stefan-it commited on
Commit
d7db08a
1 Parent(s): cf801c5

utils: add notebook for generating dataset splits

Browse files
Files changed (1) hide show
  1. CreateDatasetSplits.ipynb +223 -0
CreateDatasetSplits.ipynb ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "027adfa9-5e64-474b-9a95-12e5c28c90a7",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import csv\n",
11
+ "import random\n",
12
+ "import requests"
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": 2,
18
+ "id": "e9fff288-d062-4c27-b9dc-db8579bbd3cf",
19
+ "metadata": {},
20
+ "outputs": [],
21
+ "source": [
22
+ "random.seed(83607)"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": 3,
28
+ "id": "f85d8d2c-eca9-481d-b848-4d43a072b5fb",
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "# We use this as v1 of our dataset\n",
33
+ "revision = \"0ecb2228e6c290dd22836024f32e559cc9b9711e\"\n",
34
+ "original_dataset_file = \"gold_standard_v1.csv\""
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": 4,
40
+ "id": "9c94cf8c-2185-4ca5-9191-02dd06c2fa0d",
41
+ "metadata": {},
42
+ "outputs": [],
43
+ "source": [
44
+ "# Download it - the simple way\n",
45
+ "url = f\"https://raw.githubusercontent.com/lucijakrusic/SentiAnno/{revision}/gold_standard.csv\"\n",
46
+ "r = requests.get(url, allow_redirects=True)\n",
47
+ "\n",
48
+ "if r:\n",
49
+ " with open(original_dataset_file, \"wb\") as f_out:\n",
50
+ " f_out.write(r.content)"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "code",
55
+ "execution_count": 5,
56
+ "id": "1457fbb4-aeab-4c2e-a283-bcc12406ef3e",
57
+ "metadata": {},
58
+ "outputs": [],
59
+ "source": [
60
+ "# E.g.\n",
61
+ "# {\"negative\": [...], \"positive\": [...]\n",
62
+ "label_sentences_mapping = {}\n",
63
+ "\n",
64
+ "num_examples = 0\n",
65
+ "\n",
66
+ "with open(original_dataset_file, \"rt\") as csv_file:\n",
67
+ " csv_reader = csv.reader(csv_file, delimiter=',')\n",
68
+ "\n",
69
+ " # Skip header\n",
70
+ " next(csv_reader, None)\n",
71
+ "\n",
72
+ " for line in csv_reader:\n",
73
+ " assert len(line) == 5\n",
74
+ "\n",
75
+ " sentence = line[2]\n",
76
+ " label = line[-1]\n",
77
+ "\n",
78
+ " current_example = [label, sentence]\n",
79
+ " \n",
80
+ " if label in label_sentences_mapping:\n",
81
+ " label_sentences_mapping[label].append(current_example)\n",
82
+ " else:\n",
83
+ " label_sentences_mapping[label] = [current_example]\n",
84
+ "\n",
85
+ " num_examples += 1"
86
+ ]
87
+ },
88
+ {
89
+ "cell_type": "code",
90
+ "execution_count": 6,
91
+ "id": "be5eda4e-bc2b-4f24-a584-7d7b34987f73",
92
+ "metadata": {},
93
+ "outputs": [
94
+ {
95
+ "name": "stdout",
96
+ "output_type": "stream",
97
+ "text": [
98
+ "Label negative has 447 sentences\n",
99
+ "Label mixed has 56 sentences\n",
100
+ "Label positive has 81 sentences\n",
101
+ "Label neutral has 345 sentences\n"
102
+ ]
103
+ }
104
+ ],
105
+ "source": [
106
+ "for label, sentences in label_sentences_mapping.items():\n",
107
+ " print(\"Label\", label, \"has\", len(sentences), \"sentences\")"
108
+ ]
109
+ },
110
+ {
111
+ "cell_type": "code",
112
+ "execution_count": 7,
113
+ "id": "e218106a-8f23-41b0-96e5-b57a7a83fc5f",
114
+ "metadata": {},
115
+ "outputs": [],
116
+ "source": [
117
