2023-09-04 11:16:25,341 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:16:25,342 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-11): 12 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=21, bias=True) (loss_function): CrossEntropyLoss() )" 2023-09-04 11:16:25,342 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:16:25,342 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences - NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator 2023-09-04 11:16:25,342 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:16:25,342 Train: 5901 sentences 2023-09-04 11:16:25,342 (train_with_dev=False, train_with_test=False) 2023-09-04 11:16:25,342 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:16:25,342 Training Params: 2023-09-04 11:16:25,342 - learning_rate: "3e-05" 2023-09-04 11:16:25,343 - mini_batch_size: "8" 2023-09-04 11:16:25,343 - max_epochs: "10" 2023-09-04 11:16:25,343 - shuffle: "True" 2023-09-04 11:16:25,343 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:16:25,343 Plugins: 2023-09-04 11:16:25,343 - LinearScheduler | warmup_fraction: '0.1' 2023-09-04 11:16:25,343 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:16:25,343 Final evaluation on model from best epoch (best-model.pt) 2023-09-04 11:16:25,343 - metric: "('micro avg', 'f1-score')" 2023-09-04 11:16:25,343 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:16:25,343 Computation: 2023-09-04 11:16:25,343 - compute on device: cuda:0 2023-09-04 11:16:25,343 - embedding storage: none 2023-09-04 11:16:25,343 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:16:25,343 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2" 2023-09-04 11:16:25,343 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:16:25,343 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:16:40,182 epoch 1 - iter 73/738 - loss 3.06648327 - time (sec): 14.84 - samples/sec: 1185.94 - lr: 0.000003 - momentum: 0.000000 2023-09-04 11:16:54,521 epoch 1 - iter 146/738 - loss 2.03380649 - time (sec): 29.18 - samples/sec: 1226.77 - lr: 0.000006 - momentum: 0.000000 2023-09-04 11:17:08,295 epoch 1 - iter 219/738 - loss 1.55275994 - time (sec): 42.95 - samples/sec: 1203.95 - lr: 0.000009 - momentum: 0.000000 2023-09-04 11:17:22,200 epoch 1 - iter 292/738 - loss 1.26157976 - time (sec): 56.86 - samples/sec: 1201.71 - lr: 0.000012 - momentum: 0.000000 2023-09-04 11:17:36,211 epoch 1 - iter 365/738 - loss 1.08469915 - time (sec): 70.87 - samples/sec: 1199.52 - lr: 0.000015 - momentum: 0.000000 2023-09-04 11:17:49,770 epoch 1 - iter 438/738 - loss 0.95415774 - time (sec): 84.43 - samples/sec: 1204.60 - lr: 0.000018 - momentum: 0.000000 2023-09-04 11:18:03,731 epoch 1 - iter 511/738 - loss 0.85774269 - time (sec): 98.39 - samples/sec: 1197.64 - lr: 0.000021 - momentum: 0.000000 2023-09-04 11:18:15,906 epoch 1 - iter 584/738 - loss 0.79054942 - time (sec): 110.56 - samples/sec: 1197.35 - lr: 0.000024 - momentum: 0.000000 2023-09-04 11:18:29,496 epoch 1 - iter 657/738 - loss 0.72897502 - time (sec): 124.15 - samples/sec: 1196.74 - lr: 0.000027 - momentum: 0.000000 2023-09-04 11:18:42,826 epoch 1 - iter 730/738 - loss 0.67545291 - time (sec): 137.48 - samples/sec: 1199.69 - lr: 0.000030 - momentum: 0.000000 2023-09-04 11:18:44,111 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:18:44,111 EPOCH 