023-09-04 13:55:45,104 epoch 7 - iter 292/738 - loss 0.01728633 - time (sec): 54.07 - samples/sec: 1205.68 - lr: 0.000020 - momentum: 0.000000
|
169 |
+
2023-09-04 13:55:57,489 epoch 7 - iter 365/738 - loss 0.01658937 - time (sec): 66.46 - samples/sec: 1214.60 - lr: 0.000020 - momentum: 0.000000
|
170 |
+
2023-09-04 13:56:09,788 epoch 7 - iter 438/738 - loss 0.01645276 - time (sec): 78.75 - samples/sec: 1217.15 - lr: 0.000019 - momentum: 0.000000
|
171 |
+
2023-09-04 13:56:27,505 epoch 7 - iter 511/738 - loss 0.01627472 - time (sec): 96.47 - samples/sec: 1198.84 - lr: 0.000018 - momentum: 0.000000
|
172 |
+
2023-09-04 13:56:42,146 epoch 7 - iter 584/738 - loss 0.01756879 - time (sec): 111.11 - samples/sec: 1195.67 - lr: 0.000018 - momentum: 0.000000
|
173 |
+
2023-09-04 13:56:56,291 epoch 7 - iter 657/738 - loss 0.01829967 - time (sec): 125.26 - samples/sec: 1192.94 - lr: 0.000017 - momentum: 0.000000
|
174 |
+
2023-09-04 13:57:09,157 epoch 7 - iter 730/738 - loss 0.01839564 - time (sec): 138.12 - samples/sec: 1194.13 - lr: 0.000017 - momentum: 0.000000
|
175 |
+
2023-09-04 13:57:10,334 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-09-04 13:57:10,334 EPOCH 7 done: loss 0.0184 - lr: 0.000017
|
177 |
+
2023-09-04 13:57:27,976 DEV : loss 0.20733937621116638 - f1-score (micro avg) 0.819
|
178 |
+
2023-09-04 13:57:28,004 saving best model
|
179 |
+
2023-09-04 13:57:29,349 ----------------------------------------------------------------------------------------------------
|
180 |
+
2023-09-04 13:57:42,968 epoch 8 - iter 73/738 - loss 0.00755884 - time (sec): 13.62 - samples/sec: 1232.40 - lr: 0.000016 - momentum: 0.000000
|
181 |
+
2023-09-04 13:57:57,518 epoch 8 - iter 146/738 - loss 0.01094801 - time (sec): 28.17 - samples/sec: 1215.25 - lr: 0.000016 - momentum: 0.000000
|
182 |
+
2023-09-04 13:58:12,532 epoch 8 - iter 219/738 - loss 0.01345009 - time (sec): 43.18 - samples/sec: 1212.92 - lr: 0.000015 - momentum: 0.000000
|
183 |
+
2023-09-04 13:58:27,267 epoch 8 - iter 292/738 - loss 0.01377918 - time (sec): 57.92 - samples/sec: 1193.53 - lr: 0.000015 - momentum: 0.000000
|
184 |
+
2023-09-04 13:58:41,071 epoch 8 - iter 365/738 - loss 0.01339208 - time (sec): 71.72 - samples/sec: 1191.09 - lr: 0.000014 - momentum: 0.000000
|
185 |
+
2023-09-04 13:58:55,299 epoch 8 - iter 438/738 - loss 0.01203734 - time (sec): 85.95 - samples/sec: 1191.47 - lr: 0.000013 - momentum: 0.000000
|
186 |
+
2023-09-04 13:59:07,948 epoch 8 - iter 511/738 - loss 0.01212847 - time (sec): 98.60 - samples/sec: 1198.06 - lr: 0.000013 - momentum: 0.000000
|
187 |
+
2023-09-04 13:59:20,292 epoch 8 - iter 584/738 - loss 0.01169538 - time (sec): 110.94 - samples/sec: 1195.53 - lr: 0.000012 - momentum: 0.000000
|
188 |
+
2023-09-04 13:59:32,502 epoch 8 - iter 657/738 - loss 0.01207296 - time (sec): 123.15 - samples/sec: 1201.39 - lr: 0.000012 - momentum: 0.000000
|
189 |
+
2023-09-04 13:59:46,166 epoch 8 - iter 730/738 - loss 0.01207065 - time (sec): 136.82 - samples/sec: 1201.05 - lr: 0.000011 - momentum: 0.000000
|
190 |
+
2023-09-04 13:59:48,061 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-09-04 13:59:48,062 EPOCH 8 done: loss 0.0121 - lr: 0.000011
|
192 |
+
2023-09-04 14:00:05,760 DEV : loss 0.22424915432929993 - f1-score (micro avg) 0.8211
|
193 |
+
2023-09-04 14:00:05,789 saving best model
|
194 |
+
2023-09-04 14:00:07,330 ----------------------------------------------------------------------------------------------------
|
195 |
+
2023-09-04 14:00:23,426 epoch 9 - iter 73/738 - loss 0.00950458 - time (sec): 16.09 - samples/sec: 1109.60 - lr: 0.000011 - momentum: 0.000000
|
196 |
+
2023-09-04 14:00:37,770 epoch 9 - iter 146/738 - loss 0.00586520 - time (sec): 30.44 - samples/sec: 1144.33 - lr: 0.000010 - momentum: 0.000000
|
197 |
+
2023-09-04 14:00:50,878 epoch 9 - iter 219/738 - loss 0.00633319 - time (sec): 43.55 - samples/sec: 1154.87 - lr: 0.000010 - momentum: 0.000000
|
198 |
+
2023-09-04 14:01:04,305 epoch 9 - iter 292/738 - loss 0.00635097 - time (sec): 56.97 - samples/sec: 1170.47 - lr: 0.000009 - momentum: 0.000000
|
199 |
+
