Unnamed: 0
int64 0
1.42k
| context
stringlengths 2.88k
70.8k
| document_id
int64 185
2.68k
| question
stringlengths 11
194
| answers
dict | id
int64 225
5.32k
|
---|---|---|---|---|---|
600 | Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review
https://doi.org/10.3390/jcm9030623
SHA: 9b0c87f808b1b66f2937d7a7acb524a756b6113b
Authors: Pang, Junxiong; Wang, Min Xian; Ang, Ian Yi Han; Tan, Sharon Hui Xuan; Lewis, Ruth Frances; Chen, Jacinta I. Pei; Gutierrez, Ramona A.; Gwee, Sylvia Xiao Wei; Chua, Pearleen Ee Yong; Yang, Qian; Ng, Xian Yi; Yap, Rowena K. S.; Tan, Hao Yi; Teo, Yik Ying; Tan, Chorh Chuan; Cook, Alex R.; Yap, Jason Chin-Huat; Hsu, Li Yang
Date: 2020
DOI: 10.3390/jcm9030623
License: cc-by
Abstract: Rapid diagnostics, vaccines and therapeutics are important interventions for the management of the 2019 novel coronavirus (2019-nCoV) outbreak. It is timely to systematically review the potential of these interventions, including those for Middle East respiratory syndrome-Coronavirus (MERS-CoV) and severe acute respiratory syndrome (SARS)-CoV, to guide policymakers globally on their prioritization of resources for research and development. A systematic search was carried out in three major electronic databases (PubMed, Embase and Cochrane Library) to identify published studies in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Supplementary strategies through Google Search and personal communications were used. A total of 27 studies fulfilled the criteria for review. Several laboratory protocols for confirmation of suspected 2019-nCoV cases using real-time reverse transcription polymerase chain reaction (RT-PCR) have been published. A commercial RT-PCR kit developed by the Beijing Genomic Institute is currently widely used in China and likely in Asia. However, serological assays as well as point-of-care testing kits have not been developed but are likely in the near future. Several vaccine candidates are in the pipeline. The likely earliest Phase 1 vaccine trial is a synthetic DNA-based candidate. A number of novel compounds as well as therapeutics licensed for other conditions appear to have in vitro efficacy against the 2019-nCoV. Some are being tested in clinical trials against MERS-CoV and SARS-CoV, while others have been listed for clinical trials against 2019-nCoV. However, there are currently no effective specific antivirals or drug combinations supported by high-level evidence.
Text: Since mid-December 2019 and as of early February 2020, the 2019 novel coronavirus (2019-nCoV) originating from Wuhan (Hubei Province, China) has infected over 25,000 laboratory-confirmed cases across 28 countries with about 500 deaths (a case-fatality rate of about 2%). More than 90% of the cases and deaths were in China [1] . Based on the initial reported surge of cases in Wuhan, the majority were males with a median age of 55 years and linked to the Huanan Seafood Wholesale Market [2] . Most of the reported cases had similar symptoms at the onset of illness such as fever, cough, and myalgia or fatigue. Most cases developed pneumonia and some severe and even fatal respiratory diseases such as acute respiratory distress syndrome [3] .
The 2019 novel coronavirus (2019-nCoV), a betacoronavirus, forms a clade within the subgenus sarbecovirus of the Orthocoronavirinae subfamily [4] . The severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are also betacoronaviruses that are zoonotic in origin and have been linked to potential fatal illness during the outbreaks in 2003 and 2012, respectively [5, 6] . Based on current evidence, pathogenicity for 2019-nCoV is about 3%, which is significantly lower than SARS-CoV (10%) and MERS-CoV (40%) [7] . However, 2019-nCoV has potentially higher transmissibility (R0: 1.4-5.5) than both SARS-CoV (R0: [2] [3] [4] [5] and MERS-CoV (R0: <1) [7] .
With the possible expansion of 2019-nCoV globally [8] and the declaration of the 2019-nCoV outbreak as a Public Health Emergency of International Concern by the World Health Organization, there is an urgent need for rapid diagnostics, vaccines and therapeutics to detect, prevent and contain 2019-nCoV promptly. There is however currently a lack of understanding of what is available in the early phase of 2019-nCoV outbreak. The systematic review describes and assesses the potential rapid diagnostics, vaccines and therapeutics for 2019-nCoV, based in part on the developments for MERS-CoV and SARS-CoV.
A systematic search was carried out in three major electronic databases (PubMed, Embase and Cochrane Library) to identify published studies examining the diagnosis, therapeutic drugs and vaccines for Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS) and the 2019 novel coronavirus (2019-nCoV), in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
There were two independent reviewers each focusing on SARS, MERS, and 2019-nCoV, respectively. A third independent reviewer was engaged to resolve any conflicting article of interest. We used the key words "SARS", "coronavirus", "MERS", "2019 Novel coronavirus", "Wuhan virus" to identify the diseases in the search strategy. The systematic searches for diagnosis, therapeutic drugs and vaccines were carried out independently and the key words "drug", "therapy", "vaccine", "diagnosis", "point of care testing" and "rapid diagnostic test" were used in conjunction with the disease key words for the respective searches.
Examples of search strings can be found in Table S1 . We searched for randomized controlled trials (RCTs) and validation trials (for diagnostics test) published in English, that measured (a) the sensitivity and/or specificity of a rapid diagnostic test or a point-of-care testing kit, (b) the impact of drug therapy or (c) vaccine efficacy against either of these diseases with no date restriction applied. For the 2019-nCoV, we searched for all in vitro, animal, or human studies published in English between 1 December 2019 and 6 February 2020, on the same outcomes of interest. In addition, we reviewed the references of retrieved articles in order to identify additional studies or reports not retrieved by the initial searches. Studies that examined the mechanisms of diagnostic tests, drug therapy or vaccine efficacy against SARS, MERS and 2019-nCoV were excluded. A Google search for 2019-nCoV diagnostics (as of 6 February 2020; Table S2 ) yielded five webpage links from government and international bodies with official information and guidelines (WHO, Europe CDC, US CDC, US FDA), three webpage links on diagnostic protocols and scientific commentaries, and five webpage links on market news and press releases. Six protocols for diagnostics using reverse transcriptase polymerase chain reaction (RT-PCR) from six countries were published on WHO's website [9] . Google search for 2019-nCoV vaccines yielded 19 relevant articles.
With the emergence of 2019-nCoV, real time RT-PCR remains the primary means for diagnosing the new virus strain among the many diagnostic platforms available ( [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] ; Table S3 ). Among the 16 diagnostics studies selected, one study discussed the use of RT-PCR in diagnosing patients with 2019-nCoV [11] ( Table 1 ). The period and type of specimen collected for RT-PCR play an important role in the diagnosis of 2019-nCoV. It was found that the respiratory specimens were positive for the virus while serum was negative in the early period. It has also suggested that in the early days of illness, patients have high levels of virus despite the mild symptoms.
Apart from the commonly used RT-PCR in diagnosing MERS-CoV, four studies identified various diagnostic methods such as reverse transcription loop-mediated isothermal amplification (RT-LAMP), RT-insulated isothermal PCR (RT-iiPCR) and a one-step rRT-PCR assay based on specific TaqMan probes. RT-LAMP has similar sensitivity as real time RT-PCR. It is also highly specific and is used to detect MERS-CoV. It is comparable to the usual diagnostic tests and is rapid, simple and convenient. Likewise, RT-iiPCR and a one-step rRT-PCR assay have also shown similar sensitivity and high specificity for MER-CoV. Lastly, one study focused on the validation of the six commercial real RT-PCR kits, with high accuracy. Although real time RT-PCR is a primary method for diagnosing MERS-CoV, high levels of PCR inhibition may hinder PCR sensitivity (Table 1) .
There are eleven studies that focus on SARS-CoV diagnostic testing (Table 1) . These papers described diagnostic methods to detect the virus with the majority of them using molecular testing for diagnosis. Comparison between the molecular test (i.e RT-PCR) and serological test (i.e., ELISA) showed that the molecular test has better sensitivity and specificity. Hence, enhancements to the current molecular test were conducted to improve the diagnosis. Studies looked at using nested PCR to include a pre-amplification step or incorporating N gene as an additional sensitive molecular marker to improve on the sensitivity (Table 1 ).
In addition, there are seven potential rapid diagnostic kits (as of 24 January 2020; Table 2 ) available on the market for 2019-nCoV. Six of these are only for research purposes. Only one kit from Beijing Genome Institute (BGI) is approved for use in the clinical setting for rapid diagnosis. Most of the kits are for RT-PCR. There were two kits (BGI, China and Veredus, Singapore) with the capability to detect multiple pathogens using sequencing and microarray technologies, respectively. The limit of detection of the enhanced realtime PCR method was 10 2 -fold higher than the standard real-time PCR assay and 10 7fold higher than conventional PCR methods In the clinical aspect, the enhanced realtime PCR method was able to detect 6 cases of SARS-CoV positive samples that were not confirmed by any other assay [25] • The real time PCR has a threshold sensitivity of 10 genome equivalents per reaction and it has a good reproducibility with the inter-assay coefficients of variation of 1.73 to 2.72%. • 13 specimens from 6 patients were positive with viral load range from 362 to 36,240,000 genome equivalents/mL. The real-time RT-PCR reaction was more sensitive than the nested PCR reaction, as the detection limit for the nested PCR reaction was about 10 3 genome equivalents in the standard cDNA control. [34] Real-time reverse-transcription PCR (rRT-PCR); RNA-dependent RNA polymerase (RdRp); open reading frame 1a (ORF1a); Loop-mediated isothermal amplification (LAMP); enzyme-linked immunosorbent assay (ELISA); immunofluorescent assay (IFA); immunochromatographic test (ICT); nasopharyngeal aspirate (NPA).
With the emergence of 2019-nCoV, there are about 15 potential vaccine candidates in the pipeline globally (Table 3 ), in which a wide range of technology (such as messenger RNA, DNA-based, nanoparticle, synthetic and modified virus-like particle) was applied. It will likely take about a year for most candidates to start phase 1 clinical trials except for those funded by Coalition for Epidemic Preparedness Innovations (CEPI). However, the kit developed by the BGI have passed emergency approval procedure of the National Medical Products Administration, and are currently used in clinical and surveillance centers of China [40] .
Of the total of 570 unique studies on 2019-nCoV, SARS CoV or MERS-CoV vaccines screened, only four were eventually included in the review. Most studies on SARS and MERS vaccines were excluded as they were performed in cell or animal models ( Figure 1 ). The four studies included in this review were Phase I clinical trials on SARS or MERS vaccines (Table 4 ) [44] [45] [46] [47] . There were no studies of any population type (cell, animal, human) on the 2019-nCoV at the point of screening. The published clinical trials were mostly done in United States except for one on the SARS vaccine done in China [44] . All vaccine candidates for SARS and MERS were reported to be safe, well-tolerated and able to trigger the relevant and appropriate immune responses in the participants. In addition, we highlight six ongoing Phase I clinical trials identified in the ClinicalTrials.gov register ( [48, 49] ); Table S4 ) [50] [51] [52] . These trials are all testing the safety and immunogenicity of their respective MERS-CoV vaccine candidates but were excluded as there are no results published yet. The trials are projected to complete in December 2020 (two studies in Russia [50, 51] ) and December 2021 (in Germany [52] ).
Existing literature search did not return any results on completed 2019-nCoV trials at the time of writing. Among 23 trials found from the systematic review (Table 5) , there are nine clinical trials registered under the clinical trials registry (ClinicalTrials.gov) for 2019-nCoV therapeutics [53] [54] [55] [56] [57] [58] [59] [60] [61] . Of which five studies on hydroxychloroquine, lopinavir plus ritonavir and arbidol, mesenchymal stem cells, traditional Chinese medicine and glucocorticoid therapy usage have commenced recruitment. The remaining four studies encompass investigation of antivirals, interferon atomization, darunavir and cobicistat, arbidol, and remdesivir usage for 2019-nCoV patients (Table 5) . Seroconversion measured by S1-ELISA occurred in 86% and 94% participants after 2 and 3 doses, respectively, and was maintained in 79% participants up to study end at week 60. Neutralising antibodies were detected in 50% participants at one or more time points during the study, but only 3% maintained neutralisation activity to end of study. T-cell responses were detected in 71% and 76% participants after 2 and 3 doses, respectively. There were no differences in immune responses between dose groups after 6 weeks and vaccine-induced humoral and cellular responses were respectively detected in 77% and 64% participants at week 60.
[47] Molecules developed by the university scientists inhibit two coronavirus enzymes and prevent its replication. The discovered drug targets are said to be more than 95% similar to enzyme targets found on the SARS virus. Researchers note that identified drugs may not be available to address the ongoing outbreak but they hope to make it accessible for future outbreaks.
[85] Besides the six completed randomized controlled trials (RCT) selected from the systematic review (Table 6) , there is only one ongoing randomized controlled trial targeted at SARS therapeutics [92] . The studies found from ClinicalTrials.gov have not been updated since 2013. While many prospective and retrospective cohort studies conducted during the epidemic centered on usage of ribavirin with lopinavir/ritonavir or ribavirin only, there has yet to be well-designed clinical trials investigating their usage. Three completed randomized controlled trials were conducted during the SARS epidemic-3 in China, 1 in Taiwan and 2 in Hong Kong [93] [94] [95] [96] [97] . The studies respectively investigated antibiotic usage involving 190 participants, combination of western and Chinese treatment vs. Chinese treatment in 123 participants, integrative Chinese and Western treatment in 49 patients, usage of a specific Chinese medicine in four participants and early use of corticosteroid in 16 participants. Another notable study was an open non-randomized study investigating ribavirin/lopinavir/ritonavir usage in 152 participants [98] . One randomized controlled trial investigating integrative western and Chinese treatment during the SARS epidemic was excluded as it was a Chinese article [94] .
There is only one ongoing randomized controlled trial targeted at MERS therapeutics [99] . It investigates the usage of Lopinavir/Ritonavir and Interferon Beta 1B. Likewise, many prospective and retrospective cohort studies conducted during the epidemic centered on usage of ribavirin with lopinavir/ritonavir/ribavirin, interferon, and convalescent plasma usage. To date, only one trial has been completed. One phase 1 clinical trial investigating the safety and tolerability of a fully human polyclonal IgG immunoglobulin (SAB-301) was found in available literature [46] . The trial conducted in the United States in 2017 demonstrated SAB-301 to be safe and well-tolerated at single doses. Another trial on MERS therapeutics was found on ClinicalTrials.gov-a phase 2/3 trial in the United States evaluating the safety, tolerability, pharmacokinetics (PK), and immunogenicity on coadministered MERS-CoV antibodies REGN3048 & REGN3051 [100].
Rapid diagnostics plays an important role in disease and outbreak management. The fast and accurate diagnosis of a specific viral infection enables prompt and accurate public health surveillance, prevention and control measures. Local transmission and clusters can be prevented or delayed by isolation of laboratory-confirmed cases and their close contacts quarantined and monitored at home. Rapid diagnostic also facilitates other specific public health interventions such as closure of high-risk facilities and areas associated with the confirmed cases for prompt infection control and environmental decontamination [11, 101] .
Laboratory diagnosis can be performed by: (a) detecting the genetic material of the virus, (b) detecting the antibodies that neutralize the viral particles of interest, (c) detecting the viral epitopes of interest with antibodies (serological testing), or (d) culture and isolation of viable virus particles.
The key limitations of genetic material detection are the lack of knowledge of the presence of viable virus, the potential cross-reactivity with non-specific genetic regions and the short timeframe for accurate detection during the acute infection phase. The key limitations of serological testing is the need to collect paired serum samples (in the acute and convalescent phases) from cases under investigation for confirmation to eliminate potential cross-reactivity from non-specific antibodies from past exposure and/or infection by other coronaviruses. The limitation of virus culture and isolation is the long duration and the highly specialized skills required of the technicians to process the samples. All patients recovered.
Significantly shorted time from the disease onset to the symptom improvement in treatment (5.10 ± 2.83 days) compared to control group (7.62 ± 2.27 days) (p < 0.05) No significant difference in blood routine improvement, pulmonary chest shadow in chest film improvement and corticosteroid usgae between the 2 groups. However, particularly in the respect of improving clinical symptoms, elevating quality of life, promoting immune function recovery, promoting absorption of pulmonary inflammation, reducing the dosage of cortisteroid and shortening the therapeutic course, treatment with integrative chinese and western medicine treatment had obvious superiority compared with using control treatment alone. Single infusions of SAB-301 up to 50 mg/kg appear to be safe and well-tolerated in healthy participants. [46] Where the biological samples are taken from also play a role in the sensitivity of these tests. For SARS-CoV and MERS-CoV, specimens collected from the lower respiratory tract such as sputum and tracheal aspirates have higher and more prolonged levels of viral RNA because of the tropism of the virus. MERS-CoV viral loads are also higher for severe cases and have longer viral shedding compared to mild cases. Although upper respiratory tract specimens such as nasopharyngeal or oropharyngeal swabs can be used, they have potentially lower viral loads and may have higher risk of false-negatives among the mild MERS and SARS cases [102, 103] , and likely among the 2019-nCoV cases.
The existing practices in detecting genetic material of coronaviruses such as SARS-CoV and MERS-CoV include (a) reverse transcription-polymerase chain reaction (RT-PCR), (b) real-time RT-PCR (rRT-PCR), (c) reverse transcription loop-mediated isothermal amplification (RT-LAMP) and (d) real-time RT-LAMP [104] . Nucleic amplification tests (NAAT) are usually preferred as in the case of MERS-CoV diagnosis as it has the highest sensitivity at the earliest time point in the acute phase of infection [102] . Chinese health authorities have recently posted the full genome of 2019-nCoV in the GenBank and in GISAID portal to facilitate in the detection of the virus [11] . Several laboratory assays have been developed to detect the novel coronavirus in Wuhan, as highlighted in WHO's interim guidance on nCoV laboratory testing of suspected cases. These include protocols from other countries such as Thailand, Japan and China [105] .
The first validated diagnostic test was designed in Germany. Corman et al. had initially designed a candidate diagnostic RT-PCR assay based on the SARS or SARS-related coronavirus as it was suggested that circulating virus was SARS-like. Upon the release of the sequence, assays were selected based on the match against 2019-nCoV upon inspection of the sequence alignment. Two assays were used for the RNA dependent RNA polymerase (RdRP) gene and E gene where E gene assay acts as the first-line screening tool and RdRp gene assay as the confirmatory testing. All assays were highly sensitive and specific in that they did not cross-react with other coronavirus and also human clinical samples that contained respiratory viruses [11] .
The Hong Kong University used two monoplex assays which were reactive with coronaviruses under the subgenus Sarbecovirus (consisting of 2019-nCoV, SARS-CoV and SARS-like coronavirus). Viral RNA extracted from SARS-CoV can be used as the positive control for the suggested protocol assuming that SARS has been eradicated. It is proposed that the N gene RT-PCR can be used as a screening assay while the Orf1b assay acts as a confirmatory test. However, this protocol has only been evaluated with a panel of controls with the only positive control SARS-CoV RNA. Synthetic oligonucleotide positive control or 2019-nCoV have yet to be tested [106] .
The US CDC shared the protocol on the real time RT-PCR assay for the detection of the 2019-nCoV with the primers and probes designed for the universal detection of SARS-like coronavirus and the specific detection of 2019-nCoV. However, the protocol has not been validated on other platforms or chemistries apart from the protocol described. There are some limitations for the assay. Analysts engaged have to be trained and familiar with the testing procedure and result interpretation. False negative results may occur due to insufficient organisms in the specimen resulting from improper collection, transportation or handling. Also, RNA viruses may show substantial genetic variability. This could result in mismatch between the primer and probes with the target sequence which can diminish the assay performance or result in false negative results [107] . Point-of-care test kit can potentially minimize these limitations, which should be highly prioritized for research and development in the next few months.
Serological testing such as ELISA, IIFT and neutralization tests are effective in determining the extent of infection, including estimating asymptomatic and attack rate. Compared to the detection of viral genome through molecular methods, serological testing detects antibodies and antigens. There would be a lag period as antibodies specifically targeting the virus would normally appear between 14 and 28 days after the illness onset [108] . Furthermore, studies suggest that low antibody titers in the second week or delayed antibody production could be associated with mortality with a high viral load. Hence, serological diagnoses are likely used when nucleic amplification tests (NAAT) are not available or accessible [102] .
Vaccines can prevent and protect against infection and disease occurrence when exposed to the specific pathogen of interest, especially in vulnerable populations who are more prone to severe outcomes. In the context of the current 2019-nCoV outbreak, vaccines will help control and reduce disease transmission by creating herd immunity in addition to protecting healthy individuals from infection. This decreases the effective R0 value of the disease. Nonetheless, there are social, clinical and economic hurdles for vaccine and vaccination programmes, including (a) the willingness of the public to undergo vaccination with a novel vaccine, (b) the side effects and severe adverse reactions of vaccination, (c) the potential difference and/or low efficacy of the vaccine in populations different from the clinical trials' populations and (d) the accessibility of the vaccines to a given population (including the cost and availability of the vaccine).
Vaccines against the 2019-nCoV are currently in development and none are in testing (at the time of writing). On 23 January 2020, the Coalition for Epidemic Preparedness Innovations (CEPI) announced that they will fund vaccine development programmes with Inovio, The University of Queensland and Moderna, Inc respectively, with the aim to test the experimental vaccines clinically in 16 weeks (By June 2020). The vaccine candidates will be developed by the DNA, recombinant and mRNA vaccine platforms from these organizations [109] .
Based on the most recent MERS-CoV outbreak, there are already a number of vaccine candidates being developed but most are still in the preclinical testing stage. The vaccines in development include viral vector-based vaccine, DNA vaccine, subunit vaccine, virus-like particles (VLPs)-based vaccine, inactivated whole-virus (IWV) vaccine and live attenuated vaccine. The latest findings for these vaccines arebased on the review by Yong et al. (2019) in August 2019 [110] . As of the date of reporting, there is only one published clinical study on the MERS-CoV vaccine by GeneOne Life Science & Inovio Pharmaceuticals [47] . There was one SARS vaccine trial conducted by the US National Institute of Allergy and Infectious Diseases. Both Phase I clinical trials reported positive results, but only one has announced plans to proceed to Phase 2 trial [111] .