1 done: loss 0.6710 - lr: 0.000030 2023-09-04 11:18:57,888 DEV : loss 0.1332985907793045 - f1-score (micro avg) 0.711 2023-09-04 11:18:57,916 saving best model 2023-09-04 11:18:58,390 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:19:09,963 epoch 2 - iter 73/738 - loss 0.14414587 - time (sec): 11.57 - samples/sec: 1306.62 - lr: 0.000030 - momentum: 0.000000 2023-09-04 11:19:23,202 epoch 2 - iter 146/738 - loss 0.14416364 - time (sec): 24.81 - samples/sec: 1262.22 - lr: 0.000029 - momentum: 0.000000 2023-09-04 11:19:36,336 epoch 2 - iter 219/738 - loss 0.14447359 - time (sec): 37.94 - samples/sec: 1250.81 - lr: 0.000029 - momentum: 0.000000 2023-09-04 11:19:49,994 epoch 2 - iter 292/738 - loss 0.13943446 - time (sec): 51.60 - samples/sec: 1223.27 - lr: 0.000029 - momentum: 0.000000 2023-09-04 11:20:02,942 epoch 2 - iter 365/738 - loss 0.14063830 - time (sec): 64.55 - samples/sec: 1217.88 - lr: 0.000028 - momentum: 0.000000 2023-09-04 11:20:17,121 epoch 2 - iter 438/738 - loss 0.13642158 - time (sec): 78.73 - samples/sec: 1212.44 - lr: 0.000028 - momentum: 0.000000 2023-09-04 11:20:32,838 epoch 2 - iter 511/738 - loss 0.13356226 - time (sec): 94.45 - samples/sec: 1205.26 - lr: 0.000028 - momentum: 0.000000 2023-09-04 11:20:46,437 epoch 2 - iter 584/738 - loss 0.12802162 - time (sec): 108.05 - samples/sec: 1204.42 - lr: 0.000027 - momentum: 0.000000 2023-09-04 11:21:00,585 epoch 2 - iter 657/738 - loss 0.12895343 - time (sec): 122.19 - samples/sec: 1205.41 - lr: 0.000027 - momentum: 0.000000 2023-09-04 11:21:15,845 epoch 2 - iter 730/738 - loss 0.12767766 - time (sec): 137.45 - samples/sec: 1198.38 - lr: 0.000027 - momentum: 0.000000 2023-09-04 11:21:17,240 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:21:17,241 EPOCH 2 done: loss 0.1275 - lr: 0.000027 2023-09-04 11:21:35,278 DEV : loss 0.10566549748182297 - f1-score (micro avg) 0.7649 2023-09-04 11:21:35,307 saving best model 2023-09-04 11:21:37,107 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:21:50,327 epoch 3 - iter 73/738 - loss 0.06542645 - time (sec): 13.22 - samples/sec: 1167.53 - lr: 0.000026 - momentum: 0.000000 2023-09-04 11:22:03,772 epoch 3 - iter 146/738 - loss 0.07399537 - time (sec): 26.66 - samples/sec: 1202.78 - lr: 0.000026 - momentum: 0.000000 2023-09-04 11:22:17,525 epoch 3 - iter 219/738 - loss 0.07697646 - time (sec): 40.42 - samples/sec: 1196.14 - lr: 0.000026 - momentum: 0.000000 2023-09-04 11:22:29,378 epoch 3 - iter 292/738 - loss 0.07623798 - time (sec): 52.27 - samples/sec: 1210.85 - lr: 0.000025 - momentum: 0.000000 2023-09-04 11:22:45,122 epoch 3 - iter 365/738 - loss 0.07410337 - time (sec): 68.01 - samples/sec: 1190.47 - lr: 0.000025 - momentum: 0.000000 2023-09-04 11:23:00,135 epoch 3 - iter 438/738 - loss 0.07256508 - time (sec): 83.03 - samples/sec: 1197.06 - lr: 0.000025 - momentum: 0.000000 2023-09-04 11:23:13,662 epoch 3 - iter 511/738 - loss 0.07021164 - time (sec): 96.55 - samples/sec: 1195.05 - lr: 0.000024 - momentum: 0.000000 2023-09-04 11:23:27,456 epoch 3 - iter 584/738 - loss 0.07127441 - time (sec): 110.35 - samples/sec: 1198.87 - lr: 0.000024 - momentum: 0.000000 2023-09-04 11:23:41,892 epoch 3 - iter 657/738 - loss 0.07075954 - time (sec): 124.78 - samples/sec: 1197.07 - lr: 0.000024 - momentum: 0.000000 2023-09-04 11:23:54,828 epoch 