2023-09-04 14:01:16,152 epoch 9 - iter 365/738 - loss 0.00833242 - time (sec): 68.82 - samples/sec: 1179.97 - lr: 0.000008 - momentum: 0.000000
|
200 |
+
2023-09-04 14:01:30,812 epoch 9 - iter 438/738 - loss 0.00844827 - time (sec): 83.48 - samples/sec: 1175.24 - lr: 0.000008 - momentum: 0.000000
|
201 |
+
2023-09-04 14:01:45,571 epoch 9 - iter 511/738 - loss 0.00906392 - time (sec): 98.24 - samples/sec: 1179.60 - lr: 0.000007 - momentum: 0.000000
|
202 |
+
2023-09-04 14:01:58,091 epoch 9 - iter 584/738 - loss 0.00900934 - time (sec): 110.76 - samples/sec: 1192.16 - lr: 0.000007 - momentum: 0.000000
|
203 |
+
2023-09-04 14:02:11,172 epoch 9 - iter 657/738 - loss 0.00922364 - time (sec): 123.84 - samples/sec: 1197.24 - lr: 0.000006 - momentum: 0.000000
|
204 |
+
2023-09-04 14:02:25,334 epoch 9 - iter 730/738 - loss 0.00885846 - time (sec): 138.00 - samples/sec: 1192.42 - lr: 0.000006 - momentum: 0.000000
|
205 |
+
2023-09-04 14:02:27,068 ----------------------------------------------------------------------------------------------------
|
206 |
+
2023-09-04 14:02:27,069 EPOCH 9 done: loss 0.0089 - lr: 0.000006
|
207 |
+
2023-09-04 14:02:44,747 DEV : loss 0.23065683245658875 - f1-score (micro avg) 0.8222
|
208 |
+
2023-09-04 14:02:44,776 saving best model
|
209 |
+
2023-09-04 14:02:46,116 ----------------------------------------------------------------------------------------------------
|
210 |
+
2023-09-04 14:03:01,144 epoch 10 - iter 73/738 - loss 0.00620805 - time (sec): 15.03 - samples/sec: 1192.24 - lr: 0.000005 - momentum: 0.000000
|
211 |
+
2023-09-04 14:03:13,444 epoch 10 - iter 146/738 - loss 0.00387357 - time (sec): 27.33 - samples/sec: 1204.29 - lr: 0.000004 - momentum: 0.000000
|
212 |
+
2023-09-04 14:03:28,017 epoch 10 - iter 219/738 - loss 0.00355136 - time (sec): 41.90 - samples/sec: 1191.72 - lr: 0.000004 - momentum: 0.000000
|
213 |
+
2023-09-04 14:03:41,576 epoch 10 - iter 292/738 - loss 0.00333989 - time (sec): 55.46 - samples/sec: 1177.08 - lr: 0.000003 - momentum: 0.000000
|
214 |
+
2023-09-04 14:03:56,887 epoch 10 - iter 365/738 - loss 0.00509374 - time (sec): 70.77 - samples/sec: 1186.52 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-09-04 14:04:10,482 epoch 10 - iter 438/738 - loss 0.00479139 - time (sec): 84.36 - samples/sec: 1186.07 - lr: 0.000002 - momentum: 0.000000
|
216 |
+
2023-09-04 14:04:24,233 epoch 10 - iter 511/738 - loss 0.00497244 - time (sec): 98.11 - samples/sec: 1188.17 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-09-04 14:04:37,794 epoch 10 - iter 584/738 - loss 0.00546920 - time (sec): 111.68 - samples/sec: 1193.67 - lr: 0.000001 - momentum: 0.000000
|
218 |
+
2023-09-04 14:04:50,405 epoch 10 - iter 657/738 - loss 0.00520653 - time (sec): 124.29 - samples/sec: 1199.38 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-09-04 14:05:05,287 epoch 10 - iter 730/738 - loss 0.00520739 - time (sec): 139.17 - samples/sec: 1186.35 - lr: 0.000000 - momentum: 0.000000
|
220 |
+
2023-09-04 14:05:06,400 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-09-04 14:05:06,400 EPOCH 10 done: loss 0.0052 - lr: 0.000000
|
222 |
+
2023-09-04 14:05:24,012 DEV : loss 0.231268510222435 - f1-score (micro avg) 0.8163
|
223 |
+
2023-09-04 14:05:24,519 ----------------------------------------------------------------------------------------------------
|
224 |
+
2023-09-04 14:05:24,520 Loading model from best epoch ...
|
225 |
+
2023-09-04 14:05:26,338 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
|
226 |
+
2023-09-04 14:05:41,002
|
227 |
+
Results:
|
228 |
+
- F-score (micro) 0.8057
|
229 |
+
- F-score (macro) 0.715
|
230 |
+
- Accuracy 0.6981
|
231 |
+
|
232 |
+
By class:
|
233 |
+
precision recall f1-score support
|
234 |
+
|
235 |
+
loc 0.8461 0.8904 0.8677 858
|
236 |
+
pers 0.7628 0.8026 0.7822 537
|
237 |
+
org 0.6441 0.5758 0.6080 132
|
238 |
+
time 0.5574 0.6296 0.5913 54
|
239 |
+
prod 0.7885 0.6721 0.7257 61
|
240 |
+
|
241 |
+
micro avg 0.7922 0.8197 0.8057 1642
|
242 |
+
macro avg 0.7198 0.7141 0.7150 1642
|
243 |
+
weighted avg 0.7910 0.8197 0.8045 1642
|
244 |
+
|
245 |
+
2023-09-04 14:05:41,002 ----------------------------------------------------------------------------------------------------
|