Due to the close genetic relatedness of SARS-CoV (79%) with 2019-nCoV [112] , there may be potential cross-protective effect of using a safe SARS-CoV vaccine while awaiting the 2019-nCoV vaccine. However, this would require small scale phase-by-phase implementation and close monitoring of vaccinees before any large scale implementation.
Apart from the timely diagnosis of cases, the achievement of favorable clinical outcomes depends on the timely treatment administered. ACE2 has been reported to be the same cell entry receptor used by 2019-nCoV to infect humans as SARS-CoV [113] . Hence, clinical similarity between the two viruses is expected, particularly in severe cases. In addition, most of those who have died from MERS-CoV, SARS-CoV and 2019-nCoV were advance in age and had underlying health conditions such as hypertension, diabetes or cardiovascular disease that compromised their immune systems [114] . Coronaviruses have error-prone RNA-dependent RNA polymerases (RdRP), which result in frequent mutations and recombination events. This results in quasispecies diversity that is closely associated with adaptive evolution and the capacity to enhance viral-cell entry to cause disease over time in a specific population at-risk [115] . Since ACE2 is abundantly present in humans in the epithelia of the lung and small intestine, coronaviruses are likely to infect the upper respiratory and gastrointestinal tract and this may influence the type of therapeutics against 2019-nCoV, similarly to SAR-CoV.
However, in the years following two major coronavirus outbreaks SARS-CoV in 2003 and MERS-CoV in 2012, there remains no consensus on the optimal therapy for either disease [116, 117] . Well-designed clinical trials that provide the gold standard for assessing the therapeutic measures are scarce. No coronavirus protease inhibitors have successfully completed a preclinical development program despite large efforts exploring SARS-CoV inhibitors. The bulk of potential therapeutic strategies remain in the experimental phase, with only a handful crossing the in vitro hurdle. Stronger efforts are required in the research for treatment options for major coronaviruses given their pandemic potential. Effective treatment options are essential to maximize the restoration of affected populations to good health following infections. Clinical trials have commenced in China to identify effective treatments for 2019-nCoV based on the treatment evidence from SARS and MERS. There is currently no effective specific antiviral with high-level evidence; any specific antiviral therapy should be provided in the context of a clinical study/trial. Few treatments have shown real curative action against SARS and MERS and the literature generally describes isolated cases or small case series.
Many interferons from the three classes have been tested for their antiviral activities against SARS-CoV both in vitro and in animal models. Interferon β has consistently been shown to be the most active, followed by interferon α. The use of corticosteroids with interferon alfacon-1 (synthetic interferon α) appeared to have improved oxygenation and faster resolution of chest radiograph abnormalities in observational studies with untreated controls. Interferon has been used in multiple observational studies to treat SARS-CoV and MERS-CoV patients [116, 117] . Interferons, with or without ribavirin, and lopinavir/ritonavir are most likely to be beneficial and are being trialed in China for 2019-nCoV. This drug treatment appears to be the most advanced. Timing of treatment is likely an important factor in effectiveness. A combination of ribavirin and lopinavir/ritonavir was used as a post-exposure prophylaxis in health care workers and may have reduced the risk of infection. Ribavirin alone is unlikely to have substantial antiviral activities at clinically used dosages. Hence, ribavirin with or without corticosteroids and with lopinavir and ritonavir are among the combinations employed. This was the most common agent reported in the available literature. Its efficacy has been assessed in observational studies, retrospective case series, retrospective cohort study, a prospective observational study, a prospective cohort study and randomized controlled trial ranging from seven to 229 participants [117] . Lopinavir/ritonavir (Kaletra) was the earliest protease inhibitor combination introduced for the treatment of SARS-CoV. Its efficacy was documented in several studies, causing notably lower incidence of adverse outcomes than with ribavirin alone. Combined usage with ribavirin was also associated with lower incidence of acute respiratory distress syndrome, nosocomial infection and death, amongst other favorable outcomes. Recent in vitro studies have shown another HIV protease inhibitor, nelfinavir, to have antiviral capacity against SARS-CoV, although it has yet to show favorable outcomes in animal studies [118] . Remdesivir (Gilead Sciences, GS-5734) nucleoside analogue in vitro and in vivo data support GS-5734 development as a potential pan-coronavirus antiviral based on results against several coronaviruses (CoVs), including highly pathogenic CoVs and potentially emergent BatCoVs. The use of remdesivir may be a good candidate as an investigational treatment.
Improved mortality following receipt of convalescent plasma in various doses was consistently reported in several observational studies involving cases with severe acute respiratory infections (SARIs) of viral etiology. A significant reduction in the pooled odds of mortality following treatment of 0.25 compared to placebo or no therapy was observed [119] . Studies were however at moderate to high risk of bias given their small sample sizes, allocation of treatment based on the physician's discretion, and the availability of plasma. Factors like concomitant treatment may have also confounded the results. Associations between convalescent plasma and hospital length of stay, viral antibody levels, and viral load respectively were similarly inconsistent across available literature. Convalescent plasma, while promising, is likely not yet feasible, given the limited pool of potential donors and issues of scalability. Monoclonal antibody treatment is progressing. SARS-CoV enters host cells through the binding of their spike (S) protein to angiotensin converting enzyme 2 (ACE2) and CD209L [118] . Human monoclonal antibodies to the S protein have been shown to significantly reduce the severity of lung pathology in non-human primates following MERS-CoV infection [120] . Such neutralizing antibodies can be elicited by active or passive immunization using vaccines or convalescent plasma respectively. While such neutralizing antibodies can theoretically be harvested from individuals immunized with vaccines, there is uncertainty over the achievement of therapeutic levels of antibodies.
Other therapeutic agents have also been reported. A known antimalarial agent, chloroquine, elicits antiviral effects against multiple viruses including HIV type 1, hepatitis B and HCoV-229E. Chloroquine is also immunomodulatory, capable of suppressing the production and release of factors which mediate the inflammatory complications of viral diseases (tumor necrosis factor and interleukin 6) [121] . It is postulated that chloroquine works by altering ACE2 glycosylation and endosomal pH. Its anti-inflammatory properties may be beneficial for the treatment of SARS. Niclosamide as a known drug used in antihelminthic treatment. The efficacy of niclosamide as an inhibitor of virus replication was proven in several assays. In both immunoblot analysis and immunofluorescence assays, niclosamide treatment was observed to completely inhibit viral antigen synthesis. Reduction of virus yield in infected cells was dose dependent. Niclosamide likely does not interfere in the early stages of virus attachment and entry into cells, nor does it function as a protease inhibitor. Mechanisms of niclosamide activity warrant further investigation [122] . Glycyrrhizin also reportedly inhibits virus adsorption and penetration in the early steps of virus replication. Glycyrrhizin was a significantly potent inhibitor with a low selectivity index when tested against several pathogenic flaviviruses. While preliminary results suggest production of nitrous oxide (which inhibits virus replication) through induction of nitrous oxide synthase, the mechanism of Glycyrrhizin against SARS-CoV remains unclear. The compound also has relatively lower toxicity compared to protease inhibitors like ribavirin [123] . Inhibitory activity was also detected in baicalin [124] , extracted from another herb used in the treatment of SARS in China and Hong Kong. Findings on these compounds are limited to in vitro studies [121] [122] [123] [124] .
Due to the rapidly evolving situation of the 2019-nCoV, there will be potential limitations to the systematic review. The systematic review is likely to have publication bias as some developments have yet to be reported while for other developments there is no intention to report publicly (or in scientific platforms) due to confidentiality concerns. However, this may be limited to only a few developments for review as publicity does help in branding to some extent for the company and/or the funder. Furthermore, due to the rapid need to share the status of these developments, there may be reporting bias in some details provided by authors of the scientific articles or commentary articles in traditional media. Lastly, while it is not viable for any form of quality assessment and metaanalysis of the selected articles due to the limited data provided and the heterogeneous style of reporting by different articles, this paper has provided a comprehensive overview of the potential developments of these pharmaceutical interventions during the early phase of the outbreak. This systematic review would be useful for cross-check when the quality assessment and meta-analysis of these developments are performed as a follow-up study.
Rapid diagnostics, vaccines and therapeutics are key pharmaceutical interventions to limit transmission of respiratory infectious diseases. Many potential developments on these pharmaceutical interventions for 2019-nCoV are ongoing in the containment phase of this outbreak, potentially due to better pandemic preparedness than before. However, lessons from MERS-CoV and SARS-CoV have shown that the journeys for these developments can still be challenging moving ahead.
Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1 : Example of full search strategy in Pubmed, Table S2 : Google Search: 2019-nCoV diagnostics, Table S3 : Summary of diagnostic assays developed for 2019-nCoV, Table S4 | 2,486 | Where was the first validated diagnostic test designed? | {
"answer_start": [
20755
],
"text": [
" in Germany"
]
} | 3,671 |
601 | Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review
https://doi.org/10.3390/jcm9030623
SHA: 9b0c87f808b1b66f2937d7a7acb524a756b6113b
Authors: Pang, Junxiong; Wang, Min Xian; Ang, Ian Yi Han; Tan, Sharon Hui Xuan; Lewis, Ruth Frances; Chen, Jacinta I. Pei; Gutierrez, Ramona A.; Gwee, Sylvia Xiao Wei; Chua, Pearleen Ee Yong; Yang, Qian; Ng, Xian Yi; Yap, Rowena K. S.; Tan, Hao Yi; Teo, Yik Ying; Tan, Chorh Chuan; Cook, Alex R.; Yap, Jason Chin-Huat; Hsu, Li Yang
Date: 2020
DOI: 10.3390/jcm9030623
License: cc-by
Abstract: Rapid diagnostics, vaccines and therapeutics are important interventions for the management of the 2019 novel coronavirus (2019-nCoV) outbreak. It is timely to systematically review the potential of these interventions, including those for Middle East respiratory syndrome-Coronavirus (MERS-CoV) and severe acute respiratory syndrome (SARS)-CoV, to guide policymakers globally on their prioritization of resources for research and development. A systematic search was carried out in three major electronic databases (PubMed, Embase and Cochrane Library) to identify published studies in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Supplementary strategies through Google Search and personal communications were used. A total of 27 studies fulfilled the criteria for review. Several laboratory protocols for confirmation of suspected 2019-nCoV cases using real-time reverse transcription polymerase chain reaction (RT-PCR) have been published. A commercial RT-PCR kit developed by the Beijing Genomic Institute is currently widely used in China and likely in Asia. However, serological assays as well as point-of-care testing kits have not been developed but are likely in the near future. Several vaccine candidates are in the pipeline. The likely earliest Phase 1 vaccine trial is a synthetic DNA-based candidate. A number of novel compounds as well as therapeutics licensed for other conditions appear to have in vitro efficacy against the 2019-nCoV. Some are being tested in clinical trials against MERS-CoV and SARS-CoV, while others have been listed for clinical trials against 2019-nCoV. However, there are currently no effective specific antivirals or drug combinations supported by high-level evidence.
Text: Since mid-December 2019 and as of early February 2020, the 2019 novel coronavirus (2019-nCoV) originating from Wuhan (Hubei Province, China) has infected over 25,000 laboratory-confirmed cases across 28 countries with about 500 deaths (a case-fatality rate of about 2%). More than 90% of the cases and deaths were in China [1] . Based on the initial reported surge of cases in Wuhan, the majority were males with a median age of 55 years and linked to the Huanan Seafood Wholesale Market [2] . Most of the reported cases had similar symptoms at the onset of illness such as fever, cough, and myalgia or fatigue. Most cases developed pneumonia and some severe and even fatal respiratory diseases such as acute respiratory distress syndrome [3] .
The 2019 novel coronavirus (2019-nCoV), a betacoronavirus, forms a clade within the subgenus sarbecovirus of the Orthocoronavirinae subfamily [4] . The severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are also betacoronaviruses that are zoonotic in origin and have been linked to potential fatal illness during the outbreaks in 2003 and 2012, respectively [5, 6] . Based on current evidence, pathogenicity for 2019-nCoV is about 3%, which is significantly lower than SARS-CoV (10%) and MERS-CoV (40%) [7] . However, 2019-nCoV has potentially higher transmissibility (R0: 1.4-5.5) than both SARS-CoV (R0: [2] [3] [4] [5] and MERS-CoV (R0: <1) [7] .
With the possible expansion of 2019-nCoV globally [8] and the declaration of the 2019-nCoV outbreak as a Public Health Emergency of International Concern by the World Health Organization, there is an urgent need for rapid diagnostics, vaccines and therapeutics to detect, prevent and contain 2019-nCoV promptly. There is however currently a lack of understanding of what is available in the early phase of 2019-nCoV outbreak. The systematic review describes and assesses the potential rapid diagnostics, vaccines and therapeutics for 2019-nCoV, based in part on the developments for MERS-CoV and SARS-CoV.
A systematic search was carried out in three major electronic databases (PubMed, Embase and Cochrane Library) to identify published studies examining the diagnosis, therapeutic drugs and vaccines for Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS) and the 2019 novel coronavirus (2019-nCoV), in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
There were two independent reviewers each focusing on SARS, MERS, and 2019-nCoV, respectively. A third independent reviewer was engaged to resolve any conflicting article of interest. We used the key words "SARS", "coronavirus", "MERS", "2019 Novel coronavirus", "Wuhan virus" to identify the diseases in the search strategy. The systematic searches for diagnosis, therapeutic drugs and vaccines were carried out independently and the key words "drug", "therapy", "vaccine", "diagnosis", "point of care testing" and "rapid diagnostic test" were used in conjunction with the disease key words for the respective searches.
Examples of search strings can be found in Table S1 . We searched for randomized controlled trials (RCTs) and validation trials (for diagnostics test) published in English, that measured (a) the sensitivity and/or specificity of a rapid diagnostic test or a point-of-care testing kit, (b) the impact of drug therapy or (c) vaccine efficacy against either of these diseases with no date restriction applied. For the 2019-nCoV, we searched for all in vitro, animal, or human studies published in English between 1 December 2019 and 6 February 2020, on the same outcomes of interest. In addition, we reviewed the references of retrieved articles in order to identify additional studies or reports not retrieved by the initial searches. Studies that examined the mechanisms of diagnostic tests, drug therapy or vaccine efficacy against SARS, MERS and 2019-nCoV were excluded. A Google search for 2019-nCoV diagnostics (as of 6 February 2020; Table S2 ) yielded five webpage links from government and international bodies with official information and guidelines (WHO, Europe CDC, US CDC, US FDA), three webpage links on diagnostic protocols and scientific commentaries, and five webpage links on market news and press releases. Six protocols for diagnostics using reverse transcriptase polymerase chain reaction (RT-PCR) from six countries were published on WHO's website [9] . Google search for 2019-nCoV vaccines yielded 19 relevant articles.
With the emergence of 2019-nCoV, real time RT-PCR remains the primary means for diagnosing the new virus strain among the many diagnostic platforms available ( [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] ; Table S3 ). Among the 16 diagnostics studies selected, one study discussed the use of RT-PCR in diagnosing patients with 2019-nCoV [11] ( Table 1 ). The period and type of specimen collected for RT-PCR play an important role in the diagnosis of 2019-nCoV. It was found that the respiratory specimens were positive for the virus while serum was negative in the early period. It has also suggested that in the early days of illness, patients have high levels of virus despite the mild symptoms.
Apart from the commonly used RT-PCR in diagnosing MERS-CoV, four studies identified various diagnostic methods such as reverse transcription loop-mediated isothermal amplification (RT-LAMP), RT-insulated isothermal PCR (RT-iiPCR) and a one-step rRT-PCR assay based on specific TaqMan probes. RT-LAMP has similar sensitivity as real time RT-PCR. It is also highly specific and is used to detect MERS-CoV. It is comparable to the usual diagnostic tests and is rapid, simple and convenient. Likewise, RT-iiPCR and a one-step rRT-PCR assay have also shown similar sensitivity and high specificity for MER-CoV. Lastly, one study focused on the validation of the six commercial real RT-PCR kits, with high accuracy. Although real time RT-PCR is a primary method for diagnosing MERS-CoV, high levels of PCR inhibition may hinder PCR sensitivity (Table 1) .
There are eleven studies that focus on SARS-CoV diagnostic testing (Table 1) . These papers described diagnostic methods to detect the virus with the majority of them using molecular testing for diagnosis. Comparison between the molecular test (i.e RT-PCR) and serological test (i.e., ELISA) showed that the molecular test has better sensitivity and specificity. Hence, enhancements to the current molecular test were conducted to improve the diagnosis. Studies looked at using nested PCR to include a pre-amplification step or incorporating N gene as an additional sensitive molecular marker to improve on the sensitivity (Table 1 ).
In addition, there are seven potential rapid diagnostic kits (as of 24 January 2020; Table 2 ) available on the market for 2019-nCoV. Six of these are only for research purposes. Only one kit from Beijing Genome Institute (BGI) is approved for use in the clinical setting for rapid diagnosis. Most of the kits are for RT-PCR. There were two kits (BGI, China and Veredus, Singapore) with the capability to detect multiple pathogens using sequencing and microarray technologies, respectively. The limit of detection of the enhanced realtime PCR method was 10 2 -fold higher than the standard real-time PCR assay and 10 7fold higher than conventional PCR methods In the clinical aspect, the enhanced realtime PCR method was able to detect 6 cases of SARS-CoV positive samples that were not confirmed by any other assay [25] • The real time PCR has a threshold sensitivity of 10 genome equivalents per reaction and it has a good reproducibility with the inter-assay coefficients of variation of 1.73 to 2.72%. • 13 specimens from 6 patients were positive with viral load range from 362 to 36,240,000 genome equivalents/mL. The real-time RT-PCR reaction was more sensitive than the nested PCR reaction, as the detection limit for the nested PCR reaction was about 10 3 genome equivalents in the standard cDNA control. [34] Real-time reverse-transcription PCR (rRT-PCR); RNA-dependent RNA polymerase (RdRp); open reading frame 1a (ORF1a); Loop-mediated isothermal amplification (LAMP); enzyme-linked immunosorbent assay (ELISA); immunofluorescent assay (IFA); immunochromatographic test (ICT); nasopharyngeal aspirate (NPA).
With the emergence of 2019-nCoV, there are about 15 potential vaccine candidates in the pipeline globally (Table 3 ), in which a wide range of technology (such as messenger RNA, DNA-based, nanoparticle, synthetic and modified virus-like particle) was applied. It will likely take about a year for most candidates to start phase 1 clinical trials except for those funded by Coalition for Epidemic Preparedness Innovations (CEPI). However, the kit developed by the BGI have passed emergency approval procedure of the National Medical Products Administration, and are currently used in clinical and surveillance centers of China [40] .
Of the total of 570 unique studies on 2019-nCoV, SARS CoV or MERS-CoV vaccines screened, only four were eventually included in the review. Most studies on SARS and MERS vaccines were excluded as they were performed in cell or animal models ( Figure 1 ). The four studies included in this review were Phase I clinical trials on SARS or MERS vaccines (Table 4 ) [44] [45] [46] [47] . There were no studies of any population type (cell, animal, human) on the 2019-nCoV at the point of screening. The published clinical trials were mostly done in United States except for one on the SARS vaccine done in China [44] . All vaccine candidates for SARS and MERS were reported to be safe, well-tolerated and able to trigger the relevant and appropriate immune responses in the participants. In addition, we highlight six ongoing Phase I clinical trials identified in the ClinicalTrials.gov register ( [48, 49] ); Table S4 ) [50] [51] [52] . These trials are all testing the safety and immunogenicity of their respective MERS-CoV vaccine candidates but were excluded as there are no results published yet. The trials are projected to complete in December 2020 (two studies in Russia [50, 51] ) and December 2021 (in Germany [52] ).
Existing literature search did not return any results on completed 2019-nCoV trials at the time of writing. Among 23 trials found from the systematic review (Table 5) , there are nine clinical trials registered under the clinical trials registry (ClinicalTrials.gov) for 2019-nCoV therapeutics [53] [54] [55] [56] [57] [58] [59] [60] [61] . Of which five studies on hydroxychloroquine, lopinavir plus ritonavir and arbidol, mesenchymal stem cells, traditional Chinese medicine and glucocorticoid therapy usage have commenced recruitment. The remaining four studies encompass investigation of antivirals, interferon atomization, darunavir and cobicistat, arbidol, and remdesivir usage for 2019-nCoV patients (Table 5) . Seroconversion measured by S1-ELISA occurred in 86% and 94% participants after 2 and 3 doses, respectively, and was maintained in 79% participants up to study end at week 60. Neutralising antibodies were detected in 50% participants at one or more time points during the study, but only 3% maintained neutralisation activity to end of study. T-cell responses were detected in 71% and 76% participants after 2 and 3 doses, respectively. There were no differences in immune responses between dose groups after 6 weeks and vaccine-induced humoral and cellular responses were respectively detected in 77% and 64% participants at week 60.
[47] Molecules developed by the university scientists inhibit two coronavirus enzymes and prevent its replication. The discovered drug targets are said to be more than 95% similar to enzyme targets found on the SARS virus. Researchers note that identified drugs may not be available to address the ongoing outbreak but they hope to make it accessible for future outbreaks.