3 - iter 730/738 - loss 0.07175536 - time (sec): 137.72 - samples/sec: 1196.62 - lr: 0.000023 - momentum: 0.000000 2023-09-04 11:23:56,063 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:23:56,063 EPOCH 3 done: loss 0.0717 - lr: 0.000023 2023-09-04 11:24:13,715 DEV : loss 0.10343769192695618 - f1-score (micro avg) 0.8241 2023-09-04 11:24:13,745 saving best model 2023-09-04 11:24:15,083 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:24:28,030 epoch 4 - iter 73/738 - loss 0.03831422 - time (sec): 12.94 - samples/sec: 1169.21 - lr: 0.000023 - momentum: 0.000000 2023-09-04 11:24:40,926 epoch 4 - iter 146/738 - loss 0.04482622 - time (sec): 25.84 - samples/sec: 1192.96 - lr: 0.000023 - momentum: 0.000000 2023-09-04 11:24:54,494 epoch 4 - iter 219/738 - loss 0.04752270 - time (sec): 39.41 - samples/sec: 1201.44 - lr: 0.000022 - momentum: 0.000000 2023-09-04 11:25:07,213 epoch 4 - iter 292/738 - loss 0.04665692 - time (sec): 52.13 - samples/sec: 1204.30 - lr: 0.000022 - momentum: 0.000000 2023-09-04 11:25:21,351 epoch 4 - iter 365/738 - loss 0.04665212 - time (sec): 66.27 - samples/sec: 1199.76 - lr: 0.000022 - momentum: 0.000000 2023-09-04 11:25:36,569 epoch 4 - iter 438/738 - loss 0.04711492 - time (sec): 81.48 - samples/sec: 1188.35 - lr: 0.000021 - momentum: 0.000000 2023-09-04 11:25:52,845 epoch 4 - iter 511/738 - loss 0.04622890 - time (sec): 97.76 - samples/sec: 1181.64 - lr: 0.000021 - momentum: 0.000000 2023-09-04 11:26:05,967 epoch 4 - iter 584/738 - loss 0.04565772 - time (sec): 110.88 - samples/sec: 1190.01 - lr: 0.000021 - momentum: 0.000000 2023-09-04 11:26:20,323 epoch 4 - iter 657/738 - loss 0.04774170 - time (sec): 125.24 - samples/sec: 1187.85 - lr: 0.000020 - momentum: 0.000000 2023-09-04 11:26:33,220 epoch 4 - iter 730/738 - loss 0.04754700 - time (sec): 138.14 - samples/sec: 1193.00 - lr: 0.000020 - momentum: 0.000000 2023-09-04 11:26:34,562 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:26:34,562 EPOCH 4 done: loss 0.0476 - lr: 0.000020 2023-09-04 11:26:52,250 DEV : loss 0.1501348614692688 - f1-score (micro avg) 0.8197 2023-09-04 11:26:52,279 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:27:05,999 epoch 5 - iter 73/738 - loss 0.04082482 - time (sec): 13.72 - samples/sec: 1199.10 - lr: 0.000020 - momentum: 0.000000 2023-09-04 11:27:20,024 epoch 5 - iter 146/738 - loss 0.03463403 - time (sec): 27.74 - samples/sec: 1190.19 - lr: 0.000019 - momentum: 0.000000 2023-09-04 11:27:33,408 epoch 5 - iter 219/738 - loss 0.03390961 - time (sec): 41.13 - samples/sec: 1214.22 - lr: 0.000019 - momentum: 0.000000 2023-09-04 11:27:46,798 epoch 5 - iter 292/738 - loss 0.02989132 - time (sec): 54.52 - samples/sec: 1211.07 - lr: 0.000019 - momentum: 0.000000 2023-09-04 11:28:00,272 epoch 5 - iter 365/738 - loss 0.03275215 - time (sec): 67.99 - samples/sec: 1207.28 - lr: 0.000018 - momentum: 0.000000 2023-09-04 11:28:13,250 epoch 5 - iter 438/738 - loss 0.03347779 - time (sec): 80.97 - samples/sec: 1204.45 - lr: 0.000018 - momentum: 0.000000 2023-09-04 11:28:27,107 epoch 5 - iter 511/738 - loss 0.03299783 - time (sec): 94.83 - samples/sec: 1199.22 - lr: 0.000018 - momentum: 0.000000 2023-09-04 11:28:42,630 epoch 5 - iter 584/738 - loss 0.03455838 - time (sec): 110.35 - samples/sec: 1192.27 - lr: 0.000017 - momentum: 0.000000 2023-09-04 