+ "# We create 80 / 10 / 10 splits, but for each label (to avoid over/under-representing labels\n",
118
+ "\n",
119
+ "train_examples = []\n",
120
+ "dev_examples = []\n",
121
+ "test_examples = []\n",
122
+ "\n",
123
+ "for _, sentences in label_sentences_mapping.items():\n",
124
+ " random.shuffle(sentences)\n",
125
+ "\n",
126
+ " split_1 = int(0.8 * len(sentences))\n",
127
+ " split_2 = int(0.9 * len(sentences))\n",
128
+ "\n",
129
+ " current_train_examples = sentences[:split_1]\n",
130
+ " current_dev_examples = sentences[split_1:split_2]\n",
131
+ " current_test_examples = sentences[split_2:]\n",
132
+ "\n",
133
+ " train_examples += current_train_examples\n",
134
+ " dev_examples += current_dev_examples\n",
135
+ " test_examples += current_test_examples"
136
+ ]
137
+ },
138
+ {
139
+ "cell_type": "code",
140
+ "execution_count": 8,
141
+ "id": "5e1fc73f-1b9b-41eb-946b-872a1308712d",
142
+ "metadata": {},
143
+ "outputs": [
144
+ {
145
+ "name": "stdout",
146
+ "output_type": "stream",
147
+ "text": [
148
+ "Number of training examples: 741\n",
149
+ "Number of development examples: 93\n",
150
+ "Number of test examples: 95\n"
151
+ ]
152
+ }
153
+ ],
154
+ "source": [
155
+ "print(\"Number of training examples:\", len(train_examples))\n",
156
+ "print(\"Number of development examples:\", len(dev_examples))\n",
157
+ "print(\"Number of test examples:\", len(test_examples))"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": 9,
163
+ "id": "5f359476-ecd5-4502-86ba-fee8bd8d3dcf",
164
+ "metadata": {},
165
+ "outputs": [],
166
+ "source": [
167
+ "assert num_examples == (len(train_examples) + len(dev_examples) + len(test_examples))"
168
+ ]
169
+ },
170
+ {
171
+ "cell_type": "code",
172
+ "execution_count": 14,
173
+ "id": "29e1f3c9-3c3b-4541-840d-3db304966762",
174
+ "metadata": {},
175
+ "outputs": [],
176
+ "source": [
177
+ "def write_examples(examples: str, split_name: str):\n",
178
+ " # Shuffle again for more fun ;)\n",
179
+ " random.shuffle(examples)\n",
180
+ " with open(f\"{split_name}.txt\", \"wt\") as f_out:\n",
181
+ " for example in examples:\n",
182
+ " label, sentence = example\n",
183
+ "\n",
184
+ " # We stick to Flair format for classification tasks, which is basically FastText inspired ;)\n",
185
+ " new_label = \"__label__\" + label\n",
186
+ " f_out.write(f\"{new_label} {sentence}\\n\")"
187
+ ]
188
+ },
189
+ {
190
+ "cell_type": "code",
191
+ "execution_count": 15,
192
+ "id": "502b3865-3efe-4730-9be8-ea675fd3feec",
193
+ "metadata": {},
194
+ "outputs": [],
195
+ "source": [
196
+ "write_examples(train_examples, \"train\")\n",
197
+ "write_examples(dev_examples, \"dev\")\n",
198
+ "write_examples(test_examples, \"test\")"
199
+ ]
200
+ }
201
+ ],
202
+ "metadata": {
203
+ "kernelspec": {
204
+ "display_name": "Python 3 (ipykernel)",
205
+ "language": "python",
206
+ "name": "python3"
207
+ },
208
+ "language_info": {
209
+ "codemirror_mode": {
210
+ "name": "ipython",
211
+ "version": 3
212
+ },
213
+ "file_extension": ".py",
214
+ "mimetype": "text/x-python",
215
+ "name": "python",
216
+ "nbconvert_exporter": "python",
217
+ "pygments_lexer": "ipython3",
218
+ "version": "3.12.3"
219
+ }
220
+ },
221
+ "nbformat": 4,
222
+ "nbformat_minor": 5
223
+ }