[85] Besides the six completed randomized controlled trials (RCT) selected from the systematic review (Table 6) , there is only one ongoing randomized controlled trial targeted at SARS therapeutics [92] . The studies found from ClinicalTrials.gov have not been updated since 2013. While many prospective and retrospective cohort studies conducted during the epidemic centered on usage of ribavirin with lopinavir/ritonavir or ribavirin only, there has yet to be well-designed clinical trials investigating their usage. Three completed randomized controlled trials were conducted during the SARS epidemic-3 in China, 1 in Taiwan and 2 in Hong Kong [93] [94] [95] [96] [97] . The studies respectively investigated antibiotic usage involving 190 participants, combination of western and Chinese treatment vs. Chinese treatment in 123 participants, integrative Chinese and Western treatment in 49 patients, usage of a specific Chinese medicine in four participants and early use of corticosteroid in 16 participants. Another notable study was an open non-randomized study investigating ribavirin/lopinavir/ritonavir usage in 152 participants [98] . One randomized controlled trial investigating integrative western and Chinese treatment during the SARS epidemic was excluded as it was a Chinese article [94] .
There is only one ongoing randomized controlled trial targeted at MERS therapeutics [99] . It investigates the usage of Lopinavir/Ritonavir and Interferon Beta 1B. Likewise, many prospective and retrospective cohort studies conducted during the epidemic centered on usage of ribavirin with lopinavir/ritonavir/ribavirin, interferon, and convalescent plasma usage. To date, only one trial has been completed. One phase 1 clinical trial investigating the safety and tolerability of a fully human polyclonal IgG immunoglobulin (SAB-301) was found in available literature [46] . The trial conducted in the United States in 2017 demonstrated SAB-301 to be safe and well-tolerated at single doses. Another trial on MERS therapeutics was found on ClinicalTrials.gov-a phase 2/3 trial in the United States evaluating the safety, tolerability, pharmacokinetics (PK), and immunogenicity on coadministered MERS-CoV antibodies REGN3048 & REGN3051 [100].
Rapid diagnostics plays an important role in disease and outbreak management. The fast and accurate diagnosis of a specific viral infection enables prompt and accurate public health surveillance, prevention and control measures. Local transmission and clusters can be prevented or delayed by isolation of laboratory-confirmed cases and their close contacts quarantined and monitored at home. Rapid diagnostic also facilitates other specific public health interventions such as closure of high-risk facilities and areas associated with the confirmed cases for prompt infection control and environmental decontamination [11, 101] .
Laboratory diagnosis can be performed by: (a) detecting the genetic material of the virus, (b) detecting the antibodies that neutralize the viral particles of interest, (c) detecting the viral epitopes of interest with antibodies (serological testing), or (d) culture and isolation of viable virus particles.
The key limitations of genetic material detection are the lack of knowledge of the presence of viable virus, the potential cross-reactivity with non-specific genetic regions and the short timeframe for accurate detection during the acute infection phase. The key limitations of serological testing is the need to collect paired serum samples (in the acute and convalescent phases) from cases under investigation for confirmation to eliminate potential cross-reactivity from non-specific antibodies from past exposure and/or infection by other coronaviruses. The limitation of virus culture and isolation is the long duration and the highly specialized skills required of the technicians to process the samples. All patients recovered.
Significantly shorted time from the disease onset to the symptom improvement in treatment (5.10 ± 2.83 days) compared to control group (7.62 ± 2.27 days) (p < 0.05) No significant difference in blood routine improvement, pulmonary chest shadow in chest film improvement and corticosteroid usgae between the 2 groups. However, particularly in the respect of improving clinical symptoms, elevating quality of life, promoting immune function recovery, promoting absorption of pulmonary inflammation, reducing the dosage of cortisteroid and shortening the therapeutic course, treatment with integrative chinese and western medicine treatment had obvious superiority compared with using control treatment alone. Single infusions of SAB-301 up to 50 mg/kg appear to be safe and well-tolerated in healthy participants. [46] Where the biological samples are taken from also play a role in the sensitivity of these tests. For SARS-CoV and MERS-CoV, specimens collected from the lower respiratory tract such as sputum and tracheal aspirates have higher and more prolonged levels of viral RNA because of the tropism of the virus. MERS-CoV viral loads are also higher for severe cases and have longer viral shedding compared to mild cases. Although upper respiratory tract specimens such as nasopharyngeal or oropharyngeal swabs can be used, they have potentially lower viral loads and may have higher risk of false-negatives among the mild MERS and SARS cases [102, 103] , and likely among the 2019-nCoV cases.
The existing practices in detecting genetic material of coronaviruses such as SARS-CoV and MERS-CoV include (a) reverse transcription-polymerase chain reaction (RT-PCR), (b) real-time RT-PCR (rRT-PCR), (c) reverse transcription loop-mediated isothermal amplification (RT-LAMP) and (d) real-time RT-LAMP [104] . Nucleic amplification tests (NAAT) are usually preferred as in the case of MERS-CoV diagnosis as it has the highest sensitivity at the earliest time point in the acute phase of infection [102] . Chinese health authorities have recently posted the full genome of 2019-nCoV in the GenBank and in GISAID portal to facilitate in the detection of the virus [11] . Several laboratory assays have been developed to detect the novel coronavirus in Wuhan, as highlighted in WHO's interim guidance on nCoV laboratory testing of suspected cases. These include protocols from other countries such as Thailand, Japan and China [105] .
The first validated diagnostic test was designed in Germany. Corman et al. had initially designed a candidate diagnostic RT-PCR assay based on the SARS or SARS-related coronavirus as it was suggested that circulating virus was SARS-like. Upon the release of the sequence, assays were selected based on the match against 2019-nCoV upon inspection of the sequence alignment. Two assays were used for the RNA dependent RNA polymerase (RdRP) gene and E gene where E gene assay acts as the first-line screening tool and RdRp gene assay as the confirmatory testing. All assays were highly sensitive and specific in that they did not cross-react with other coronavirus and also human clinical samples that contained respiratory viruses [11] .
The Hong Kong University used two monoplex assays which were reactive with coronaviruses under the subgenus Sarbecovirus (consisting of 2019-nCoV, SARS-CoV and SARS-like coronavirus). Viral RNA extracted from SARS-CoV can be used as the positive control for the suggested protocol assuming that SARS has been eradicated. It is proposed that the N gene RT-PCR can be used as a screening assay while the Orf1b assay acts as a confirmatory test. However, this protocol has only been evaluated with a panel of controls with the only positive control SARS-CoV RNA. Synthetic oligonucleotide positive control or 2019-nCoV have yet to be tested [106] .
The US CDC shared the protocol on the real time RT-PCR assay for the detection of the 2019-nCoV with the primers and probes designed for the universal detection of SARS-like coronavirus and the specific detection of 2019-nCoV. However, the protocol has not been validated on other platforms or chemistries apart from the protocol described. There are some limitations for the assay. Analysts engaged have to be trained and familiar with the testing procedure and result interpretation. False negative results may occur due to insufficient organisms in the specimen resulting from improper collection, transportation or handling. Also, RNA viruses may show substantial genetic variability. This could result in mismatch between the primer and probes with the target sequence which can diminish the assay performance or result in false negative results [107] . Point-of-care test kit can potentially minimize these limitations, which should be highly prioritized for research and development in the next few months.
Serological testing such as ELISA, IIFT and neutralization tests are effective in determining the extent of infection, including estimating asymptomatic and attack rate. Compared to the detection of viral genome through molecular methods, serological testing detects antibodies and antigens. There would be a lag period as antibodies specifically targeting the virus would normally appear between 14 and 28 days after the illness onset [108] . Furthermore, studies suggest that low antibody titers in the second week or delayed antibody production could be associated with mortality with a high viral load. Hence, serological diagnoses are likely used when nucleic amplification tests (NAAT) are not available or accessible [102] .
Vaccines can prevent and protect against infection and disease occurrence when exposed to the specific pathogen of interest, especially in vulnerable populations who are more prone to severe outcomes. In the context of the current 2019-nCoV outbreak, vaccines will help control and reduce disease transmission by creating herd immunity in addition to protecting healthy individuals from infection. This decreases the effective R0 value of the disease. Nonetheless, there are social, clinical and economic hurdles for vaccine and vaccination programmes, including (a) the willingness of the public to undergo vaccination with a novel vaccine, (b) the side effects and severe adverse reactions of vaccination, (c) the potential difference and/or low efficacy of the vaccine in populations different from the clinical trials' populations and (d) the accessibility of the vaccines to a given population (including the cost and availability of the vaccine).
Vaccines against the 2019-nCoV are currently in development and none are in testing (at the time of writing). On 23 January 2020, the Coalition for Epidemic Preparedness Innovations (CEPI) announced that they will fund vaccine development programmes with Inovio, The University of Queensland and Moderna, Inc respectively, with the aim to test the experimental vaccines clinically in 16 weeks (By June 2020). The vaccine candidates will be developed by the DNA, recombinant and mRNA vaccine platforms from these organizations [109] .
Based on the most recent MERS-CoV outbreak, there are already a number of vaccine candidates being developed but most are still in the preclinical testing stage. The vaccines in development include viral vector-based vaccine, DNA vaccine, subunit vaccine, virus-like particles (VLPs)-based vaccine, inactivated whole-virus (IWV) vaccine and live attenuated vaccine. The latest findings for these vaccines arebased on the review by Yong et al. (2019) in August 2019 [110] . As of the date of reporting, there is only one published clinical study on the MERS-CoV vaccine by GeneOne Life Science & Inovio Pharmaceuticals [47] . There was one SARS vaccine trial conducted by the US National Institute of Allergy and Infectious Diseases. Both Phase I clinical trials reported positive results, but only one has announced plans to proceed to Phase 2 trial [111] .
Due to the close genetic relatedness of SARS-CoV (79%) with 2019-nCoV [112] , there may be potential cross-protective effect of using a safe SARS-CoV vaccine while awaiting the 2019-nCoV vaccine. However, this would require small scale phase-by-phase implementation and close monitoring of vaccinees before any large scale implementation.
Apart from the timely diagnosis of cases, the achievement of favorable clinical outcomes depends on the timely treatment administered. ACE2 has been reported to be the same cell entry receptor used by 2019-nCoV to infect humans as SARS-CoV [113] . Hence, clinical similarity between the two viruses is expected, particularly in severe cases. In addition, most of those who have died from MERS-CoV, SARS-CoV and 2019-nCoV were advance in age and had underlying health conditions such as hypertension, diabetes or cardiovascular disease that compromised their immune systems [114] . Coronaviruses have error-prone RNA-dependent RNA polymerases (RdRP), which result in frequent mutations and recombination events. This results in quasispecies diversity that is closely associated with adaptive evolution and the capacity to enhance viral-cell entry to cause disease over time in a specific population at-risk [115] . Since ACE2 is abundantly present in humans in the epithelia of the lung and small intestine, coronaviruses are likely to infect the upper respiratory and gastrointestinal tract and this may influence the type of therapeutics against 2019-nCoV, similarly to SAR-CoV.
However, in the years following two major coronavirus outbreaks SARS-CoV in 2003 and MERS-CoV in 2012, there remains no consensus on the optimal therapy for either disease [116, 117] . Well-designed clinical trials that provide the gold standard for assessing the therapeutic measures are scarce. No coronavirus protease inhibitors have successfully completed a preclinical development program despite large efforts exploring SARS-CoV inhibitors. The bulk of potential therapeutic strategies remain in the experimental phase, with only a handful crossing the in vitro hurdle. Stronger efforts are required in the research for treatment options for major coronaviruses given their pandemic potential. Effective treatment options are essential to maximize the restoration of affected populations to good health following infections. Clinical trials have commenced in China to identify effective treatments for 2019-nCoV based on the treatment evidence from SARS and MERS. There is currently no effective specific antiviral with high-level evidence; any specific antiviral therapy should be provided in the context of a clinical study/trial. Few treatments have shown real curative action against SARS and MERS and the literature generally describes isolated cases or small case series.
Many interferons from the three classes have been tested for their antiviral activities against SARS-CoV both in vitro and in animal models. Interferon β has consistently been shown to be the most active, followed by interferon α. The use of corticosteroids with interferon alfacon-1 (synthetic interferon α) appeared to have improved oxygenation and faster resolution of chest radiograph abnormalities in observational studies with untreated controls. Interferon has been used in multiple observational studies to treat SARS-CoV and MERS-CoV patients [116, 117] . Interferons, with or without ribavirin, and lopinavir/ritonavir are most likely to be beneficial and are being trialed in China for 2019-nCoV. This drug treatment appears to be the most advanced. Timing of treatment is likely an important factor in effectiveness. A combination of ribavirin and lopinavir/ritonavir was used as a post-exposure prophylaxis in health care workers and may have reduced the risk of infection. Ribavirin alone is unlikely to have substantial antiviral activities at clinically used dosages. Hence, ribavirin with or without corticosteroids and with lopinavir and ritonavir are among the combinations employed. This was the most common agent reported in the available literature. Its efficacy has been assessed in observational studies, retrospective case series, retrospective cohort study, a prospective observational study, a prospective cohort study and randomized controlled trial ranging from seven to 229 participants [117] . Lopinavir/ritonavir (Kaletra) was the earliest protease inhibitor combination introduced for the treatment of SARS-CoV. Its efficacy was documented in several studies, causing notably lower incidence of adverse outcomes than with ribavirin alone. Combined usage with ribavirin was also associated with lower incidence of acute respiratory distress syndrome, nosocomial infection and death, amongst other favorable outcomes. Recent in vitro studies have shown another HIV protease inhibitor, nelfinavir, to have antiviral capacity against SARS-CoV, although it has yet to show favorable outcomes in animal studies [118] . Remdesivir (Gilead Sciences, GS-5734) nucleoside analogue in vitro and in vivo data support GS-5734 development as a potential pan-coronavirus antiviral based on results against several coronaviruses (CoVs), including highly pathogenic CoVs and potentially emergent BatCoVs. The use of remdesivir may be a good candidate as an investigational treatment.
Improved mortality following receipt of convalescent plasma in various doses was consistently reported in several observational studies involving cases with severe acute respiratory infections (SARIs) of viral etiology. A significant reduction in the pooled odds of mortality following treatment of 0.25 compared to placebo or no therapy was observed [119] . Studies were however at moderate to high risk of bias given their small sample sizes, allocation of treatment based on the physician's discretion, and the availability of plasma. Factors like concomitant treatment may have also confounded the results. Associations between convalescent plasma and hospital length of stay, viral antibody levels, and viral load respectively were similarly inconsistent across available literature. Convalescent plasma, while promising, is likely not yet feasible, given the limited pool of potential donors and issues of scalability. Monoclonal antibody treatment is progressing. SARS-CoV enters host cells through the binding of their spike (S) protein to angiotensin converting enzyme 2 (ACE2) and CD209L [118] . Human monoclonal antibodies to the S protein have been shown to significantly reduce the severity of lung pathology in non-human primates following MERS-CoV infection [120] . Such neutralizing antibodies can be elicited by active or passive immunization using vaccines or convalescent plasma respectively. While such neutralizing antibodies can theoretically be harvested from individuals immunized with vaccines, there is uncertainty over the achievement of therapeutic levels of antibodies.
Other therapeutic agents have also been reported. A known antimalarial agent, chloroquine, elicits antiviral effects against multiple viruses including HIV type 1, hepatitis B and HCoV-229E. Chloroquine is also immunomodulatory, capable of suppressing the production and release of factors which mediate the inflammatory complications of viral diseases (tumor necrosis factor and interleukin 6) [121] . It is postulated that chloroquine works by altering ACE2 glycosylation and endosomal pH. Its anti-inflammatory properties may be beneficial for the treatment of SARS. Niclosamide as a known drug used in antihelminthic treatment. The efficacy of niclosamide as an inhibitor of virus replication was proven in several assays. In both immunoblot analysis and immunofluorescence assays, niclosamide treatment was observed to completely inhibit viral antigen synthesis. Reduction of virus yield in infected cells was dose dependent. Niclosamide likely does not interfere in the early stages of virus attachment and entry into cells, nor does it function as a protease inhibitor. Mechanisms of niclosamide activity warrant further investigation [122] . Glycyrrhizin also reportedly inhibits virus adsorption and penetration in the early steps of virus replication. Glycyrrhizin was a significantly potent inhibitor with a low selectivity index when tested against several pathogenic flaviviruses. While preliminary results suggest production of nitrous oxide (which inhibits virus replication) through induction of nitrous oxide synthase, the mechanism of Glycyrrhizin against SARS-CoV remains unclear. The compound also has relatively lower toxicity compared to protease inhibitors like ribavirin [123] . Inhibitory activity was also detected in baicalin [124] , extracted from another herb used in the treatment of SARS in China and Hong Kong. Findings on these compounds are limited to in vitro studies [121] [122] [123] [124] .
Due to the rapidly evolving situation of the 2019-nCoV, there will be potential limitations to the systematic review. The systematic review is likely to have publication bias as some developments have yet to be reported while for other developments there is no intention to report publicly (or in scientific platforms) due to confidentiality concerns. However, this may be limited to only a few developments for review as publicity does help in branding to some extent for the company and/or the funder. Furthermore, due to the rapid need to share the status of these developments, there may be reporting bias in some details provided by authors of the scientific articles or commentary articles in traditional media. Lastly, while it is not viable for any form of quality assessment and metaanalysis of the selected articles due to the limited data provided and the heterogeneous style of reporting by different articles, this paper has provided a comprehensive overview of the potential developments of these pharmaceutical interventions during the early phase of the outbreak. This systematic review would be useful for cross-check when the quality assessment and meta-analysis of these developments are performed as a follow-up study.
Rapid diagnostics, vaccines and therapeutics are key pharmaceutical interventions to limit transmission of respiratory infectious diseases. Many potential developments on these pharmaceutical interventions for 2019-nCoV are ongoing in the containment phase of this outbreak, potentially due to better pandemic preparedness than before. However, lessons from MERS-CoV and SARS-CoV have shown that the journeys for these developments can still be challenging moving ahead.
Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1 : Example of full search strategy in Pubmed, Table S2 : Google Search: 2019-nCoV diagnostics, Table S3 : Summary of diagnostic assays developed for 2019-nCoV, Table S4 | 2,486 | How were the assays selected ? | {
"answer_start": [
21000
],
"text": [
"based on the match against 2019-nCoV upon inspection of the sequence alignment. "
]
} | 3,672 |
602 | Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review
https://doi.org/10.3390/jcm9030623
SHA: 9b0c87f808b1b66f2937d7a7acb524a756b6113b
Authors: Pang, Junxiong; Wang, Min Xian; Ang, Ian Yi Han; Tan, Sharon Hui Xuan; Lewis, Ruth Frances; Chen, Jacinta I. Pei; Gutierrez, Ramona A.; Gwee, Sylvia Xiao Wei; Chua, Pearleen Ee Yong; Yang, Qian; Ng, Xian Yi; Yap, Rowena K. S.; Tan, Hao Yi; Teo, Yik Ying; Tan, Chorh Chuan; Cook, Alex R.; Yap, Jason Chin-Huat; Hsu, Li Yang
Date: 2020
DOI: 10.3390/jcm9030623
License: cc-by
Abstract: Rapid diagnostics, vaccines and therapeutics are important interventions for the management of the 2019 novel coronavirus (2019-nCoV) outbreak. It is timely to systematically review the potential of these interventions, including those for Middle East respiratory syndrome-Coronavirus (MERS-CoV) and severe acute respiratory syndrome (SARS)-CoV, to guide policymakers globally on their prioritization of resources for research and development. A systematic search was carried out in three major electronic databases (PubMed, Embase and Cochrane Library) to identify published studies in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Supplementary strategies through Google Search and personal communications were used. A total of 27 studies fulfilled the criteria for review. Several laboratory protocols for confirmation of suspected 2019-nCoV cases using real-time reverse transcription polymerase chain reaction (RT-PCR) have been published. A commercial RT-PCR kit developed by the Beijing Genomic Institute is currently widely used in China and likely in Asia. However, serological assays as well as point-of-care testing kits have not been developed but are likely in the near future. Several vaccine candidates are in the pipeline. The likely earliest Phase 1 vaccine trial is a synthetic DNA-based candidate. A number of novel compounds as well as therapeutics licensed for other conditions appear to have in vitro efficacy against the 2019-nCoV. Some are being tested in clinical trials against MERS-CoV and SARS-CoV, while others have been listed for clinical trials against 2019-nCoV. However, there are currently no effective specific antivirals or drug combinations supported by high-level evidence.
Text: Since mid-December 2019 and as of early February 2020, the 2019 novel coronavirus (2019-nCoV) originating from Wuhan (Hubei Province, China) has infected over 25,000 laboratory-confirmed cases across 28 countries with about 500 deaths (a case-fatality rate of about 2%). More than 90% of the cases and deaths were in China [1] . Based on the initial reported surge of cases in Wuhan, the majority were males with a median age of 55 years and linked to the Huanan Seafood Wholesale Market [2] . Most of the reported cases had similar symptoms at the onset of illness such as fever, cough, and myalgia or fatigue. Most cases developed pneumonia and some severe and even fatal respiratory diseases such as acute respiratory distress syndrome [3] .
The 2019 novel coronavirus (2019-nCoV), a betacoronavirus, forms a clade within the subgenus sarbecovirus of the Orthocoronavirinae subfamily [4] . The severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are also betacoronaviruses that are zoonotic in origin and have been linked to potential fatal illness during the outbreaks in 2003 and 2012, respectively [5, 6] . Based on current evidence, pathogenicity for 2019-nCoV is about 3%, which is significantly lower than SARS-CoV (10%) and MERS-CoV (40%) [7] . However, 2019-nCoV has potentially higher transmissibility (R0: 1.4-5.5) than both SARS-CoV (R0: [2] [3] [4] [5] and MERS-CoV (R0: <1) [7] .
With the possible expansion of 2019-nCoV globally [8] and the declaration of the 2019-nCoV outbreak as a Public Health Emergency of International Concern by the World Health Organization, there is an urgent need for rapid diagnostics, vaccines and therapeutics to detect, prevent and contain 2019-nCoV promptly. There is however currently a lack of understanding of what is available in the early phase of 2019-nCoV outbreak. The systematic review describes and assesses the potential rapid diagnostics, vaccines and therapeutics for 2019-nCoV, based in part on the developments for MERS-CoV and SARS-CoV.