11:28:58,406 epoch 5 - iter 657/738 - loss 0.03460168 - time (sec): 126.13 - samples/sec: 1187.75 - lr: 0.000017 - momentum: 0.000000 2023-09-04 11:29:10,450 epoch 5 - iter 730/738 - loss 0.03584338 - time (sec): 138.17 - samples/sec: 1191.65 - lr: 0.000017 - momentum: 0.000000 2023-09-04 11:29:12,019 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:29:12,019 EPOCH 5 done: loss 0.0358 - lr: 0.000017 2023-09-04 11:29:29,908 DEV : loss 0.16683056950569153 - f1-score (micro avg) 0.8109 2023-09-04 11:29:29,937 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:29:42,285 epoch 6 - iter 73/738 - loss 0.02593474 - time (sec): 12.35 - samples/sec: 1201.98 - lr: 0.000016 - momentum: 0.000000 2023-09-04 11:29:58,445 epoch 6 - iter 146/738 - loss 0.02883744 - time (sec): 28.51 - samples/sec: 1190.61 - lr: 0.000016 - momentum: 0.000000 2023-09-04 11:30:12,484 epoch 6 - iter 219/738 - loss 0.02750899 - time (sec): 42.55 - samples/sec: 1194.32 - lr: 0.000016 - momentum: 0.000000 2023-09-04 11:30:25,524 epoch 6 - iter 292/738 - loss 0.02938105 - time (sec): 55.59 - samples/sec: 1192.04 - lr: 0.000015 - momentum: 0.000000 2023-09-04 11:30:41,579 epoch 6 - iter 365/738 - loss 0.02857489 - time (sec): 71.64 - samples/sec: 1178.72 - lr: 0.000015 - momentum: 0.000000 2023-09-04 11:30:55,316 epoch 6 - iter 438/738 - loss 0.02981127 - time (sec): 85.38 - samples/sec: 1186.79 - lr: 0.000015 - momentum: 0.000000 2023-09-04 11:31:07,585 epoch 6 - iter 511/738 - loss 0.02817810 - time (sec): 97.65 - samples/sec: 1194.75 - lr: 0.000014 - momentum: 0.000000 2023-09-04 11:31:21,427 epoch 6 - iter 584/738 - loss 0.02650218 - time (sec): 111.49 - samples/sec: 1194.80 - lr: 0.000014 - momentum: 0.000000 2023-09-04 11:31:34,788 epoch 6 - iter 657/738 - loss 0.02642219 - time (sec): 124.85 - samples/sec: 1192.33 - lr: 0.000014 - momentum: 0.000000 2023-09-04 11:31:48,464 epoch 6 - iter 730/738 - loss 0.02616732 - time (sec): 138.53 - samples/sec: 1189.72 - lr: 0.000013 - momentum: 0.000000 2023-09-04 11:31:49,692 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:31:49,693 EPOCH 6 done: loss 0.0262 - lr: 0.000013 2023-09-04 11:32:07,584 DEV : loss 0.18466810882091522 - f1-score (micro avg) 0.8091 2023-09-04 11:32:07,614 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:32:23,652 epoch 7 - iter 73/738 - loss 0.01307957 - time (sec): 16.04 - samples/sec: 1061.53 - lr: 0.000013 - momentum: 0.000000 2023-09-04 11:32:35,332 epoch 7 - iter 146/738 - loss 0.01247271 - time (sec): 27.72 - samples/sec: 1148.57 - lr: 0.000013 - momentum: 0.000000 2023-09-04 11:32:51,009 epoch 7 - iter 219/738 - loss 0.01585589 - time (sec): 43.39 - samples/sec: 1160.31 - lr: 0.000012 - momentum: 0.000000 2023-09-04 11:33:06,749 epoch 7 - iter 292/738 - loss 0.01732056 - time (sec): 59.13 - samples/sec: 1164.59 - lr: 0.000012 - momentum: 0.000000 2023-09-04 11:33:18,946 epoch 7 - iter 365/738 - loss 0.01721112 - time (sec): 71.33 - samples/sec: 1173.19 - lr: 0.000012 - momentum: 0.000000 2023-09-04 11:33:31,567 epoch 7 - iter 438/738 - loss 0.01753197 - time (sec): 83.95 - samples/sec: 1179.95 - lr: 0.000011 - momentum: 0.000000 2023-09-04 11:33:44,306 epoch 7 - iter 511/738 - loss 0.01824019 - time (sec): 96.69 - samples/sec: 1189.86 - lr: 0.000011 - momentum: 0.000000 2023-09-04 11:33:57,143 