A systematic search was carried out in three major electronic databases (PubMed, Embase and Cochrane Library) to identify published studies examining the diagnosis, therapeutic drugs and vaccines for Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS) and the 2019 novel coronavirus (2019-nCoV), in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
There were two independent reviewers each focusing on SARS, MERS, and 2019-nCoV, respectively. A third independent reviewer was engaged to resolve any conflicting article of interest. We used the key words "SARS", "coronavirus", "MERS", "2019 Novel coronavirus", "Wuhan virus" to identify the diseases in the search strategy. The systematic searches for diagnosis, therapeutic drugs and vaccines were carried out independently and the key words "drug", "therapy", "vaccine", "diagnosis", "point of care testing" and "rapid diagnostic test" were used in conjunction with the disease key words for the respective searches.
Examples of search strings can be found in Table S1 . We searched for randomized controlled trials (RCTs) and validation trials (for diagnostics test) published in English, that measured (a) the sensitivity and/or specificity of a rapid diagnostic test or a point-of-care testing kit, (b) the impact of drug therapy or (c) vaccine efficacy against either of these diseases with no date restriction applied. For the 2019-nCoV, we searched for all in vitro, animal, or human studies published in English between 1 December 2019 and 6 February 2020, on the same outcomes of interest. In addition, we reviewed the references of retrieved articles in order to identify additional studies or reports not retrieved by the initial searches. Studies that examined the mechanisms of diagnostic tests, drug therapy or vaccine efficacy against SARS, MERS and 2019-nCoV were excluded. A Google search for 2019-nCoV diagnostics (as of 6 February 2020; Table S2 ) yielded five webpage links from government and international bodies with official information and guidelines (WHO, Europe CDC, US CDC, US FDA), three webpage links on diagnostic protocols and scientific commentaries, and five webpage links on market news and press releases. Six protocols for diagnostics using reverse transcriptase polymerase chain reaction (RT-PCR) from six countries were published on WHO's website [9] . Google search for 2019-nCoV vaccines yielded 19 relevant articles.
With the emergence of 2019-nCoV, real time RT-PCR remains the primary means for diagnosing the new virus strain among the many diagnostic platforms available ( [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] ; Table S3 ). Among the 16 diagnostics studies selected, one study discussed the use of RT-PCR in diagnosing patients with 2019-nCoV [11] ( Table 1 ). The period and type of specimen collected for RT-PCR play an important role in the diagnosis of 2019-nCoV. It was found that the respiratory specimens were positive for the virus while serum was negative in the early period. It has also suggested that in the early days of illness, patients have high levels of virus despite the mild symptoms.
Apart from the commonly used RT-PCR in diagnosing MERS-CoV, four studies identified various diagnostic methods such as reverse transcription loop-mediated isothermal amplification (RT-LAMP), RT-insulated isothermal PCR (RT-iiPCR) and a one-step rRT-PCR assay based on specific TaqMan probes. RT-LAMP has similar sensitivity as real time RT-PCR. It is also highly specific and is used to detect MERS-CoV. It is comparable to the usual diagnostic tests and is rapid, simple and convenient. Likewise, RT-iiPCR and a one-step rRT-PCR assay have also shown similar sensitivity and high specificity for MER-CoV. Lastly, one study focused on the validation of the six commercial real RT-PCR kits, with high accuracy. Although real time RT-PCR is a primary method for diagnosing MERS-CoV, high levels of PCR inhibition may hinder PCR sensitivity (Table 1) .
There are eleven studies that focus on SARS-CoV diagnostic testing (Table 1) . These papers described diagnostic methods to detect the virus with the majority of them using molecular testing for diagnosis. Comparison between the molecular test (i.e RT-PCR) and serological test (i.e., ELISA) showed that the molecular test has better sensitivity and specificity. Hence, enhancements to the current molecular test were conducted to improve the diagnosis. Studies looked at using nested PCR to include a pre-amplification step or incorporating N gene as an additional sensitive molecular marker to improve on the sensitivity (Table 1 ).
In addition, there are seven potential rapid diagnostic kits (as of 24 January 2020; Table 2 ) available on the market for 2019-nCoV. Six of these are only for research purposes. Only one kit from Beijing Genome Institute (BGI) is approved for use in the clinical setting for rapid diagnosis. Most of the kits are for RT-PCR. There were two kits (BGI, China and Veredus, Singapore) with the capability to detect multiple pathogens using sequencing and microarray technologies, respectively. The limit of detection of the enhanced realtime PCR method was 10 2 -fold higher than the standard real-time PCR assay and 10 7fold higher than conventional PCR methods In the clinical aspect, the enhanced realtime PCR method was able to detect 6 cases of SARS-CoV positive samples that were not confirmed by any other assay [25] • The real time PCR has a threshold sensitivity of 10 genome equivalents per reaction and it has a good reproducibility with the inter-assay coefficients of variation of 1.73 to 2.72%. • 13 specimens from 6 patients were positive with viral load range from 362 to 36,240,000 genome equivalents/mL. The real-time RT-PCR reaction was more sensitive than the nested PCR reaction, as the detection limit for the nested PCR reaction was about 10 3 genome equivalents in the standard cDNA control. [34] Real-time reverse-transcription PCR (rRT-PCR); RNA-dependent RNA polymerase (RdRp); open reading frame 1a (ORF1a); Loop-mediated isothermal amplification (LAMP); enzyme-linked immunosorbent assay (ELISA); immunofluorescent assay (IFA); immunochromatographic test (ICT); nasopharyngeal aspirate (NPA).
With the emergence of 2019-nCoV, there are about 15 potential vaccine candidates in the pipeline globally (Table 3 ), in which a wide range of technology (such as messenger RNA, DNA-based, nanoparticle, synthetic and modified virus-like particle) was applied. It will likely take about a year for most candidates to start phase 1 clinical trials except for those funded by Coalition for Epidemic Preparedness Innovations (CEPI). However, the kit developed by the BGI have passed emergency approval procedure of the National Medical Products Administration, and are currently used in clinical and surveillance centers of China [40] .
Of the total of 570 unique studies on 2019-nCoV, SARS CoV or MERS-CoV vaccines screened, only four were eventually included in the review. Most studies on SARS and MERS vaccines were excluded as they were performed in cell or animal models ( Figure 1 ). The four studies included in this review were Phase I clinical trials on SARS or MERS vaccines (Table 4 ) [44] [45] [46] [47] . There were no studies of any population type (cell, animal, human) on the 2019-nCoV at the point of screening. The published clinical trials were mostly done in United States except for one on the SARS vaccine done in China [44] . All vaccine candidates for SARS and MERS were reported to be safe, well-tolerated and able to trigger the relevant and appropriate immune responses in the participants. In addition, we highlight six ongoing Phase I clinical trials identified in the ClinicalTrials.gov register ( [48, 49] ); Table S4 ) [50] [51] [52] . These trials are all testing the safety and immunogenicity of their respective MERS-CoV vaccine candidates but were excluded as there are no results published yet. The trials are projected to complete in December 2020 (two studies in Russia [50, 51] ) and December 2021 (in Germany [52] ).
Existing literature search did not return any results on completed 2019-nCoV trials at the time of writing. Among 23 trials found from the systematic review (Table 5) , there are nine clinical trials registered under the clinical trials registry (ClinicalTrials.gov) for 2019-nCoV therapeutics [53] [54] [55] [56] [57] [58] [59] [60] [61] . Of which five studies on hydroxychloroquine, lopinavir plus ritonavir and arbidol, mesenchymal stem cells, traditional Chinese medicine and glucocorticoid therapy usage have commenced recruitment. The remaining four studies encompass investigation of antivirals, interferon atomization, darunavir and cobicistat, arbidol, and remdesivir usage for 2019-nCoV patients (Table 5) . Seroconversion measured by S1-ELISA occurred in 86% and 94% participants after 2 and 3 doses, respectively, and was maintained in 79% participants up to study end at week 60. Neutralising antibodies were detected in 50% participants at one or more time points during the study, but only 3% maintained neutralisation activity to end of study. T-cell responses were detected in 71% and 76% participants after 2 and 3 doses, respectively. There were no differences in immune responses between dose groups after 6 weeks and vaccine-induced humoral and cellular responses were respectively detected in 77% and 64% participants at week 60.
[47] Molecules developed by the university scientists inhibit two coronavirus enzymes and prevent its replication. The discovered drug targets are said to be more than 95% similar to enzyme targets found on the SARS virus. Researchers note that identified drugs may not be available to address the ongoing outbreak but they hope to make it accessible for future outbreaks.
[85] Besides the six completed randomized controlled trials (RCT) selected from the systematic review (Table 6) , there is only one ongoing randomized controlled trial targeted at SARS therapeutics [92] . The studies found from ClinicalTrials.gov have not been updated since 2013. While many prospective and retrospective cohort studies conducted during the epidemic centered on usage of ribavirin with lopinavir/ritonavir or ribavirin only, there has yet to be well-designed clinical trials investigating their usage. Three completed randomized controlled trials were conducted during the SARS epidemic-3 in China, 1 in Taiwan and 2 in Hong Kong [93] [94] [95] [96] [97] . The studies respectively investigated antibiotic usage involving 190 participants, combination of western and Chinese treatment vs. Chinese treatment in 123 participants, integrative Chinese and Western treatment in 49 patients, usage of a specific Chinese medicine in four participants and early use of corticosteroid in 16 participants. Another notable study was an open non-randomized study investigating ribavirin/lopinavir/ritonavir usage in 152 participants [98] . One randomized controlled trial investigating integrative western and Chinese treatment during the SARS epidemic was excluded as it was a Chinese article [94] .
There is only one ongoing randomized controlled trial targeted at MERS therapeutics [99] . It investigates the usage of Lopinavir/Ritonavir and Interferon Beta 1B. Likewise, many prospective and retrospective cohort studies conducted during the epidemic centered on usage of ribavirin with lopinavir/ritonavir/ribavirin, interferon, and convalescent plasma usage. To date, only one trial has been completed. One phase 1 clinical trial investigating the safety and tolerability of a fully human polyclonal IgG immunoglobulin (SAB-301) was found in available literature [46] . The trial conducted in the United States in 2017 demonstrated SAB-301 to be safe and well-tolerated at single doses. Another trial on MERS therapeutics was found on ClinicalTrials.gov-a phase 2/3 trial in the United States evaluating the safety, tolerability, pharmacokinetics (PK), and immunogenicity on coadministered MERS-CoV antibodies REGN3048 & REGN3051 [100].
Rapid diagnostics plays an important role in disease and outbreak management. The fast and accurate diagnosis of a specific viral infection enables prompt and accurate public health surveillance, prevention and control measures. Local transmission and clusters can be prevented or delayed by isolation of laboratory-confirmed cases and their close contacts quarantined and monitored at home. Rapid diagnostic also facilitates other specific public health interventions such as closure of high-risk facilities and areas associated with the confirmed cases for prompt infection control and environmental decontamination [11, 101] .
Laboratory diagnosis can be performed by: (a) detecting the genetic material of the virus, (b) detecting the antibodies that neutralize the viral particles of interest, (c) detecting the viral epitopes of interest with antibodies (serological testing), or (d) culture and isolation of viable virus particles.
The key limitations of genetic material detection are the lack of knowledge of the presence of viable virus, the potential cross-reactivity with non-specific genetic regions and the short timeframe for accurate detection during the acute infection phase. The key limitations of serological testing is the need to collect paired serum samples (in the acute and convalescent phases) from cases under investigation for confirmation to eliminate potential cross-reactivity from non-specific antibodies from past exposure and/or infection by other coronaviruses. The limitation of virus culture and isolation is the long duration and the highly specialized skills required of the technicians to process the samples. All patients recovered.
Significantly shorted time from the disease onset to the symptom improvement in treatment (5.10 ± 2.83 days) compared to control group (7.62 ± 2.27 days) (p < 0.05) No significant difference in blood routine improvement, pulmonary chest shadow in chest film improvement and corticosteroid usgae between the 2 groups. However, particularly in the respect of improving clinical symptoms, elevating quality of life, promoting immune function recovery, promoting absorption of pulmonary inflammation, reducing the dosage of cortisteroid and shortening the therapeutic course, treatment with integrative chinese and western medicine treatment had obvious superiority compared with using control treatment alone. Single infusions of SAB-301 up to 50 mg/kg appear to be safe and well-tolerated in healthy participants. [46] Where the biological samples are taken from also play a role in the sensitivity of these tests. For SARS-CoV and MERS-CoV, specimens collected from the lower respiratory tract such as sputum and tracheal aspirates have higher and more prolonged levels of viral RNA because of the tropism of the virus. MERS-CoV viral loads are also higher for severe cases and have longer viral shedding compared to mild cases. Although upper respiratory tract specimens such as nasopharyngeal or oropharyngeal swabs can be used, they have potentially lower viral loads and may have higher risk of false-negatives among the mild MERS and SARS cases [102, 103] , and likely among the 2019-nCoV cases.
The existing practices in detecting genetic material of coronaviruses such as SARS-CoV and MERS-CoV include (a) reverse transcription-polymerase chain reaction (RT-PCR), (b) real-time RT-PCR (rRT-PCR), (c) reverse transcription loop-mediated isothermal amplification (RT-LAMP) and (d) real-time RT-LAMP [104] . Nucleic amplification tests (NAAT) are usually preferred as in the case of MERS-CoV diagnosis as it has the highest sensitivity at the earliest time point in the acute phase of infection [102] . Chinese health authorities have recently posted the full genome of 2019-nCoV in the GenBank and in GISAID portal to facilitate in the detection of the virus [11] . Several laboratory assays have been developed to detect the novel coronavirus in Wuhan, as highlighted in WHO's interim guidance on nCoV laboratory testing of suspected cases. These include protocols from other countries such as Thailand, Japan and China [105] .
The first validated diagnostic test was designed in Germany. Corman et al. had initially designed a candidate diagnostic RT-PCR assay based on the SARS or SARS-related coronavirus as it was suggested that circulating virus was SARS-like. Upon the release of the sequence, assays were selected based on the match against 2019-nCoV upon inspection of the sequence alignment. Two assays were used for the RNA dependent RNA polymerase (RdRP) gene and E gene where E gene assay acts as the first-line screening tool and RdRp gene assay as the confirmatory testing. All assays were highly sensitive and specific in that they did not cross-react with other coronavirus and also human clinical samples that contained respiratory viruses [11] .
The Hong Kong University used two monoplex assays which were reactive with coronaviruses under the subgenus Sarbecovirus (consisting of 2019-nCoV, SARS-CoV and SARS-like coronavirus). Viral RNA extracted from SARS-CoV can be used as the positive control for the suggested protocol assuming that SARS has been eradicated. It is proposed that the N gene RT-PCR can be used as a screening assay while the Orf1b assay acts as a confirmatory test. However, this protocol has only been evaluated with a panel of controls with the only positive control SARS-CoV RNA. Synthetic oligonucleotide positive control or 2019-nCoV have yet to be tested [106] .
The US CDC shared the protocol on the real time RT-PCR assay for the detection of the 2019-nCoV with the primers and probes designed for the universal detection of SARS-like coronavirus and the specific detection of 2019-nCoV. However, the protocol has not been validated on other platforms or chemistries apart from the protocol described. There are some limitations for the assay. Analysts engaged have to be trained and familiar with the testing procedure and result interpretation. False negative results may occur due to insufficient organisms in the specimen resulting from improper collection, transportation or handling. Also, RNA viruses may show substantial genetic variability. This could result in mismatch between the primer and probes with the target sequence which can diminish the assay performance or result in false negative results [107] . Point-of-care test kit can potentially minimize these limitations, which should be highly prioritized for research and development in the next few months.
Serological testing such as ELISA, IIFT and neutralization tests are effective in determining the extent of infection, including estimating asymptomatic and attack rate. Compared to the detection of viral genome through molecular methods, serological testing detects antibodies and antigens. There would be a lag period as antibodies specifically targeting the virus would normally appear between 14 and 28 days after the illness onset [108] . Furthermore, studies suggest that low antibody titers in the second week or delayed antibody production could be associated with mortality with a high viral load. Hence, serological diagnoses are likely used when nucleic amplification tests (NAAT) are not available or accessible [102] .
Vaccines can prevent and protect against infection and disease occurrence when exposed to the specific pathogen of interest, especially in vulnerable populations who are more prone to severe outcomes. In the context of the current 2019-nCoV outbreak, vaccines will help control and reduce disease transmission by creating herd immunity in addition to protecting healthy individuals from infection. This decreases the effective R0 value of the disease. Nonetheless, there are social, clinical and economic hurdles for vaccine and vaccination programmes, including (a) the willingness of the public to undergo vaccination with a novel vaccine, (b) the side effects and severe adverse reactions of vaccination, (c) the potential difference and/or low efficacy of the vaccine in populations different from the clinical trials' populations and (d) the accessibility of the vaccines to a given population (including the cost and availability of the vaccine).
Vaccines against the 2019-nCoV are currently in development and none are in testing (at the time of writing). On 23 January 2020, the Coalition for Epidemic Preparedness Innovations (CEPI) announced that they will fund vaccine development programmes with Inovio, The University of Queensland and Moderna, Inc respectively, with the aim to test the experimental vaccines clinically in 16 weeks (By June 2020). The vaccine candidates will be developed by the DNA, recombinant and mRNA vaccine platforms from these organizations [109] .
Based on the most recent MERS-CoV outbreak, there are already a number of vaccine candidates being developed but most are still in the preclinical testing stage. The vaccines in development include viral vector-based vaccine, DNA vaccine, subunit vaccine, virus-like particles (VLPs)-based vaccine, inactivated whole-virus (IWV) vaccine and live attenuated vaccine. The latest findings for these vaccines arebased on the review by Yong et al. (2019) in August 2019 [110] . As of the date of reporting, there is only one published clinical study on the MERS-CoV vaccine by GeneOne Life Science & Inovio Pharmaceuticals [47] . There was one SARS vaccine trial conducted by the US National Institute of Allergy and Infectious Diseases. Both Phase I clinical trials reported positive results, but only one has announced plans to proceed to Phase 2 trial [111] .
Due to the close genetic relatedness of SARS-CoV (79%) with 2019-nCoV [112] , there may be potential cross-protective effect of using a safe SARS-CoV vaccine while awaiting the 2019-nCoV vaccine. However, this would require small scale phase-by-phase implementation and close monitoring of vaccinees before any large scale implementation.
Apart from the timely diagnosis of cases, the achievement of favorable clinical outcomes depends on the timely treatment administered. ACE2 has been reported to be the same cell entry receptor used by 2019-nCoV to infect humans as SARS-CoV [113] . Hence, clinical similarity between the two viruses is expected, particularly in severe cases. In addition, most of those who have died from MERS-CoV, SARS-CoV and 2019-nCoV were advance in age and had underlying health conditions such as hypertension, diabetes or cardiovascular disease that compromised their immune systems [114] . Coronaviruses have error-prone RNA-dependent RNA polymerases (RdRP), which result in frequent mutations and recombination events. This results in quasispecies diversity that is closely associated with adaptive evolution and the capacity to enhance viral-cell entry to cause disease over time in a specific population at-risk [115] . Since ACE2 is abundantly present in humans in the epithelia of the lung and small intestine, coronaviruses are likely to infect the upper respiratory and gastrointestinal tract and this may influence the type of therapeutics against 2019-nCoV, similarly to SAR-CoV.
However, in the years following two major coronavirus outbreaks SARS-CoV in 2003 and MERS-CoV in 2012, there remains no consensus on the optimal therapy for either disease [116, 117] . Well-designed clinical trials that provide the gold standard for assessing the therapeutic measures are scarce. No coronavirus protease inhibitors have successfully completed a preclinical development program despite large efforts exploring SARS-CoV inhibitors. The bulk of potential therapeutic strategies remain in the experimental phase, with only a handful crossing the in vitro hurdle. Stronger efforts are required in the research for treatment options for major coronaviruses given their pandemic potential. Effective treatment options are essential to maximize the restoration of affected populations to good health following infections. Clinical trials have commenced in China to identify effective treatments for 2019-nCoV based on the treatment evidence from SARS and MERS. There is currently no effective specific antiviral with high-level evidence; any specific antiviral therapy should be provided in the context of a clinical study/trial. Few treatments have shown real curative action against SARS and MERS and the literature generally describes isolated cases or small case series.
Many interferons from the three classes have been tested for their antiviral activities against SARS-CoV both in vitro and in animal models. Interferon β has consistently been shown to be the most active, followed by interferon α. The use of corticosteroids with interferon alfacon-1 (synthetic interferon α) appeared to have improved oxygenation and faster resolution of chest radiograph abnormalities in observational studies with untreated controls. Interferon has been used in multiple observational studies to treat SARS-CoV and MERS-CoV patients [116, 117] . Interferons, with or without ribavirin, and lopinavir/ritonavir are most likely to be beneficial and are being trialed in China for 2019-nCoV. This drug treatment appears to be the most advanced. Timing of treatment is likely an important factor in effectiveness. A combination of ribavirin and lopinavir/ritonavir was used as a post-exposure prophylaxis in health care workers and may have reduced the risk of infection. Ribavirin alone is unlikely to have substantial antiviral activities at clinically used dosages. Hence, ribavirin with or without corticosteroids and with lopinavir and ritonavir are among the combinations employed. This was the most common agent reported in the available literature. Its efficacy has been assessed in observational studies, retrospective case series, retrospective cohort study, a prospective observational study, a prospective cohort study and randomized controlled trial ranging from seven to 229 participants [117] . Lopinavir/ritonavir (Kaletra) was the earliest protease inhibitor combination introduced for the treatment of SARS-CoV. Its efficacy was documented in several studies, causing notably lower incidence of adverse outcomes than with ribavirin alone. Combined usage with ribavirin was also associated with lower incidence of acute respiratory distress syndrome, nosocomial infection and death, amongst other favorable outcomes. Recent in vitro studies have shown another HIV protease inhibitor, nelfinavir, to have antiviral capacity against SARS-CoV, although it has yet to show favorable outcomes in animal studies [118] . Remdesivir (Gilead Sciences, GS-5734) nucleoside analogue in vitro and in vivo data support GS-5734 development as a potential pan-coronavirus antiviral based on results against several coronaviruses (CoVs), including highly pathogenic CoVs and potentially emergent BatCoVs. The use of remdesivir may be a good candidate as an investigational treatment.
Improved mortality following receipt of convalescent plasma in various doses was consistently reported in several observational studies involving cases with severe acute respiratory infections (SARIs) of viral etiology. A significant reduction in the pooled odds of mortality following treatment of 0.25 compared to placebo or no therapy was observed [119] . Studies were however at moderate to high risk of bias given their small sample sizes, allocation of treatment based on the physician's discretion, and the availability of plasma. Factors like concomitant treatment may have also confounded the results. Associations between convalescent plasma and hospital length of stay, viral antibody levels, and viral load respectively were similarly inconsistent across available literature. Convalescent plasma, while promising, is likely not yet feasible, given the limited pool of potential donors and issues of scalability. Monoclonal antibody treatment is progressing. SARS-CoV enters host cells through the binding of their spike (S) protein to angiotensin converting enzyme 2 (ACE2) and CD209L [118] . Human monoclonal antibodies to the S protein have been shown to significantly reduce the severity of lung pathology in non-human primates following MERS-CoV infection [120] . Such neutralizing antibodies can be elicited by active or passive immunization using vaccines or convalescent plasma respectively. While such neutralizing antibodies can theoretically be harvested from individuals immunized with vaccines, there is uncertainty over the achievement of therapeutic levels of antibodies.
Other therapeutic agents have also been reported. A known antimalarial agent, chloroquine, elicits antiviral effects against multiple viruses including HIV type 1, hepatitis B and HCoV-229E. Chloroquine is also immunomodulatory, capable of suppressing the production and release of factors which mediate the inflammatory complications of viral diseases (tumor necrosis factor and interleukin 6) [121] . It is postulated that chloroquine works by altering ACE2 glycosylation and endosomal pH. Its anti-inflammatory properties may be beneficial for the treatment of SARS. Niclosamide as a known drug used in antihelminthic treatment. The efficacy of niclosamide as an inhibitor of virus replication was proven in several assays. In both immunoblot analysis and immunofluorescence assays, niclosamide treatment was observed to completely inhibit viral antigen synthesis. Reduction of virus yield in infected cells was dose dependent. Niclosamide likely does not interfere in the early stages of virus attachment and entry into cells, nor does it function as a protease inhibitor. Mechanisms of niclosamide activity warrant further investigation [122] . Glycyrrhizin also reportedly inhibits virus adsorption and penetration in the early steps of virus replication. Glycyrrhizin was a significantly potent inhibitor with a low selectivity index when tested against several pathogenic flaviviruses. While preliminary results suggest production of nitrous oxide (which inhibits virus replication) through induction of nitrous oxide synthase, the mechanism of Glycyrrhizin against SARS-CoV remains unclear. The compound also has relatively lower toxicity compared to protease inhibitors like ribavirin [123] . Inhibitory activity was also detected in baicalin [124] , extracted from another herb used in the treatment of SARS in China and Hong Kong. Findings on these compounds are limited to in vitro studies [121] [122] [123] [124] .
Due to the rapidly evolving situation of the 2019-nCoV, there will be potential limitations to the systematic review. The systematic review is likely to have publication bias as some developments have yet to be reported while for other developments there is no intention to report publicly (or in scientific platforms) due to confidentiality concerns. However, this may be limited to only a few developments for review as publicity does help in branding to some extent for the company and/or the funder. Furthermore, due to the rapid need to share the status of these developments, there may be reporting bias in some details provided by authors of the scientific articles or commentary articles in traditional media. Lastly, while it is not viable for any form of quality assessment and metaanalysis of the selected articles due to the limited data provided and the heterogeneous style of reporting by different articles, this paper has provided a comprehensive overview of the potential developments of these pharmaceutical interventions during the early phase of the outbreak. This systematic review would be useful for cross-check when the quality assessment and meta-analysis of these developments are performed as a follow-up study.
Rapid diagnostics, vaccines and therapeutics are key pharmaceutical interventions to limit transmission of respiratory infectious diseases. Many potential developments on these pharmaceutical interventions for 2019-nCoV are ongoing in the containment phase of this outbreak, potentially due to better pandemic preparedness than before. However, lessons from MERS-CoV and SARS-CoV have shown that the journeys for these developments can still be challenging moving ahead.
Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1 : Example of full search strategy in Pubmed, Table S2 : Google Search: 2019-nCoV diagnostics, Table S3 : Summary of diagnostic assays developed for 2019-nCoV, Table S4 | 2,486 | How were the assays used? | {
"answer_start": [
21080
],
"text": [
"Two assays were used for the RNA dependent RNA polymerase (RdRP) gene and E gene where E gene assay acts as the first-line screening tool and RdRp gene assay as the confirmatory testing. "
]
} | 3,673 |
603 | Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review
https://doi.org/10.3390/jcm9030623
SHA: 9b0c87f808b1b66f2937d7a7acb524a756b6113b
Authors: Pang, Junxiong; Wang, Min Xian; Ang, Ian Yi Han; Tan, Sharon Hui Xuan; Lewis, Ruth Frances; Chen, Jacinta I. Pei; Gutierrez, Ramona A.; Gwee, Sylvia Xiao Wei; Chua, Pearleen Ee Yong; Yang, Qian; Ng, Xian Yi; Yap, Rowena K. S.; Tan, Hao Yi; Teo, Yik Ying; Tan, Chorh Chuan; Cook, Alex R.; Yap, Jason Chin-Huat; Hsu, Li Yang
Date: 2020
DOI: 10.3390/jcm9030623
License: cc-by
Abstract: Rapid diagnostics, vaccines and therapeutics are important interventions for the management of the 2019 novel coronavirus (2019-nCoV) outbreak. It is timely to systematically review the potential of these interventions, including those for Middle East respiratory syndrome-Coronavirus (MERS-CoV) and severe acute respiratory syndrome (SARS)-CoV, to guide policymakers globally on their prioritization of resources for research and development. A systematic search was carried out in three major electronic databases (PubMed, Embase and Cochrane Library) to identify published studies in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Supplementary strategies through Google Search and personal communications were used. A total of 27 studies fulfilled the criteria for review. Several laboratory protocols for confirmation of suspected 2019-nCoV cases using real-time reverse transcription polymerase chain reaction (RT-PCR) have been published. A commercial RT-PCR kit developed by the Beijing Genomic Institute is currently widely used in China and likely in Asia. However, serological assays as well as point-of-care testing kits have not been developed but are likely in the near future. Several vaccine candidates are in the pipeline. The likely earliest Phase 1 vaccine trial is a synthetic DNA-based candidate. A number of novel compounds as well as therapeutics licensed for other conditions appear to have in vitro efficacy against the 2019-nCoV. Some are being tested in clinical trials against MERS-CoV and SARS-CoV, while others have been listed for clinical trials against 2019-nCoV. However, there are currently no effective specific antivirals or drug combinations supported by high-level evidence.
Text: Since mid-December 2019 and as of early February 2020, the 2019 novel coronavirus (2019-nCoV) originating from Wuhan (Hubei Province, China) has infected over 25,000 laboratory-confirmed cases across 28 countries with about 500 deaths (a case-fatality rate of about 2%). More than 90% of the cases and deaths were in China [1] . Based on the initial reported surge of cases in Wuhan, the majority were males with a median age of 55 years and linked to the Huanan Seafood Wholesale Market [2] . Most of the reported cases had similar symptoms at the onset of illness such as fever, cough, and myalgia or fatigue. Most cases developed pneumonia and some severe and even fatal respiratory diseases such as acute respiratory distress syndrome [3] .
The 2019 novel coronavirus (2019-nCoV), a betacoronavirus, forms a clade within the subgenus sarbecovirus of the Orthocoronavirinae subfamily [4] . The severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are also betacoronaviruses that are zoonotic in origin and have been linked to potential fatal illness during the outbreaks in 2003 and 2012, respectively [5, 6] . Based on current evidence, pathogenicity for 2019-nCoV is about 3%, which is significantly lower than SARS-CoV (10%) and MERS-CoV (40%) [7] . However, 2019-nCoV has potentially higher transmissibility (R0: 1.4-5.5) than both SARS-CoV (R0: [2] [3] [4] [5] and MERS-CoV (R0: <1) [7] .
With the possible expansion of 2019-nCoV globally [8] and the declaration of the 2019-nCoV outbreak as a Public Health Emergency of International Concern by the World Health Organization, there is an urgent need for rapid diagnostics, vaccines and therapeutics to detect, prevent and contain 2019-nCoV promptly. There is however currently a lack of understanding of what is available in the early phase of 2019-nCoV outbreak. The systematic review describes and assesses the potential rapid diagnostics, vaccines and therapeutics for 2019-nCoV, based in part on the developments for MERS-CoV and SARS-CoV.
A systematic search was carried out in three major electronic databases (PubMed, Embase and Cochrane Library) to identify published studies examining the diagnosis, therapeutic drugs and vaccines for Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS) and the 2019 novel coronavirus (2019-nCoV), in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
There were two independent reviewers each focusing on SARS, MERS, and 2019-nCoV, respectively. A third independent reviewer was engaged to resolve any conflicting article of interest. We used the key words "SARS", "coronavirus", "MERS", "2019 Novel coronavirus", "Wuhan virus" to identify the diseases in the search strategy. The systematic searches for diagnosis, therapeutic drugs and vaccines were carried out independently and the key words "drug", "therapy", "vaccine", "diagnosis", "point of care testing" and "rapid diagnostic test" were used in conjunction with the disease key words for the respective searches.
Examples of search strings can be found in Table S1 . We searched for randomized controlled trials (RCTs) and validation trials (for diagnostics test) published in English, that measured (a) the sensitivity and/or specificity of a rapid diagnostic test or a point-of-care testing kit, (b) the impact of drug therapy or (c) vaccine efficacy against either of these diseases with no date restriction applied. For the 2019-nCoV, we searched for all in vitro, animal, or human studies published in English between 1 December 2019 and 6 February 2020, on the same outcomes of interest. In addition, we reviewed the references of retrieved articles in order to identify additional studies or reports not retrieved by the initial searches. Studies that examined the mechanisms of diagnostic tests, drug therapy or vaccine efficacy against SARS, MERS and 2019-nCoV were excluded. A Google search for 2019-nCoV diagnostics (as of 6 February 2020; Table S2 ) yielded five webpage links from government and international bodies with official information and guidelines (WHO, Europe CDC, US CDC, US FDA), three webpage links on diagnostic protocols and scientific commentaries, and five webpage links on market news and press releases. Six protocols for diagnostics using reverse transcriptase polymerase chain reaction (RT-PCR) from six countries were published on WHO's website [9] . Google search for 2019-nCoV vaccines yielded 19 relevant articles.
With the emergence of 2019-nCoV, real time RT-PCR remains the primary means for diagnosing the new virus strain among the many diagnostic platforms available ( [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] ; Table S3 ). Among the 16 diagnostics studies selected, one study discussed the use of RT-PCR in diagnosing patients with 2019-nCoV [11] ( Table 1 ). The period and type of specimen collected for RT-PCR play an important role in the diagnosis of 2019-nCoV. It was found that the respiratory specimens were positive for the virus while serum was negative in the early period. It has also suggested that in the early days of illness, patients have high levels of virus despite the mild symptoms.
Apart from the commonly used RT-PCR in diagnosing MERS-CoV, four studies identified various diagnostic methods such as reverse transcription loop-mediated isothermal amplification (RT-LAMP), RT-insulated isothermal PCR (RT-iiPCR) and a one-step rRT-PCR assay based on specific TaqMan probes. RT-LAMP has similar sensitivity as real time RT-PCR. It is also highly specific and is used to detect MERS-CoV. It is comparable to the usual diagnostic tests and is rapid, simple and convenient. Likewise, RT-iiPCR and a one-step rRT-PCR assay have also shown similar sensitivity and high specificity for MER-CoV. Lastly, one study focused on the validation of the six commercial real RT-PCR kits, with high accuracy. Although real time RT-PCR is a primary method for diagnosing MERS-CoV, high levels of PCR inhibition may hinder PCR sensitivity (Table 1) .
There are eleven studies that focus on SARS-CoV diagnostic testing (Table 1) . These papers described diagnostic methods to detect the virus with the majority of them using molecular testing for diagnosis. Comparison between the molecular test (i.e RT-PCR) and serological test (i.e., ELISA) showed that the molecular test has better sensitivity and specificity. Hence, enhancements to the current molecular test were conducted to improve the diagnosis. Studies looked at using nested PCR to include a pre-amplification step or incorporating N gene as an additional sensitive molecular marker to improve on the sensitivity (Table 1 ).
In addition, there are seven potential rapid diagnostic kits (as of 24 January 2020; Table 2 ) available on the market for 2019-nCoV. Six of these are only for research purposes. Only one kit from Beijing Genome Institute (BGI) is approved for use in the clinical setting for rapid diagnosis. Most of the kits are for RT-PCR. There were two kits (BGI, China and Veredus, Singapore) with the capability to detect multiple pathogens using sequencing and microarray technologies, respectively. The limit of detection of the enhanced realtime PCR method was 10 2 -fold higher than the standard real-time PCR assay and 10 7fold higher than conventional PCR methods In the clinical aspect, the enhanced realtime PCR method was able to detect 6 cases of SARS-CoV positive samples that were not confirmed by any other assay [25] • The real time PCR has a threshold sensitivity of 10 genome equivalents per reaction and it has a good reproducibility with the inter-assay coefficients of variation of 1.73 to 2.72%. • 13 specimens from 6 patients were positive with viral load range from 362 to 36,240,000 genome equivalents/mL. The real-time RT-PCR reaction was more sensitive than the nested PCR reaction, as the detection limit for the nested PCR reaction was about 10 3 genome equivalents in the standard cDNA control. [34] Real-time reverse-transcription PCR (rRT-PCR); RNA-dependent RNA polymerase (RdRp); open reading frame 1a (ORF1a); Loop-mediated isothermal amplification (LAMP); enzyme-linked immunosorbent assay (ELISA); immunofluorescent assay (IFA); immunochromatographic test (ICT); nasopharyngeal aspirate (NPA).
With the emergence of 2019-nCoV, there are about 15 potential vaccine candidates in the pipeline globally (Table 3 ), in which a wide range of technology (such as messenger RNA, DNA-based, nanoparticle, synthetic and modified virus-like particle) was applied. It will likely take about a year for most candidates to start phase 1 clinical trials except for those funded by Coalition for Epidemic Preparedness Innovations (CEPI). However, the kit developed by the BGI have passed emergency approval procedure of the National Medical Products Administration, and are currently used in clinical and surveillance centers of China [40] .
Of the total of 570 unique studies on 2019-nCoV, SARS CoV or MERS-CoV vaccines screened, only four were eventually included in the review. Most studies on SARS and MERS vaccines were excluded as they were performed in cell or animal models ( Figure 1 ). The four studies included in this review were Phase I clinical trials on SARS or MERS vaccines (Table 4 ) [44] [45] [46] [47] . There were no studies of any population type (cell, animal, human) on the 2019-nCoV at the point of screening. The published clinical trials were mostly done in United States except for one on the SARS vaccine done in China [44] . All vaccine candidates for SARS and MERS were reported to be safe, well-tolerated and able to trigger the relevant and appropriate immune responses in the participants. In addition, we highlight six ongoing Phase I clinical trials identified in the ClinicalTrials.gov register ( [48, 49] ); Table S4 ) [50] [51] [52] . These trials are all testing the safety and immunogenicity of their respective MERS-CoV vaccine candidates but were excluded as there are no results published yet. The trials are projected to complete in December 2020 (two studies in Russia [50, 51] ) and December 2021 (in Germany [52] ).
Existing literature search did not return any results on completed 2019-nCoV trials at the time of writing. Among 23 trials found from the systematic review (Table 5) , there are nine clinical trials registered under the clinical trials registry (ClinicalTrials.gov) for 2019-nCoV therapeutics [53] [54] [55] [56] [57] [58] [59] [60] [61] . Of which five studies on hydroxychloroquine, lopinavir plus ritonavir and arbidol, mesenchymal stem cells, traditional Chinese medicine and glucocorticoid therapy usage have commenced recruitment. The remaining four studies encompass investigation of antivirals, interferon atomization, darunavir and cobicistat, arbidol, and remdesivir usage for 2019-nCoV patients (Table 5) . Seroconversion measured by S1-ELISA occurred in 86% and 94% participants after 2 and 3 doses, respectively, and was maintained in 79% participants up to study end at week 60. Neutralising antibodies were detected in 50% participants at one or more time points during the study, but only 3% maintained neutralisation activity to end of study. T-cell responses were detected in 71% and 76% participants after 2 and 3 doses, respectively. There were no differences in immune responses between dose groups after 6 weeks and vaccine-induced humoral and cellular responses were respectively detected in 77% and 64% participants at week 60.
[47] Molecules developed by the university scientists inhibit two coronavirus enzymes and prevent its replication. The discovered drug targets are said to be more than 95% similar to enzyme targets found on the SARS virus. Researchers note that identified drugs may not be available to address the ongoing outbreak but they hope to make it accessible for future outbreaks.
[85] Besides the six completed randomized controlled trials (RCT) selected from the systematic review (Table 6) , there is only one ongoing randomized controlled trial targeted at SARS therapeutics [92] . The studies found from ClinicalTrials.gov have not been updated since 2013. While many prospective and retrospective cohort studies conducted during the epidemic centered on usage of ribavirin with lopinavir/ritonavir or ribavirin only, there has yet to be well-designed clinical trials investigating their usage. Three completed randomized controlled trials were conducted during the SARS epidemic-3 in China, 1 in Taiwan and 2 in Hong Kong [93] [94] [95] [96] [97] . The studies respectively investigated antibiotic usage involving 190 participants, combination of western and Chinese treatment vs. Chinese treatment in 123 participants, integrative Chinese and Western treatment in 49 patients, usage of a specific Chinese medicine in four participants and early use of corticosteroid in 16 participants. Another notable study was an open non-randomized study investigating ribavirin/lopinavir/ritonavir usage in 152 participants [98] . One randomized controlled trial investigating integrative western and Chinese treatment during the SARS epidemic was excluded as it was a Chinese article [94] .
There is only one ongoing randomized controlled trial targeted at MERS therapeutics [99] . It investigates the usage of Lopinavir/Ritonavir and Interferon Beta 1B. Likewise, many prospective and retrospective cohort studies conducted during the epidemic centered on usage of ribavirin with lopinavir/ritonavir/ribavirin, interferon, and convalescent plasma usage. To date, only one trial has been completed. One phase 1 clinical trial investigating the safety and tolerability of a fully human polyclonal IgG immunoglobulin (SAB-301) was found in available literature [46] . The trial conducted in the United States in 2017 demonstrated SAB-301 to be safe and well-tolerated at single doses. Another trial on MERS therapeutics was found on ClinicalTrials.gov-a phase 2/3 trial in the United States evaluating the safety, tolerability, pharmacokinetics (PK), and immunogenicity on coadministered MERS-CoV antibodies REGN3048 & REGN3051 [100].
Rapid diagnostics plays an important role in disease and outbreak management. The fast and accurate diagnosis of a specific viral infection enables prompt and accurate public health surveillance, prevention and control measures. Local transmission and clusters can be prevented or delayed by isolation of laboratory-confirmed cases and their close contacts quarantined and monitored at home. Rapid diagnostic also facilitates other specific public health interventions such as closure of high-risk facilities and areas associated with the confirmed cases for prompt infection control and environmental decontamination [11, 101] .
Laboratory diagnosis can be performed by: (a) detecting the genetic material of the virus, (b) detecting the antibodies that neutralize the viral particles of interest, (c) detecting the viral epitopes of interest with antibodies (serological testing), or (d) culture and isolation of viable virus particles.
The key limitations of genetic material detection are the lack of knowledge of the presence of viable virus, the potential cross-reactivity with non-specific genetic regions and the short timeframe for accurate detection during the acute infection phase. The key limitations of serological testing is the need to collect paired serum samples (in the acute and convalescent phases) from cases under investigation for confirmation to eliminate potential cross-reactivity from non-specific antibodies from past exposure and/or infection by other coronaviruses. The limitation of virus culture and isolation is the long duration and the highly specialized skills required of the technicians to process the samples. All patients recovered.
Significantly shorted time from the disease onset to the symptom improvement in treatment (5.10 ± 2.83 days) compared to control group (7.62 ± 2.27 days) (p < 0.05) No significant difference in blood routine improvement, pulmonary chest shadow in chest film improvement and corticosteroid usgae between the 2 groups. However, particularly in the respect of improving clinical symptoms, elevating quality of life, promoting immune function recovery, promoting absorption of pulmonary inflammation, reducing the dosage of cortisteroid and shortening the therapeutic course, treatment with integrative chinese and western medicine treatment had obvious superiority compared with using control treatment alone. Single infusions of SAB-301 up to 50 mg/kg appear to be safe and well-tolerated in healthy participants. [46] Where the biological samples are taken from also play a role in the sensitivity of these tests. For SARS-CoV and MERS-CoV, specimens collected from the lower respiratory tract such as sputum and tracheal aspirates have higher and more prolonged levels of viral RNA because of the tropism of the virus. MERS-CoV viral loads are also higher for severe cases and have longer viral shedding compared to mild cases. Although upper respiratory tract specimens such as nasopharyngeal or oropharyngeal swabs can be used, they have potentially lower viral loads and may have higher risk of false-negatives among the mild MERS and SARS cases [102, 103] , and likely among the 2019-nCoV cases.