epoch 7 - iter 584/738 - loss 0.01854363 - time (sec): 109.53 - samples/sec: 1191.38 - lr: 0.000011 - momentum: 0.000000 2023-09-04 11:34:11,077 epoch 7 - iter 657/738 - loss 0.01811224 - time (sec): 123.46 - samples/sec: 1186.22 - lr: 0.000010 - momentum: 0.000000 2023-09-04 11:34:26,868 epoch 7 - iter 730/738 - loss 0.01862229 - time (sec): 139.25 - samples/sec: 1183.77 - lr: 0.000010 - momentum: 0.000000 2023-09-04 11:34:28,070 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:34:28,070 EPOCH 7 done: loss 0.0186 - lr: 0.000010 2023-09-04 11:34:45,827 DEV : loss 0.18642598390579224 - f1-score (micro avg) 0.8208 2023-09-04 11:34:45,857 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:34:59,191 epoch 8 - iter 73/738 - loss 0.01522610 - time (sec): 13.33 - samples/sec: 1251.51 - lr: 0.000010 - momentum: 0.000000 2023-09-04 11:35:14,095 epoch 8 - iter 146/738 - loss 0.01519085 - time (sec): 28.24 - samples/sec: 1191.42 - lr: 0.000009 - momentum: 0.000000 2023-09-04 11:35:30,259 epoch 8 - iter 219/738 - loss 0.01828244 - time (sec): 44.40 - samples/sec: 1189.71 - lr: 0.000009 - momentum: 0.000000 2023-09-04 11:35:43,080 epoch 8 - iter 292/738 - loss 0.01832505 - time (sec): 57.22 - samples/sec: 1182.77 - lr: 0.000009 - momentum: 0.000000 2023-09-04 11:35:55,402 epoch 8 - iter 365/738 - loss 0.01661591 - time (sec): 69.54 - samples/sec: 1184.72 - lr: 0.000008 - momentum: 0.000000 2023-09-04 11:36:08,970 epoch 8 - iter 438/738 - loss 0.01667432 - time (sec): 83.11 - samples/sec: 1185.80 - lr: 0.000008 - momentum: 0.000000 2023-09-04 11:36:22,551 epoch 8 - iter 511/738 - loss 0.01570984 - time (sec): 96.69 - samples/sec: 1186.58 - lr: 0.000008 - momentum: 0.000000 2023-09-04 11:36:34,441 epoch 8 - iter 584/738 - loss 0.01509001 - time (sec): 108.58 - samples/sec: 1191.30 - lr: 0.000007 - momentum: 0.000000 2023-09-04 11:36:47,899 epoch 8 - iter 657/738 - loss 0.01454722 - time (sec): 122.04 - samples/sec: 1190.17 - lr: 0.000007 - momentum: 0.000000 2023-09-04 11:37:03,823 epoch 8 - iter 730/738 - loss 0.01433091 - time (sec): 137.97 - samples/sec: 1193.89 - lr: 0.000007 - momentum: 0.000000 2023-09-04 11:37:05,182 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:37:05,183 EPOCH 8 done: loss 0.0142 - lr: 0.000007 2023-09-04 11:37:22,950 DEV : loss 0.18818210065364838 - f1-score (micro avg) 0.8326 2023-09-04 11:37:22,979 saving best model 2023-09-04 11:37:24,373 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:37:37,826 epoch 9 - iter 73/738 - loss 0.00383387 - time (sec): 13.45 - samples/sec: 1152.61 - lr: 0.000006 - momentum: 0.000000 2023-09-04 11:37:52,233 epoch 9 - iter 146/738 - loss 0.00624195 - time (sec): 27.86 - samples/sec: 1160.13 - lr: 0.000006 - momentum: 0.000000 2023-09-04 11:38:04,879 epoch 9 - iter 219/738 - loss 0.00642501 - time (sec): 40.50 - samples/sec: 1192.56 - lr: 0.000006 - momentum: 0.000000 2023-09-04 11:38:18,603 epoch 9 - iter 292/738 - loss 0.00735751 - time (sec): 54.23 - samples/sec: 1195.23 - lr: 0.000005 - momentum: 0.000000 2023-09-04 11:38:33,870 epoch 9 - iter 365/738 - loss 0.00866516 - time (sec): 69.49 - samples/sec: 1191.19 - lr: 0.000005 - momentum: 0.000000 2023-09-04 11:38:47,019 epoch 9 - iter 438/738 - loss 0.00809663 - time (sec): 82.64 - samples/sec: 1189.03 - lr: 0.000005 - momentum: 0.000000 