The existing practices in detecting genetic material of coronaviruses such as SARS-CoV and MERS-CoV include (a) reverse transcription-polymerase chain reaction (RT-PCR), (b) real-time RT-PCR (rRT-PCR), (c) reverse transcription loop-mediated isothermal amplification (RT-LAMP) and (d) real-time RT-LAMP [104] . Nucleic amplification tests (NAAT) are usually preferred as in the case of MERS-CoV diagnosis as it has the highest sensitivity at the earliest time point in the acute phase of infection [102] . Chinese health authorities have recently posted the full genome of 2019-nCoV in the GenBank and in GISAID portal to facilitate in the detection of the virus [11] . Several laboratory assays have been developed to detect the novel coronavirus in Wuhan, as highlighted in WHO's interim guidance on nCoV laboratory testing of suspected cases. These include protocols from other countries such as Thailand, Japan and China [105] .
The first validated diagnostic test was designed in Germany. Corman et al. had initially designed a candidate diagnostic RT-PCR assay based on the SARS or SARS-related coronavirus as it was suggested that circulating virus was SARS-like. Upon the release of the sequence, assays were selected based on the match against 2019-nCoV upon inspection of the sequence alignment. Two assays were used for the RNA dependent RNA polymerase (RdRP) gene and E gene where E gene assay acts as the first-line screening tool and RdRp gene assay as the confirmatory testing. All assays were highly sensitive and specific in that they did not cross-react with other coronavirus and also human clinical samples that contained respiratory viruses [11] .
The Hong Kong University used two monoplex assays which were reactive with coronaviruses under the subgenus Sarbecovirus (consisting of 2019-nCoV, SARS-CoV and SARS-like coronavirus). Viral RNA extracted from SARS-CoV can be used as the positive control for the suggested protocol assuming that SARS has been eradicated. It is proposed that the N gene RT-PCR can be used as a screening assay while the Orf1b assay acts as a confirmatory test. However, this protocol has only been evaluated with a panel of controls with the only positive control SARS-CoV RNA. Synthetic oligonucleotide positive control or 2019-nCoV have yet to be tested [106] .
The US CDC shared the protocol on the real time RT-PCR assay for the detection of the 2019-nCoV with the primers and probes designed for the universal detection of SARS-like coronavirus and the specific detection of 2019-nCoV. However, the protocol has not been validated on other platforms or chemistries apart from the protocol described. There are some limitations for the assay. Analysts engaged have to be trained and familiar with the testing procedure and result interpretation. False negative results may occur due to insufficient organisms in the specimen resulting from improper collection, transportation or handling. Also, RNA viruses may show substantial genetic variability. This could result in mismatch between the primer and probes with the target sequence which can diminish the assay performance or result in false negative results [107] . Point-of-care test kit can potentially minimize these limitations, which should be highly prioritized for research and development in the next few months.
Serological testing such as ELISA, IIFT and neutralization tests are effective in determining the extent of infection, including estimating asymptomatic and attack rate. Compared to the detection of viral genome through molecular methods, serological testing detects antibodies and antigens. There would be a lag period as antibodies specifically targeting the virus would normally appear between 14 and 28 days after the illness onset [108] . Furthermore, studies suggest that low antibody titers in the second week or delayed antibody production could be associated with mortality with a high viral load. Hence, serological diagnoses are likely used when nucleic amplification tests (NAAT) are not available or accessible [102] .
Vaccines can prevent and protect against infection and disease occurrence when exposed to the specific pathogen of interest, especially in vulnerable populations who are more prone to severe outcomes. In the context of the current 2019-nCoV outbreak, vaccines will help control and reduce disease transmission by creating herd immunity in addition to protecting healthy individuals from infection. This decreases the effective R0 value of the disease. Nonetheless, there are social, clinical and economic hurdles for vaccine and vaccination programmes, including (a) the willingness of the public to undergo vaccination with a novel vaccine, (b) the side effects and severe adverse reactions of vaccination, (c) the potential difference and/or low efficacy of the vaccine in populations different from the clinical trials' populations and (d) the accessibility of the vaccines to a given population (including the cost and availability of the vaccine).
Vaccines against the 2019-nCoV are currently in development and none are in testing (at the time of writing). On 23 January 2020, the Coalition for Epidemic Preparedness Innovations (CEPI) announced that they will fund vaccine development programmes with Inovio, The University of Queensland and Moderna, Inc respectively, with the aim to test the experimental vaccines clinically in 16 weeks (By June 2020). The vaccine candidates will be developed by the DNA, recombinant and mRNA vaccine platforms from these organizations [109] .
Based on the most recent MERS-CoV outbreak, there are already a number of vaccine candidates being developed but most are still in the preclinical testing stage. The vaccines in development include viral vector-based vaccine, DNA vaccine, subunit vaccine, virus-like particles (VLPs)-based vaccine, inactivated whole-virus (IWV) vaccine and live attenuated vaccine. The latest findings for these vaccines arebased on the review by Yong et al. (2019) in August 2019 [110] . As of the date of reporting, there is only one published clinical study on the MERS-CoV vaccine by GeneOne Life Science & Inovio Pharmaceuticals [47] . There was one SARS vaccine trial conducted by the US National Institute of Allergy and Infectious Diseases. Both Phase I clinical trials reported positive results, but only one has announced plans to proceed to Phase 2 trial [111] .
Due to the close genetic relatedness of SARS-CoV (79%) with 2019-nCoV [112] , there may be potential cross-protective effect of using a safe SARS-CoV vaccine while awaiting the 2019-nCoV vaccine. However, this would require small scale phase-by-phase implementation and close monitoring of vaccinees before any large scale implementation.
Apart from the timely diagnosis of cases, the achievement of favorable clinical outcomes depends on the timely treatment administered. ACE2 has been reported to be the same cell entry receptor used by 2019-nCoV to infect humans as SARS-CoV [113] . Hence, clinical similarity between the two viruses is expected, particularly in severe cases. In addition, most of those who have died from MERS-CoV, SARS-CoV and 2019-nCoV were advance in age and had underlying health conditions such as hypertension, diabetes or cardiovascular disease that compromised their immune systems [114] . Coronaviruses have error-prone RNA-dependent RNA polymerases (RdRP), which result in frequent mutations and recombination events. This results in quasispecies diversity that is closely associated with adaptive evolution and the capacity to enhance viral-cell entry to cause disease over time in a specific population at-risk [115] . Since ACE2 is abundantly present in humans in the epithelia of the lung and small intestine, coronaviruses are likely to infect the upper respiratory and gastrointestinal tract and this may influence the type of therapeutics against 2019-nCoV, similarly to SAR-CoV.
However, in the years following two major coronavirus outbreaks SARS-CoV in 2003 and MERS-CoV in 2012, there remains no consensus on the optimal therapy for either disease [116, 117] . Well-designed clinical trials that provide the gold standard for assessing the therapeutic measures are scarce. No coronavirus protease inhibitors have successfully completed a preclinical development program despite large efforts exploring SARS-CoV inhibitors. The bulk of potential therapeutic strategies remain in the experimental phase, with only a handful crossing the in vitro hurdle. Stronger efforts are required in the research for treatment options for major coronaviruses given their pandemic potential. Effective treatment options are essential to maximize the restoration of affected populations to good health following infections. Clinical trials have commenced in China to identify effective treatments for 2019-nCoV based on the treatment evidence from SARS and MERS. There is currently no effective specific antiviral with high-level evidence; any specific antiviral therapy should be provided in the context of a clinical study/trial. Few treatments have shown real curative action against SARS and MERS and the literature generally describes isolated cases or small case series.
Many interferons from the three classes have been tested for their antiviral activities against SARS-CoV both in vitro and in animal models. Interferon β has consistently been shown to be the most active, followed by interferon α. The use of corticosteroids with interferon alfacon-1 (synthetic interferon α) appeared to have improved oxygenation and faster resolution of chest radiograph abnormalities in observational studies with untreated controls. Interferon has been used in multiple observational studies to treat SARS-CoV and MERS-CoV patients [116, 117] . Interferons, with or without ribavirin, and lopinavir/ritonavir are most likely to be beneficial and are being trialed in China for 2019-nCoV. This drug treatment appears to be the most advanced. Timing of treatment is likely an important factor in effectiveness. A combination of ribavirin and lopinavir/ritonavir was used as a post-exposure prophylaxis in health care workers and may have reduced the risk of infection. Ribavirin alone is unlikely to have substantial antiviral activities at clinically used dosages. Hence, ribavirin with or without corticosteroids and with lopinavir and ritonavir are among the combinations employed. This was the most common agent reported in the available literature. Its efficacy has been assessed in observational studies, retrospective case series, retrospective cohort study, a prospective observational study, a prospective cohort study and randomized controlled trial ranging from seven to 229 participants [117] . Lopinavir/ritonavir (Kaletra) was the earliest protease inhibitor combination introduced for the treatment of SARS-CoV. Its efficacy was documented in several studies, causing notably lower incidence of adverse outcomes than with ribavirin alone. Combined usage with ribavirin was also associated with lower incidence of acute respiratory distress syndrome, nosocomial infection and death, amongst other favorable outcomes. Recent in vitro studies have shown another HIV protease inhibitor, nelfinavir, to have antiviral capacity against SARS-CoV, although it has yet to show favorable outcomes in animal studies [118] . Remdesivir (Gilead Sciences, GS-5734) nucleoside analogue in vitro and in vivo data support GS-5734 development as a potential pan-coronavirus antiviral based on results against several coronaviruses (CoVs), including highly pathogenic CoVs and potentially emergent BatCoVs. The use of remdesivir may be a good candidate as an investigational treatment.
Improved mortality following receipt of convalescent plasma in various doses was consistently reported in several observational studies involving cases with severe acute respiratory infections (SARIs) of viral etiology. A significant reduction in the pooled odds of mortality following treatment of 0.25 compared to placebo or no therapy was observed [119] . Studies were however at moderate to high risk of bias given their small sample sizes, allocation of treatment based on the physician's discretion, and the availability of plasma. Factors like concomitant treatment may have also confounded the results. Associations between convalescent plasma and hospital length of stay, viral antibody levels, and viral load respectively were similarly inconsistent across available literature. Convalescent plasma, while promising, is likely not yet feasible, given the limited pool of potential donors and issues of scalability. Monoclonal antibody treatment is progressing. SARS-CoV enters host cells through the binding of their spike (S) protein to angiotensin converting enzyme 2 (ACE2) and CD209L [118] . Human monoclonal antibodies to the S protein have been shown to significantly reduce the severity of lung pathology in non-human primates following MERS-CoV infection [120] . Such neutralizing antibodies can be elicited by active or passive immunization using vaccines or convalescent plasma respectively. While such neutralizing antibodies can theoretically be harvested from individuals immunized with vaccines, there is uncertainty over the achievement of therapeutic levels of antibodies.
Other therapeutic agents have also been reported. A known antimalarial agent, chloroquine, elicits antiviral effects against multiple viruses including HIV type 1, hepatitis B and HCoV-229E. Chloroquine is also immunomodulatory, capable of suppressing the production and release of factors which mediate the inflammatory complications of viral diseases (tumor necrosis factor and interleukin 6) [121] . It is postulated that chloroquine works by altering ACE2 glycosylation and endosomal pH. Its anti-inflammatory properties may be beneficial for the treatment of SARS. Niclosamide as a known drug used in antihelminthic treatment. The efficacy of niclosamide as an inhibitor of virus replication was proven in several assays. In both immunoblot analysis and immunofluorescence assays, niclosamide treatment was observed to completely inhibit viral antigen synthesis. Reduction of virus yield in infected cells was dose dependent. Niclosamide likely does not interfere in the early stages of virus attachment and entry into cells, nor does it function as a protease inhibitor. Mechanisms of niclosamide activity warrant further investigation [122] . Glycyrrhizin also reportedly inhibits virus adsorption and penetration in the early steps of virus replication. Glycyrrhizin was a significantly potent inhibitor with a low selectivity index when tested against several pathogenic flaviviruses. While preliminary results suggest production of nitrous oxide (which inhibits virus replication) through induction of nitrous oxide synthase, the mechanism of Glycyrrhizin against SARS-CoV remains unclear. The compound also has relatively lower toxicity compared to protease inhibitors like ribavirin [123] . Inhibitory activity was also detected in baicalin [124] , extracted from another herb used in the treatment of SARS in China and Hong Kong. Findings on these compounds are limited to in vitro studies [121] [122] [123] [124] .
Due to the rapidly evolving situation of the 2019-nCoV, there will be potential limitations to the systematic review. The systematic review is likely to have publication bias as some developments have yet to be reported while for other developments there is no intention to report publicly (or in scientific platforms) due to confidentiality concerns. However, this may be limited to only a few developments for review as publicity does help in branding to some extent for the company and/or the funder. Furthermore, due to the rapid need to share the status of these developments, there may be reporting bias in some details provided by authors of the scientific articles or commentary articles in traditional media. Lastly, while it is not viable for any form of quality assessment and metaanalysis of the selected articles due to the limited data provided and the heterogeneous style of reporting by different articles, this paper has provided a comprehensive overview of the potential developments of these pharmaceutical interventions during the early phase of the outbreak. This systematic review would be useful for cross-check when the quality assessment and meta-analysis of these developments are performed as a follow-up study.
Rapid diagnostics, vaccines and therapeutics are key pharmaceutical interventions to limit transmission of respiratory infectious diseases. Many potential developments on these pharmaceutical interventions for 2019-nCoV are ongoing in the containment phase of this outbreak, potentially due to better pandemic preparedness than before. However, lessons from MERS-CoV and SARS-CoV have shown that the journeys for these developments can still be challenging moving ahead.
Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1 : Example of full search strategy in Pubmed, Table S2 : Google Search: 2019-nCoV diagnostics, Table S3 : Summary of diagnostic assays developed for 2019-nCoV, Table S4 | 2,486 | What were the results? | {
"answer_start": [
21267
],
"text": [
"All assays were highly sensitive and specific in that they did not cross-react with other coronavirus and also human clinical samples that contained respiratory viruses "
]
} | 3,674 |
604 | Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review
https://doi.org/10.3390/jcm9030623
SHA: 9b0c87f808b1b66f2937d7a7acb524a756b6113b
Authors: Pang, Junxiong; Wang, Min Xian; Ang, Ian Yi Han; Tan, Sharon Hui Xuan; Lewis, Ruth Frances; Chen, Jacinta I. Pei; Gutierrez, Ramona A.; Gwee, Sylvia Xiao Wei; Chua, Pearleen Ee Yong; Yang, Qian; Ng, Xian Yi; Yap, Rowena K. S.; Tan, Hao Yi; Teo, Yik Ying; Tan, Chorh Chuan; Cook, Alex R.; Yap, Jason Chin-Huat; Hsu, Li Yang
Date: 2020
DOI: 10.3390/jcm9030623
License: cc-by
Abstract: Rapid diagnostics, vaccines and therapeutics are important interventions for the management of the 2019 novel coronavirus (2019-nCoV) outbreak. It is timely to systematically review the potential of these interventions, including those for Middle East respiratory syndrome-Coronavirus (MERS-CoV) and severe acute respiratory syndrome (SARS)-CoV, to guide policymakers globally on their prioritization of resources for research and development. A systematic search was carried out in three major electronic databases (PubMed, Embase and Cochrane Library) to identify published studies in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Supplementary strategies through Google Search and personal communications were used. A total of 27 studies fulfilled the criteria for review. Several laboratory protocols for confirmation of suspected 2019-nCoV cases using real-time reverse transcription polymerase chain reaction (RT-PCR) have been published. A commercial RT-PCR kit developed by the Beijing Genomic Institute is currently widely used in China and likely in Asia. However, serological assays as well as point-of-care testing kits have not been developed but are likely in the near future. Several vaccine candidates are in the pipeline. The likely earliest Phase 1 vaccine trial is a synthetic DNA-based candidate. A number of novel compounds as well as therapeutics licensed for other conditions appear to have in vitro efficacy against the 2019-nCoV. Some are being tested in clinical trials against MERS-CoV and SARS-CoV, while others have been listed for clinical trials against 2019-nCoV. However, there are currently no effective specific antivirals or drug combinations supported by high-level evidence.
Text: Since mid-December 2019 and as of early February 2020, the 2019 novel coronavirus (2019-nCoV) originating from Wuhan (Hubei Province, China) has infected over 25,000 laboratory-confirmed cases across 28 countries with about 500 deaths (a case-fatality rate of about 2%). More than 90% of the cases and deaths were in China [1] . Based on the initial reported surge of cases in Wuhan, the majority were males with a median age of 55 years and linked to the Huanan Seafood Wholesale Market [2] . Most of the reported cases had similar symptoms at the onset of illness such as fever, cough, and myalgia or fatigue. Most cases developed pneumonia and some severe and even fatal respiratory diseases such as acute respiratory distress syndrome [3] .
The 2019 novel coronavirus (2019-nCoV), a betacoronavirus, forms a clade within the subgenus sarbecovirus of the Orthocoronavirinae subfamily [4] . The severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are also betacoronaviruses that are zoonotic in origin and have been linked to potential fatal illness during the outbreaks in 2003 and 2012, respectively [5, 6] . Based on current evidence, pathogenicity for 2019-nCoV is about 3%, which is significantly lower than SARS-CoV (10%) and MERS-CoV (40%) [7] . However, 2019-nCoV has potentially higher transmissibility (R0: 1.4-5.5) than both SARS-CoV (R0: [2] [3] [4] [5] and MERS-CoV (R0: <1) [7] .
With the possible expansion of 2019-nCoV globally [8] and the declaration of the 2019-nCoV outbreak as a Public Health Emergency of International Concern by the World Health Organization, there is an urgent need for rapid diagnostics, vaccines and therapeutics to detect, prevent and contain 2019-nCoV promptly. There is however currently a lack of understanding of what is available in the early phase of 2019-nCoV outbreak. The systematic review describes and assesses the potential rapid diagnostics, vaccines and therapeutics for 2019-nCoV, based in part on the developments for MERS-CoV and SARS-CoV.
A systematic search was carried out in three major electronic databases (PubMed, Embase and Cochrane Library) to identify published studies examining the diagnosis, therapeutic drugs and vaccines for Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS) and the 2019 novel coronavirus (2019-nCoV), in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
There were two independent reviewers each focusing on SARS, MERS, and 2019-nCoV, respectively. A third independent reviewer was engaged to resolve any conflicting article of interest. We used the key words "SARS", "coronavirus", "MERS", "2019 Novel coronavirus", "Wuhan virus" to identify the diseases in the search strategy. The systematic searches for diagnosis, therapeutic drugs and vaccines were carried out independently and the key words "drug", "therapy", "vaccine", "diagnosis", "point of care testing" and "rapid diagnostic test" were used in conjunction with the disease key words for the respective searches.
Examples of search strings can be found in Table S1 . We searched for randomized controlled trials (RCTs) and validation trials (for diagnostics test) published in English, that measured (a) the sensitivity and/or specificity of a rapid diagnostic test or a point-of-care testing kit, (b) the impact of drug therapy or (c) vaccine efficacy against either of these diseases with no date restriction applied. For the 2019-nCoV, we searched for all in vitro, animal, or human studies published in English between 1 December 2019 and 6 February 2020, on the same outcomes of interest. In addition, we reviewed the references of retrieved articles in order to identify additional studies or reports not retrieved by the initial searches. Studies that examined the mechanisms of diagnostic tests, drug therapy or vaccine efficacy against SARS, MERS and 2019-nCoV were excluded. A Google search for 2019-nCoV diagnostics (as of 6 February 2020; Table S2 ) yielded five webpage links from government and international bodies with official information and guidelines (WHO, Europe CDC, US CDC, US FDA), three webpage links on diagnostic protocols and scientific commentaries, and five webpage links on market news and press releases. Six protocols for diagnostics using reverse transcriptase polymerase chain reaction (RT-PCR) from six countries were published on WHO's website [9] . Google search for 2019-nCoV vaccines yielded 19 relevant articles.
With the emergence of 2019-nCoV, real time RT-PCR remains the primary means for diagnosing the new virus strain among the many diagnostic platforms available ( [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] ; Table S3 ). Among the 16 diagnostics studies selected, one study discussed the use of RT-PCR in diagnosing patients with 2019-nCoV [11] ( Table 1 ). The period and type of specimen collected for RT-PCR play an important role in the diagnosis of 2019-nCoV. It was found that the respiratory specimens were positive for the virus while serum was negative in the early period. It has also suggested that in the early days of illness, patients have high levels of virus despite the mild symptoms.
Apart from the commonly used RT-PCR in diagnosing MERS-CoV, four studies identified various diagnostic methods such as reverse transcription loop-mediated isothermal amplification (RT-LAMP), RT-insulated isothermal PCR (RT-iiPCR) and a one-step rRT-PCR assay based on specific TaqMan probes. RT-LAMP has similar sensitivity as real time RT-PCR. It is also highly specific and is used to detect MERS-CoV. It is comparable to the usual diagnostic tests and is rapid, simple and convenient. Likewise, RT-iiPCR and a one-step rRT-PCR assay have also shown similar sensitivity and high specificity for MER-CoV. Lastly, one study focused on the validation of the six commercial real RT-PCR kits, with high accuracy. Although real time RT-PCR is a primary method for diagnosing MERS-CoV, high levels of PCR inhibition may hinder PCR sensitivity (Table 1) .
There are eleven studies that focus on SARS-CoV diagnostic testing (Table 1) . These papers described diagnostic methods to detect the virus with the majority of them using molecular testing for diagnosis. Comparison between the molecular test (i.e RT-PCR) and serological test (i.e., ELISA) showed that the molecular test has better sensitivity and specificity. Hence, enhancements to the current molecular test were conducted to improve the diagnosis. Studies looked at using nested PCR to include a pre-amplification step or incorporating N gene as an additional sensitive molecular marker to improve on the sensitivity (Table 1 ).