2023-09-04 11:39:01,987 epoch 9 - iter 511/738 - loss 0.00809937 - time (sec): 97.61 - samples/sec: 1180.04 - lr: 0.000004 - momentum: 0.000000 2023-09-04 11:39:14,903 epoch 9 - iter 584/738 - loss 0.00805249 - time (sec): 110.53 - samples/sec: 1178.10 - lr: 0.000004 - momentum: 0.000000 2023-09-04 11:39:27,998 epoch 9 - iter 657/738 - loss 0.00768456 - time (sec): 123.62 - samples/sec: 1186.33 - lr: 0.000004 - momentum: 0.000000 2023-09-04 11:39:43,357 epoch 9 - iter 730/738 - loss 0.00940618 - time (sec): 138.98 - samples/sec: 1184.47 - lr: 0.000003 - momentum: 0.000000 2023-09-04 11:39:45,117 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:39:45,118 EPOCH 9 done: loss 0.0097 - lr: 0.000003 2023-09-04 11:40:02,942 DEV : loss 0.19703754782676697 - f1-score (micro avg) 0.8283 2023-09-04 11:40:02,971 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:40:17,925 epoch 10 - iter 73/738 - loss 0.00771900 - time (sec): 14.95 - samples/sec: 1177.95 - lr: 0.000003 - momentum: 0.000000 2023-09-04 11:40:30,928 epoch 10 - iter 146/738 - loss 0.00713738 - time (sec): 27.95 - samples/sec: 1199.04 - lr: 0.000003 - momentum: 0.000000 2023-09-04 11:40:42,538 epoch 10 - iter 219/738 - loss 0.00787082 - time (sec): 39.56 - samples/sec: 1237.61 - lr: 0.000002 - momentum: 0.000000 2023-09-04 11:40:56,818 epoch 10 - iter 292/738 - loss 0.00762140 - time (sec): 53.84 - samples/sec: 1212.75 - lr: 0.000002 - momentum: 0.000000 2023-09-04 11:41:10,798 epoch 10 - iter 365/738 - loss 0.00753159 - time (sec): 67.83 - samples/sec: 1199.26 - lr: 0.000002 - momentum: 0.000000 2023-09-04 11:41:26,672 epoch 10 - iter 438/738 - loss 0.00786862 - time (sec): 83.70 - samples/sec: 1195.58 - lr: 0.000001 - momentum: 0.000000 2023-09-04 11:41:39,151 epoch 10 - iter 511/738 - loss 0.00769068 - time (sec): 96.18 - samples/sec: 1193.13 - lr: 0.000001 - momentum: 0.000000 2023-09-04 11:41:54,301 epoch 10 - iter 584/738 - loss 0.00768488 - time (sec): 111.33 - samples/sec: 1183.58 - lr: 0.000001 - momentum: 0.000000 2023-09-04 11:42:08,346 epoch 10 - iter 657/738 - loss 0.00813962 - time (sec): 125.37 - samples/sec: 1182.65 - lr: 0.000000 - momentum: 0.000000 2023-09-04 11:42:22,788 epoch 10 - iter 730/738 - loss 0.00764454 - time (sec): 139.82 - samples/sec: 1179.55 - lr: 0.000000 - momentum: 0.000000 2023-09-04 11:42:23,896 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:42:23,897 EPOCH 10 done: loss 0.0076 - lr: 0.000000 2023-09-04 11:42:41,733 DEV : loss 0.20217673480510712 - f1-score (micro avg) 0.8313 2023-09-04 11:42:42,259 ---------------------------------------------------------------------------------------------------- 2023-09-04 11:42:42,260 Loading model from best epoch ... 2023-09-04 11:42:44,189 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod 2023-09-04 11:42:58,808 Results: - F-score (micro) 0.7992 - F-score (macro) 0.6961 - Accuracy 0.6896 By class: precision recall f1-score support loc 0.8835 0.8753 0.8794 858 pers 0.7526 0.8045 0.7777 537 org 0.4934 0.5682 0.5282 132 time 0.5303 0.6481 0.5833 54 prod 0.7368 0.6885 0.7119 61 micro avg 0.7858 0.8130 0.7992 1642 macro avg 0.6793 0.7169 0.6961 1642 weighted avg 0.7923 0.8130 0.8019 1642 2023-09-04 11:42:58,808 ----------------------------------------------------------------------------------------------------