In addition, there are seven potential rapid diagnostic kits (as of 24 January 2020; Table 2 ) available on the market for 2019-nCoV. Six of these are only for research purposes. Only one kit from Beijing Genome Institute (BGI) is approved for use in the clinical setting for rapid diagnosis. Most of the kits are for RT-PCR. There were two kits (BGI, China and Veredus, Singapore) with the capability to detect multiple pathogens using sequencing and microarray technologies, respectively. The limit of detection of the enhanced realtime PCR method was 10 2 -fold higher than the standard real-time PCR assay and 10 7fold higher than conventional PCR methods In the clinical aspect, the enhanced realtime PCR method was able to detect 6 cases of SARS-CoV positive samples that were not confirmed by any other assay [25] • The real time PCR has a threshold sensitivity of 10 genome equivalents per reaction and it has a good reproducibility with the inter-assay coefficients of variation of 1.73 to 2.72%. • 13 specimens from 6 patients were positive with viral load range from 362 to 36,240,000 genome equivalents/mL. The real-time RT-PCR reaction was more sensitive than the nested PCR reaction, as the detection limit for the nested PCR reaction was about 10 3 genome equivalents in the standard cDNA control. [34] Real-time reverse-transcription PCR (rRT-PCR); RNA-dependent RNA polymerase (RdRp); open reading frame 1a (ORF1a); Loop-mediated isothermal amplification (LAMP); enzyme-linked immunosorbent assay (ELISA); immunofluorescent assay (IFA); immunochromatographic test (ICT); nasopharyngeal aspirate (NPA).
With the emergence of 2019-nCoV, there are about 15 potential vaccine candidates in the pipeline globally (Table 3 ), in which a wide range of technology (such as messenger RNA, DNA-based, nanoparticle, synthetic and modified virus-like particle) was applied. It will likely take about a year for most candidates to start phase 1 clinical trials except for those funded by Coalition for Epidemic Preparedness Innovations (CEPI). However, the kit developed by the BGI have passed emergency approval procedure of the National Medical Products Administration, and are currently used in clinical and surveillance centers of China [40] .
Of the total of 570 unique studies on 2019-nCoV, SARS CoV or MERS-CoV vaccines screened, only four were eventually included in the review. Most studies on SARS and MERS vaccines were excluded as they were performed in cell or animal models ( Figure 1 ). The four studies included in this review were Phase I clinical trials on SARS or MERS vaccines (Table 4 ) [44] [45] [46] [47] . There were no studies of any population type (cell, animal, human) on the 2019-nCoV at the point of screening. The published clinical trials were mostly done in United States except for one on the SARS vaccine done in China [44] . All vaccine candidates for SARS and MERS were reported to be safe, well-tolerated and able to trigger the relevant and appropriate immune responses in the participants. In addition, we highlight six ongoing Phase I clinical trials identified in the ClinicalTrials.gov register ( [48, 49] ); Table S4 ) [50] [51] [52] . These trials are all testing the safety and immunogenicity of their respective MERS-CoV vaccine candidates but were excluded as there are no results published yet. The trials are projected to complete in December 2020 (two studies in Russia [50, 51] ) and December 2021 (in Germany [52] ).
Existing literature search did not return any results on completed 2019-nCoV trials at the time of writing. Among 23 trials found from the systematic review (Table 5) , there are nine clinical trials registered under the clinical trials registry (ClinicalTrials.gov) for 2019-nCoV therapeutics [53] [54] [55] [56] [57] [58] [59] [60] [61] . Of which five studies on hydroxychloroquine, lopinavir plus ritonavir and arbidol, mesenchymal stem cells, traditional Chinese medicine and glucocorticoid therapy usage have commenced recruitment. The remaining four studies encompass investigation of antivirals, interferon atomization, darunavir and cobicistat, arbidol, and remdesivir usage for 2019-nCoV patients (Table 5) . Seroconversion measured by S1-ELISA occurred in 86% and 94% participants after 2 and 3 doses, respectively, and was maintained in 79% participants up to study end at week 60. Neutralising antibodies were detected in 50% participants at one or more time points during the study, but only 3% maintained neutralisation activity to end of study. T-cell responses were detected in 71% and 76% participants after 2 and 3 doses, respectively. There were no differences in immune responses between dose groups after 6 weeks and vaccine-induced humoral and cellular responses were respectively detected in 77% and 64% participants at week 60.
[47] Molecules developed by the university scientists inhibit two coronavirus enzymes and prevent its replication. The discovered drug targets are said to be more than 95% similar to enzyme targets found on the SARS virus. Researchers note that identified drugs may not be available to address the ongoing outbreak but they hope to make it accessible for future outbreaks.
[85] Besides the six completed randomized controlled trials (RCT) selected from the systematic review (Table 6) , there is only one ongoing randomized controlled trial targeted at SARS therapeutics [92] . The studies found from ClinicalTrials.gov have not been updated since 2013. While many prospective and retrospective cohort studies conducted during the epidemic centered on usage of ribavirin with lopinavir/ritonavir or ribavirin only, there has yet to be well-designed clinical trials investigating their usage. Three completed randomized controlled trials were conducted during the SARS epidemic-3 in China, 1 in Taiwan and 2 in Hong Kong [93] [94] [95] [96] [97] . The studies respectively investigated antibiotic usage involving 190 participants, combination of western and Chinese treatment vs. Chinese treatment in 123 participants, integrative Chinese and Western treatment in 49 patients, usage of a specific Chinese medicine in four participants and early use of corticosteroid in 16 participants. Another notable study was an open non-randomized study investigating ribavirin/lopinavir/ritonavir usage in 152 participants [98] . One randomized controlled trial investigating integrative western and Chinese treatment during the SARS epidemic was excluded as it was a Chinese article [94] .
There is only one ongoing randomized controlled trial targeted at MERS therapeutics [99] . It investigates the usage of Lopinavir/Ritonavir and Interferon Beta 1B. Likewise, many prospective and retrospective cohort studies conducted during the epidemic centered on usage of ribavirin with lopinavir/ritonavir/ribavirin, interferon, and convalescent plasma usage. To date, only one trial has been completed. One phase 1 clinical trial investigating the safety and tolerability of a fully human polyclonal IgG immunoglobulin (SAB-301) was found in available literature [46] . The trial conducted in the United States in 2017 demonstrated SAB-301 to be safe and well-tolerated at single doses. Another trial on MERS therapeutics was found on ClinicalTrials.gov-a phase 2/3 trial in the United States evaluating the safety, tolerability, pharmacokinetics (PK), and immunogenicity on coadministered MERS-CoV antibodies REGN3048 & REGN3051 [100].
Rapid diagnostics plays an important role in disease and outbreak management. The fast and accurate diagnosis of a specific viral infection enables prompt and accurate public health surveillance, prevention and control measures. Local transmission and clusters can be prevented or delayed by isolation of laboratory-confirmed cases and their close contacts quarantined and monitored at home. Rapid diagnostic also facilitates other specific public health interventions such as closure of high-risk facilities and areas associated with the confirmed cases for prompt infection control and environmental decontamination [11, 101] .
Laboratory diagnosis can be performed by: (a) detecting the genetic material of the virus, (b) detecting the antibodies that neutralize the viral particles of interest, (c) detecting the viral epitopes of interest with antibodies (serological testing), or (d) culture and isolation of viable virus particles.
The key limitations of genetic material detection are the lack of knowledge of the presence of viable virus, the potential cross-reactivity with non-specific genetic regions and the short timeframe for accurate detection during the acute infection phase. The key limitations of serological testing is the need to collect paired serum samples (in the acute and convalescent phases) from cases under investigation for confirmation to eliminate potential cross-reactivity from non-specific antibodies from past exposure and/or infection by other coronaviruses. The limitation of virus culture and isolation is the long duration and the highly specialized skills required of the technicians to process the samples. All patients recovered.
Significantly shorted time from the disease onset to the symptom improvement in treatment (5.10 ± 2.83 days) compared to control group (7.62 ± 2.27 days) (p < 0.05) No significant difference in blood routine improvement, pulmonary chest shadow in chest film improvement and corticosteroid usgae between the 2 groups. However, particularly in the respect of improving clinical symptoms, elevating quality of life, promoting immune function recovery, promoting absorption of pulmonary inflammation, reducing the dosage of cortisteroid and shortening the therapeutic course, treatment with integrative chinese and western medicine treatment had obvious superiority compared with using control treatment alone. Single infusions of SAB-301 up to 50 mg/kg appear to be safe and well-tolerated in healthy participants. [46] Where the biological samples are taken from also play a role in the sensitivity of these tests. For SARS-CoV and MERS-CoV, specimens collected from the lower respiratory tract such as sputum and tracheal aspirates have higher and more prolonged levels of viral RNA because of the tropism of the virus. MERS-CoV viral loads are also higher for severe cases and have longer viral shedding compared to mild cases. Although upper respiratory tract specimens such as nasopharyngeal or oropharyngeal swabs can be used, they have potentially lower viral loads and may have higher risk of false-negatives among the mild MERS and SARS cases [102, 103] , and likely among the 2019-nCoV cases.
The existing practices in detecting genetic material of coronaviruses such as SARS-CoV and MERS-CoV include (a) reverse transcription-polymerase chain reaction (RT-PCR), (b) real-time RT-PCR (rRT-PCR), (c) reverse transcription loop-mediated isothermal amplification (RT-LAMP) and (d) real-time RT-LAMP [104] . Nucleic amplification tests (NAAT) are usually preferred as in the case of MERS-CoV diagnosis as it has the highest sensitivity at the earliest time point in the acute phase of infection [102] . Chinese health authorities have recently posted the full genome of 2019-nCoV in the GenBank and in GISAID portal to facilitate in the detection of the virus [11] . Several laboratory assays have been developed to detect the novel coronavirus in Wuhan, as highlighted in WHO's interim guidance on nCoV laboratory testing of suspected cases. These include protocols from other countries such as Thailand, Japan and China [105] .
The first validated diagnostic test was designed in Germany. Corman et al. had initially designed a candidate diagnostic RT-PCR assay based on the SARS or SARS-related coronavirus as it was suggested that circulating virus was SARS-like. Upon the release of the sequence, assays were selected based on the match against 2019-nCoV upon inspection of the sequence alignment. Two assays were used for the RNA dependent RNA polymerase (RdRP) gene and E gene where E gene assay acts as the first-line screening tool and RdRp gene assay as the confirmatory testing. All assays were highly sensitive and specific in that they did not cross-react with other coronavirus and also human clinical samples that contained respiratory viruses [11] .
The Hong Kong University used two monoplex assays which were reactive with coronaviruses under the subgenus Sarbecovirus (consisting of 2019-nCoV, SARS-CoV and SARS-like coronavirus). Viral RNA extracted from SARS-CoV can be used as the positive control for the suggested protocol assuming that SARS has been eradicated. It is proposed that the N gene RT-PCR can be used as a screening assay while the Orf1b assay acts as a confirmatory test. However, this protocol has only been evaluated with a panel of controls with the only positive control SARS-CoV RNA. Synthetic oligonucleotide positive control or 2019-nCoV have yet to be tested [106] .
The US CDC shared the protocol on the real time RT-PCR assay for the detection of the 2019-nCoV with the primers and probes designed for the universal detection of SARS-like coronavirus and the specific detection of 2019-nCoV. However, the protocol has not been validated on other platforms or chemistries apart from the protocol described. There are some limitations for the assay. Analysts engaged have to be trained and familiar with the testing procedure and result interpretation. False negative results may occur due to insufficient organisms in the specimen resulting from improper collection, transportation or handling. Also, RNA viruses may show substantial genetic variability. This could result in mismatch between the primer and probes with the target sequence which can diminish the assay performance or result in false negative results [107] . Point-of-care test kit can potentially minimize these limitations, which should be highly prioritized for research and development in the next few months.
Serological testing such as ELISA, IIFT and neutralization tests are effective in determining the extent of infection, including estimating asymptomatic and attack rate. Compared to the detection of viral genome through molecular methods, serological testing detects antibodies and antigens. There would be a lag period as antibodies specifically targeting the virus would normally appear between 14 and 28 days after the illness onset [108] . Furthermore, studies suggest that low antibody titers in the second week or delayed antibody production could be associated with mortality with a high viral load. Hence, serological diagnoses are likely used when nucleic amplification tests (NAAT) are not available or accessible [102] .
Vaccines can prevent and protect against infection and disease occurrence when exposed to the specific pathogen of interest, especially in vulnerable populations who are more prone to severe outcomes. In the context of the current 2019-nCoV outbreak, vaccines will help control and reduce disease transmission by creating herd immunity in addition to protecting healthy individuals from infection. This decreases the effective R0 value of the disease. Nonetheless, there are social, clinical and economic hurdles for vaccine and vaccination programmes, including (a) the willingness of the public to undergo vaccination with a novel vaccine, (b) the side effects and severe adverse reactions of vaccination, (c) the potential difference and/or low efficacy of the vaccine in populations different from the clinical trials' populations and (d) the accessibility of the vaccines to a given population (including the cost and availability of the vaccine).
Vaccines against the 2019-nCoV are currently in development and none are in testing (at the time of writing). On 23 January 2020, the Coalition for Epidemic Preparedness Innovations (CEPI) announced that they will fund vaccine development programmes with Inovio, The University of Queensland and Moderna, Inc respectively, with the aim to test the experimental vaccines clinically in 16 weeks (By June 2020). The vaccine candidates will be developed by the DNA, recombinant and mRNA vaccine platforms from these organizations [109] .
Based on the most recent MERS-CoV outbreak, there are already a number of vaccine candidates being developed but most are still in the preclinical testing stage. The vaccines in development include viral vector-based vaccine, DNA vaccine, subunit vaccine, virus-like particles (VLPs)-based vaccine, inactivated whole-virus (IWV) vaccine and live attenuated vaccine. The latest findings for these vaccines arebased on the review by Yong et al. (2019) in August 2019 [110] . As of the date of reporting, there is only one published clinical study on the MERS-CoV vaccine by GeneOne Life Science & Inovio Pharmaceuticals [47] . There was one SARS vaccine trial conducted by the US National Institute of Allergy and Infectious Diseases. Both Phase I clinical trials reported positive results, but only one has announced plans to proceed to Phase 2 trial [111] .
Due to the close genetic relatedness of SARS-CoV (79%) with 2019-nCoV [112] , there may be potential cross-protective effect of using a safe SARS-CoV vaccine while awaiting the 2019-nCoV vaccine. However, this would require small scale phase-by-phase implementation and close monitoring of vaccinees before any large scale implementation.
Apart from the timely diagnosis of cases, the achievement of favorable clinical outcomes depends on the timely treatment administered. ACE2 has been reported to be the same cell entry receptor used by 2019-nCoV to infect humans as SARS-CoV [113] . Hence, clinical similarity between the two viruses is expected, particularly in severe cases. In addition, most of those who have died from MERS-CoV, SARS-CoV and 2019-nCoV were advance in age and had underlying health conditions such as hypertension, diabetes or cardiovascular disease that compromised their immune systems [114] . Coronaviruses have error-prone RNA-dependent RNA polymerases (RdRP), which result in frequent mutations and recombination events. This results in quasispecies diversity that is closely associated with adaptive evolution and the capacity to enhance viral-cell entry to cause disease over time in a specific population at-risk [115] . Since ACE2 is abundantly present in humans in the epithelia of the lung and small intestine, coronaviruses are likely to infect the upper respiratory and gastrointestinal tract and this may influence the type of therapeutics against 2019-nCoV, similarly to SAR-CoV.
However, in the years following two major coronavirus outbreaks SARS-CoV in 2003 and MERS-CoV in 2012, there remains no consensus on the optimal therapy for either disease [116, 117] . Well-designed clinical trials that provide the gold standard for assessing the therapeutic measures are scarce. No coronavirus protease inhibitors have successfully completed a preclinical development program despite large efforts exploring SARS-CoV inhibitors. The bulk of potential therapeutic strategies remain in the experimental phase, with only a handful crossing the in vitro hurdle. Stronger efforts are required in the research for treatment options for major coronaviruses given their pandemic potential. Effective treatment options are essential to maximize the restoration of affected populations to good health following infections. Clinical trials have commenced in China to identify effective treatments for 2019-nCoV based on the treatment evidence from SARS and MERS. There is currently no effective specific antiviral with high-level evidence; any specific antiviral therapy should be provided in the context of a clinical study/trial. Few treatments have shown real curative action against SARS and MERS and the literature generally describes isolated cases or small case series.
Many interferons from the three classes have been tested for their antiviral activities against SARS-CoV both in vitro and in animal models. Interferon β has consistently been shown to be the most active, followed by interferon α. The use of corticosteroids with interferon alfacon-1 (synthetic interferon α) appeared to have improved oxygenation and faster resolution of chest radiograph abnormalities in observational studies with untreated controls. Interferon has been used in multiple observational studies to treat SARS-CoV and MERS-CoV patients [116, 117] . Interferons, with or without ribavirin, and lopinavir/ritonavir are most likely to be beneficial and are being trialed in China for 2019-nCoV. This drug treatment appears to be the most advanced. Timing of treatment is likely an important factor in effectiveness. A combination of ribavirin and lopinavir/ritonavir was used as a post-exposure prophylaxis in health care workers and may have reduced the risk of infection. Ribavirin alone is unlikely to have substantial antiviral activities at clinically used dosages. Hence, ribavirin with or without corticosteroids and with lopinavir and ritonavir are among the combinations employed. This was the most common agent reported in the available literature. Its efficacy has been assessed in observational studies, retrospective case series, retrospective cohort study, a prospective observational study, a prospective cohort study and randomized controlled trial ranging from seven to 229 participants [117] . Lopinavir/ritonavir (Kaletra) was the earliest protease inhibitor combination introduced for the treatment of SARS-CoV. Its efficacy was documented in several studies, causing notably lower incidence of adverse outcomes than with ribavirin alone. Combined usage with ribavirin was also associated with lower incidence of acute respiratory distress syndrome, nosocomial infection and death, amongst other favorable outcomes. Recent in vitro studies have shown another HIV protease inhibitor, nelfinavir, to have antiviral capacity against SARS-CoV, although it has yet to show favorable outcomes in animal studies [118] . Remdesivir (Gilead Sciences, GS-5734) nucleoside analogue in vitro and in vivo data support GS-5734 development as a potential pan-coronavirus antiviral based on results against several coronaviruses (CoVs), including highly pathogenic CoVs and potentially emergent BatCoVs. The use of remdesivir may be a good candidate as an investigational treatment.
Improved mortality following receipt of convalescent plasma in various doses was consistently reported in several observational studies involving cases with severe acute respiratory infections (SARIs) of viral etiology. A significant reduction in the pooled odds of mortality following treatment of 0.25 compared to placebo or no therapy was observed [119] . Studies were however at moderate to high risk of bias given their small sample sizes, allocation of treatment based on the physician's discretion, and the availability of plasma. Factors like concomitant treatment may have also confounded the results. Associations between convalescent plasma and hospital length of stay, viral antibody levels, and viral load respectively were similarly inconsistent across available literature. Convalescent plasma, while promising, is likely not yet feasible, given the limited pool of potential donors and issues of scalability. Monoclonal antibody treatment is progressing. SARS-CoV enters host cells through the binding of their spike (S) protein to angiotensin converting enzyme 2 (ACE2) and CD209L [118] . Human monoclonal antibodies to the S protein have been shown to significantly reduce the severity of lung pathology in non-human primates following MERS-CoV infection [120] . Such neutralizing antibodies can be elicited by active or passive immunization using vaccines or convalescent plasma respectively. While such neutralizing antibodies can theoretically be harvested from individuals immunized with vaccines, there is uncertainty over the achievement of therapeutic levels of antibodies.
Other therapeutic agents have also been reported. A known antimalarial agent, chloroquine, elicits antiviral effects against multiple viruses including HIV type 1, hepatitis B and HCoV-229E. Chloroquine is also immunomodulatory, capable of suppressing the production and release of factors which mediate the inflammatory complications of viral diseases (tumor necrosis factor and interleukin 6) [121] . It is postulated that chloroquine works by altering ACE2 glycosylation and endosomal pH. Its anti-inflammatory properties may be beneficial for the treatment of SARS. Niclosamide as a known drug used in antihelminthic treatment. The efficacy of niclosamide as an inhibitor of virus replication was proven in several assays. In both immunoblot analysis and immunofluorescence assays, niclosamide treatment was observed to completely inhibit viral antigen synthesis. Reduction of virus yield in infected cells was dose dependent. Niclosamide likely does not interfere in the early stages of virus attachment and entry into cells, nor does it function as a protease inhibitor. Mechanisms of niclosamide activity warrant further investigation [122] . Glycyrrhizin also reportedly inhibits virus adsorption and penetration in the early steps of virus replication. Glycyrrhizin was a significantly potent inhibitor with a low selectivity index when tested against several pathogenic flaviviruses. While preliminary results suggest production of nitrous oxide (which inhibits virus replication) through induction of nitrous oxide synthase, the mechanism of Glycyrrhizin against SARS-CoV remains unclear. The compound also has relatively lower toxicity compared to protease inhibitors like ribavirin [123] . Inhibitory activity was also detected in baicalin [124] , extracted from another herb used in the treatment of SARS in China and Hong Kong. Findings on these compounds are limited to in vitro studies [121] [122] [123] [124] .
Due to the rapidly evolving situation of the 2019-nCoV, there will be potential limitations to the systematic review. The systematic review is likely to have publication bias as some developments have yet to be reported while for other developments there is no intention to report publicly (or in scientific platforms) due to confidentiality concerns. However, this may be limited to only a few developments for review as publicity does help in branding to some extent for the company and/or the funder. Furthermore, due to the rapid need to share the status of these developments, there may be reporting bias in some details provided by authors of the scientific articles or commentary articles in traditional media. Lastly, while it is not viable for any form of quality assessment and metaanalysis of the selected articles due to the limited data provided and the heterogeneous style of reporting by different articles, this paper has provided a comprehensive overview of the potential developments of these pharmaceutical interventions during the early phase of the outbreak. This systematic review would be useful for cross-check when the quality assessment and meta-analysis of these developments are performed as a follow-up study.
Rapid diagnostics, vaccines and therapeutics are key pharmaceutical interventions to limit transmission of respiratory infectious diseases. Many potential developments on these pharmaceutical interventions for 2019-nCoV are ongoing in the containment phase of this outbreak, potentially due to better pandemic preparedness than before. However, lessons from MERS-CoV and SARS-CoV have shown that the journeys for these developments can still be challenging moving ahead.
Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1 : Example of full search strategy in Pubmed, Table S2 : Google Search: 2019-nCoV diagnostics, Table S3 : Summary of diagnostic assays developed for 2019-nCoV, Table S4 | 2,486 | What did the trial on SAB-301 demonstrate? | {
"answer_start": [
16296
],
"text": [
" to be safe and well-tolerated at single doses."
]
} | 3,691 |
605 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What diminishes the effectiveness of annual influenza vaccinations? | {
"answer_start": [
415
],
"text": [
"Constant evolution of circulating influenza virus strains and the emergence of new strains"
]
} | 1,241 |
606 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | what new type of influenza vaccines are needed? | {
"answer_start": [
652
],
"text": [
"efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines."
]
} | 1,242 |
607 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What alternatives to classical vectored vaccines are needed? | {
"answer_start": [
784
],
"text": [
"Recombinant virus-vectored vaccines"
]
} | 1,243 |
608 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of virus vectored vaccine? | {
"answer_start": [
1082
],
"text": [
"a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract "
]
} | 1,244 |
609 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of virus vectored vaccines? | {
"answer_start": [
890
],
"text": [
" virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. "
]
} | 1,245 |
610 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is one of the issues with present vaccines? | {
"answer_start": [
1987
],
"text": [
" low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly"
]
} | 1,246 |
611 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What general types of vaccines are available? | {
"answer_start": [
2685
],
"text": [
"trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms)"
]
} | 1,247 |
612 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What inactivated vaccines are available? | {
"answer_start": [
2912
],
"text": [
"whole virus inactivated, split virus inactivated, and subunit vaccines."
]
} | 1,248 |
613 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | How is the split virus inactivated? | {
"answer_start": [
3009
],
"text": [
"the virus is disrupted by a detergent"
]
} | 1,254 |
614 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | How is the TIV administered? | {
"answer_start": [
3164
],
"text": [
"intramuscularly "
]
} | 1,257 |
615 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What does the TIV contain? | {
"answer_start": [
3192
],
"text": [
" three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. "
]
} | 1,259 |
616 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | How is the TIV efficacy measured? | {
"answer_start": [
3337
],
"text": [
"humoral responses to the hemagglutinin (HA) protein,"
]
} | 1,261 |
617 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | Which is the major surface and attachment glycoprotein on influenza virus? | {
"answer_start": [
3362
],
"text": [
"hemagglutinin (HA) protein,"
]
} | 1,264 |
618 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | How is the serum antibody response measured? | {
"answer_start": [
3493
],
"text": [
" by the hemagglutination-inhibition (HI) assay,"
]
} | 1,472 |
619 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is a gold standard for correlation with immunity to influenza? | {
"answer_start": [
3549
],
"text": [
"strain-specific HI titer "
]
} | 1,473 |
620 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the indication for protection to influenza? | {
"answer_start": [
3646
],
"text": [
" a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective "
]
} | 1,474 |
621 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What gives protection against clinical disease? | {
"answer_start": [
3812
],
"text": [
"serum antibodies"
]
} | 1,475 |
622 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What can give protection against clinical disease? | {
"answer_start": [
3839
],
"text": [
"mucosal IgA antibodies also may contribute to resistance against infection"
]
} | 1,476 |
623 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | How is the LAIV administered? | {
"answer_start": [
4255
],
"text": [
"nasal spray"
]
} | 1,477 |
624 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What does the LAIV contain? | {
"answer_start": [
4280
],
"text": [
"the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone "
]
} | 1,478 |
625 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | Do LAIV replicate at body temperature? | {
"answer_start": [
4446
],
"text": [
"they do not replicate effectively at core body temperature"
]
} | 1,480 |
626 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is a characteristic of LAIV? | {
"answer_start": [
4395
],
"text": [
"LAIV are temperature-sensitive and cold-adapted "
]
} | 1,481 |
627 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | Where do the LAIV replicate? | {
"answer_start": [
4510
],
"text": [
"replicate in the mucosa of the nasopharynx"
]
} | 1,482 |
628 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What does LAIV immunization do? | {
"answer_start": [
4560
],
"text": [
"LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses."
]
} | 1,483 |
629 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What do the inactivated vaccines rely on? | {
"answer_start": [
5071
],
"text": [
"specific antibody responses to the HA, and to a lesser extent NA proteins for protection."
]
} | 1,484 |
630 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What enables virus invasion from immunity? | {
"answer_start": [
5161
],
"text": [
"The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations"
]
} | 1,485 |
631 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | When does the vaccine strain selection occur in the northern hemisphere? | {
"answer_start": [
5646
],
"text": [
"in February"
]
} | 1,486 |
632 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the efficacy of LAIV? | {
"answer_start": [
5998
],
"text": [
"it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children "
]
} | 1,487 |
633 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What does LAIV rely on? | {
"answer_start": [
6142
],
"text": [
"antigenic match"
]
} | 1,488 |
634 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the LAIV replacement schedule? | {
"answer_start": [
6161
],
"text": [
" the HA and NA antigens are replaced on the same schedule as the TIV"
]
} | 1,489 |
635 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | Why LAIV may provide broader broader protection than TIV? | {
"answer_start": [
6313
],
"text": [
"due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses"
]
} | 1,490 |
636 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What has raised the possibility of universal influenza vaccine? | {
"answer_start": [
6642
],
"text": [
"improved understanding of immunity to conserved influenza virus antigens"
]
} | 1,491 |
637 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of recombinant DNA systems? | {
"answer_start": [
7008
],
"text": [
"allow ready manipulation and modification of the vector genome"
]
} | 1,492 |
638 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of recombinant DNA system? | {
"answer_start": [
7085
],
"text": [
"enables modification of the vectors to attenuate the virus or enhance immunogenicity"
]
} | 1,493 |
639 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of recombinant DNA systems? | {
"answer_start": [
7186
],
"text": [
"adding and manipulating the influenza virus antigens"
]
} | 1,494 |
640 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the issue with each of these vaccines? | {
"answer_start": [
7389
],
"text": [
"is either replication-defective or causes a self-limiting infection"
]
} | 1,495 |
641 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is a concern with these vaccines? | {
"answer_start": [
7466
],
"text": [
" like LAIV, safety in immunocompromised individuals"
]
} | 1,496 |
642 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | How many serotypes of adenovirus are there? | {
"answer_start": [
7678
],
"text": [
"53 "
]
} | 1,497 |
643 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | Why adenovirus may be the safest vaccine vector? | {
"answer_start": [
7758
],
"text": [
" A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades"
]
} | 1,498 |
644 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | Which is the most studied serotype? | {
"answer_start": [
8062
],
"text": [
"Adenovirus 5 (Ad5) "
]
} | 1,501 |
645 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | Why is Ad5 is the most studied serotype? | {
"answer_start": [
8111
],
"text": [
"having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines"
]
} | 1,503 |
646 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | Why are adenovirus vectors most attractive? | {
"answer_start": [
8278
],
"text": [
"their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material "
]
} | 1,505 |
647 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of the adenovirus ? | {
"answer_start": [
8447
],
"text": [
"is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature "
]
} | 1,506 |
648 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of adenovirus vector? | {
"answer_start": [
8612
],
"text": [
"Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells "
]
} | 1,507 |
649 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of adenovirus? | {
"answer_start": [
8759
],
"text": [
"the virus can be purified by simple methods "
]
} | 1,508 |
650 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of adenovirus vaccines? | {
"answer_start": [
8809
],
"text": [
" Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery."
]
} | 1,509 |
651 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of oral capsule and intranasal deliveries? | {
"answer_start": [
9070
],
"text": [
"induce robust mucosal immune responses and may bypass preexisting vector immunity "
]
} | 1,512 |
652 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What did the first report on adenovirus as a vector demonstrate? | {
"answer_start": [
9465
],
"text": [
"immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2)"
]
} | 1,516 |
653 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | Which rAd5 delivery has been tested? | {
"answer_start": [
9876
],
"text": [
"A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally "
]
} | 1,524 |
654 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What was the result of the rAd5-HA testing? | {
"answer_start": [
10040
],
"text": [
"The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers "
]
} | 1,526 |
655 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the result of rAd5 trials? | {
"answer_start": [
10212
],
"text": [
"clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy,"
]
} | 1,530 |
656 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is an example of failure of rAd5? | {
"answer_start": [
10425
],
"text": [
" a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male"
]
} | 1,531 |
657 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What was the failure of rAd5 vaccine for inducing HIV-1 specific T cell response? | {
"answer_start": [
10868
],
"text": [
"the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 "
]
} | 1,535 |
658 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What does immunization with adenovirus induce? | {
"answer_start": [
11409
],
"text": [
"potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses"
]
} | 1,540 |
659 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of inclusion of non-HA antigens to HA based vaccines? | {
"answer_start": [
12176
],
"text": [
" to improve immunogenicity and broaden breadth of both humoral and cellular immunity"
]
} | 1,543 |
660 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the disadvantage of inclusion of non-HA antigens to HA based vaccines? | {
"answer_start": [
12281
],
"text": [
"as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use "
]
} | 1,544 |
661 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What was the first reported baculovirus vector based vaccine for influenza? | {
"answer_start": [
20353
],
"text": [
" using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) "
]
} | 1,579 |
662 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is a drawback of Ad5 vector? | {
"answer_start": [
12531
],
"text": [
"preexisting immunity,"
]
} | 1,549 |
663 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What alternatives to Ad5 vector have been explored? | {
"answer_start": [
12568
],
"text": [
"adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes"
]
} | 1,550 |
664 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What animal adenoviruses have been shown to induce immunity comparable to rdA5-HA? | {
"answer_start": [
12932
],
"text": [
"Swine, NHP and bovine adenoviruses expressing H5 HA antigens "
]
} | 1,551 |
665 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | what can evade anti-Ad5 response and also provide effective antigen delivery and immunogenicity? | {
"answer_start": [
13193
],
"text": [
" Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35"
]
} | 1,553 |
666 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What additional strategies have been explored to avoid preexisting immunity? | {
"answer_start": [
13372
],
"text": [
"Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization"
]
} | 1,557 |
667 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of AAV vector? | {
"answer_start": [
13644
],
"text": [
"Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types "
]
} | 1,559 |
668 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of the AAV vector? | {
"answer_start": [
14200
],
"text": [
" The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated "
]
} | 1,560 |
669 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of AAV vector? | {
"answer_start": [
14354
],
"text": [
"As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain."
]
} | 1,561 |
670 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of AAV vector? | {
"answer_start": [
14500
],
"text": [
"While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns."
]
} | 1,562 |
671 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | Has AAV been studied as vectors for influenza? | {
"answer_start": [
14703
],
"text": [
"There are limited studies "
]
} | 1,563 |
672 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What are alphaviruses? | {
"answer_start": [
16320
],
"text": [
"positive-sense, single-stranded RNA viruses of the Togaviridae family"
]
} | 1,564 |
673 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What are some alphavirus vectors that have been developed? | {
"answer_start": [
16467
],
"text": [
"Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses"
]
} | 1,565 |
674 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | How do the alphavirus vectors work? | {
"answer_start": [
16634
],
"text": [
" The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material."
]
} | 1,566 |
675 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | How do the alphavirus vectors work? | {
"answer_start": [
16796
],
"text": [
"The structural proteins are provided in cell culture production systems."
]
} | 1,567 |
676 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is an important feature of the replicon system? | {
"answer_start": [
16918
],
"text": [
"the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels"
]
} | 1,568 |
677 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | How did the VEE based replicon system incorporating HA from PR8perform? | {
"answer_start": [
17247
],
"text": [
"demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine"
]
} | 1,569 |
678 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | Why is the VEE replicon system particularly appealing? | {
"answer_start": [
18262
],
"text": [
"the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses"
]
} | 1,570 |
679 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of the VEE replicon system? | {
"answer_start": [
18378
],
"text": [
"VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies "
]
} | 1,571 |
680 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What were the VRPs derived from VEE developed for? | {
"answer_start": [
18710
],
"text": [
"as candidate vaccines for cytomegalovirus (CMV)"
]
} | 1,572 |
681 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What did the clinical trial with CMV VRP show? | {
"answer_start": [
18812
],
"text": [
"vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe "
]
} | 1,573 |
682 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What did the clinical trial with VRP show? | {
"answer_start": [
19091
],
"text": [
"vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost "
]
} | 1,574 |
683 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | Which baculovirus vaccine has been approved for
human use? | {
"answer_start": [
19506
],
"text": [
"baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season"
]
} | 1,575 |
684 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of baculoviruses? | {
"answer_start": [
19888
],
"text": [
"readily manipulated"
]
} | 1,576 |
685 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the advantage of baculovirus vectors? | {
"answer_start": [
19909
],
"text": [
"The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells"
]
} | 1,577 |
686 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | How can baculovirus vectors be improved? | {
"answer_start": [
20111
],
"text": [
"While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors."
]
} | 1,578 |
687 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | what baculovirus vector based immunization provided protection from lethal challenge? | {
"answer_start": [
20639
],
"text": [
"only intranasal immunization"
]
} | 1,580 |
688 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What was the benefit of the robust innate immune response to baculovirus vector? | {
"answer_start": [
20884
],
"text": [
" non-specific protection from subsequent influenza virus infection"
]
} | 1,581 |
689 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the Newcastle disease virus? | {
"answer_start": [
22733
],
"text": [
"a single-stranded, negative-sense RNA virus that causes disease in poultry. "
]
} | 1,582 |
690 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What are the appealing qualities of the NDV vector? | {
"answer_start": [
22870
],
"text": [
"As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. "
]
} | 1,583 |
691 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the appealing quality of the NDV vector? | {
"answer_start": [
23022
],
"text": [
"As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome."
]
} | 1,584 |
692 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the appealing quality of the NDV vector? | {
"answer_start": [
23396
],
"text": [
"pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector"
]
} | 1,585 |
693 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What did the first report on the NDV vector test conclude? | {
"answer_start": [
24174
],
"text": [
"it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection "
]
} | 1,586 |
694 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What is the added protection of NDV vector? | {
"answer_start": [
24545
],
"text": [
"providing protection against both the influenza virus and NDV infection."
]
} | 1,587 |
695 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What have the limited NDV human trails shown? | {
"answer_start": [
25083
],
"text": [
"the NDV vector is well-tolerated, even at high doses delivered intravenously "
]
} | 1,588 |
696 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What are the attractive features of the PIV5 vector? | {
"answer_start": [
25629
],
"text": [
" PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs"
]
} | 1,589 |
697 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What was the result of the test of efficacy of PIV5 in murine challenge? | {
"answer_start": [
27081
],
"text": [
"Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge"
]
} | 1,590 |
698 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What opportunity has the termination of smallpox vaccination provided? | {
"answer_start": [
28943
],
"text": [
"has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns "
]
} | 1,636 |
699 | Virus-Vectored Influenza Virus Vaccines
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147686/
SHA: f6d2afb2ec44d8656972ea79f8a833143bbeb42b
Authors: Tripp, Ralph A.; Tompkins, S. Mark
Date: 2014-08-07
DOI: 10.3390/v6083055
License: cc-by
Abstract: Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Text: Seasonal influenza is a worldwide health problem causing high mobility and substantial mortality [1] [2] [3] [4] . Moreover, influenza infection often worsens preexisting medical conditions [5] [6] [7] . Vaccines against circulating influenza strains are available and updated annually, but many issues are still present, including low efficacy in the populations at greatest risk of complications from influenza virus infection, i.e., the young and elderly [8, 9] . Despite increasing vaccination rates, influenza-related hospitalizations are increasing [8, 10] , and substantial drug resistance has developed to two of the four currently approved anti-viral drugs [11, 12] . While adjuvants have the potential to improve efficacy and availability of current inactivated vaccines, live-attenuated and virus-vectored vaccines are still considered one of the best options for the induction of broad and efficacious immunity to the influenza virus [13] .
The general types of influenza vaccines available in the United States are trivalent inactivated influenza vaccine (TIV), quadrivalent influenza vaccine (QIV), and live attenuated influenza vaccine (LAIV; in trivalent and quadrivalent forms). There are three types of inactivated vaccines that include whole virus inactivated, split virus inactivated, and subunit vaccines. In split virus vaccines, the virus is disrupted by a detergent. In subunit vaccines, HA and NA have been further purified by removal of other viral components. TIV is administered intramuscularly and contains three or four inactivated viruses, i.e., two type A strains (H1 and H3) and one or two type B strains. TIV efficacy is measured by induction of humoral responses to the hemagglutinin (HA) protein, the major surface and attachment glycoprotein on influenza. Serum antibody responses to HA are measured by the hemagglutination-inhibition (HI) assay, and the strain-specific HI titer is considered the gold-standard correlate of immunity to influenza where a four-fold increase in titer post-vaccination, or a HI titer of ≥1:40 is considered protective [4, 14] . Protection against clinical disease is mainly conferred by serum antibodies; however, mucosal IgA antibodies also may contribute to resistance against infection. Split virus inactivated vaccines can induce neuraminidase (NA)-specific antibody responses [15] [16] [17] , and anti-NA antibodies have been associated with protection from infection in humans [18] [19] [20] [21] [22] . Currently, NA-specific antibody responses are not considered a correlate of protection [14] . LAIV is administered as a nasal spray and contains the same three or four influenza virus strains as inactivated vaccines but on an attenuated vaccine backbone [4] . LAIV are temperature-sensitive and cold-adapted so they do not replicate effectively at core body temperature, but replicate in the mucosa of the nasopharynx [23] . LAIV immunization induces serum antibody responses, mucosal antibody responses (IgA), and T cell responses. While robust serum antibody and nasal wash (mucosal) antibody responses are associated with protection from infection, other immune responses, such as CD8 + cytotoxic lymphocyte (CTL) responses may contribute to protection and there is not a clear correlate of immunity for LAIV [4, 14, 24] .
Currently licensed influenza virus vaccines suffer from a number of issues. The inactivated vaccines rely on specific antibody responses to the HA, and to a lesser extent NA proteins for protection. The immunodominant portions of the HA and NA molecules undergo a constant process of antigenic drift, a natural accumulation of mutations, enabling virus evasion from immunity [9, 25] . Thus, the circulating influenza A and B strains are reviewed annually for antigenic match with current vaccines, Replacement of vaccine strains may occur regularly, and annual vaccination is recommended to assure protection [4, 26, 27] . For the northern hemisphere, vaccine strain selection occurs in February and then manufacturers begin production, taking at least six months to produce the millions of vaccine doses required for the fall [27] . If the prediction is imperfect, or if manufacturers have issues with vaccine production, vaccine efficacy or availability can be compromised [28] . LAIV is not recommended for all populations; however, it is generally considered to be as effective as inactivated vaccines and may be more efficacious in children [4, 9, 24] . While LAIV relies on antigenic match and the HA and NA antigens are replaced on the same schedule as the TIV [4, 9] , there is some suggestion that LAIV may induce broader protection than TIV due to the diversity of the immune response consistent with inducing virus-neutralizing serum and mucosal antibodies, as well as broadly reactive T cell responses [9, 23, 29] . While overall both TIV and LAIV are considered safe and effective, there is a recognized need for improved seasonal influenza vaccines [26] . Moreover, improved understanding of immunity to conserved influenza virus antigens has raised the possibility of a universal vaccine, and these universal antigens will likely require novel vaccines for effective delivery [30] [31] [32] .
Virus-vectored vaccines share many of the advantages of LAIV, as well as those unique to the vectors. Recombinant DNA systems exist that allow ready manipulation and modification of the vector genome. This in turn enables modification of the vectors to attenuate the virus or enhance immunogenicity, in addition to adding and manipulating the influenza virus antigens. Many of these vectors have been extensively studied or used as vaccines against wild type forms of the virus. Finally, each of these vaccine vectors is either replication-defective or causes a self-limiting infection, although like LAIV, safety in immunocompromised individuals still remains a concern [4, 13, [33] [34] [35] . Table 1 summarizes the benefits and concerns of each of the virus-vectored vaccines discussed here.
There are 53 serotypes of adenovirus, many of which have been explored as vaccine vectors. A live adenovirus vaccine containing serotypes 4 and 7 has been in use by the military for decades, suggesting adenoviruses may be safe for widespread vaccine use [36] . However, safety concerns have led to the majority of adenovirus-based vaccine development to focus on replication-defective vectors. Adenovirus 5 (Ad5) is the most-studied serotype, having been tested for gene delivery and anti-cancer agents, as well as for infectious disease vaccines.
Adenovirus vectors are attractive as vaccine vectors because their genome is very stable and there are a variety of recombinant systems available which can accommodate up to 10 kb of recombinant genetic material [37] . Adenovirus is a non-enveloped virus which is relatively stable and can be formulated for long-term storage at 4 °C, or even storage up to six months at room temperature [33] . Adenovirus vaccines can be grown to high titers, exceeding 10 1° plaque forming units (PFU) per mL when cultured on 293 or PER.C6 cells [38] , and the virus can be purified by simple methods [39] . Adenovirus vaccines can also be delivered via multiple routes, including intramuscular injection, subcutaneous injection, intradermal injection, oral delivery using a protective capsule, and by intranasal delivery. Importantly, the latter two delivery methods induce robust mucosal immune responses and may bypass preexisting vector immunity [33] . Even replication-defective adenovirus vectors are naturally immunostimulatory and effective adjuvants to the recombinant antigen being delivered. Adenovirus has been extensively studied as a vaccine vector for human disease. The first report using adenovirus as a vaccine vector for influenza demonstrated immunogenicity of recombinant adenovirus 5 (rAd5) expressing the HA of a swine influenza virus, A/Swine/Iowa/1999 (H3N2). Intramuscular immunization of mice with this construct induced robust neutralizing antibody responses and protected mice from challenge with a heterologous virus, A/Hong Kong/1/1968 (H3N2) [40] . Replication defective rAd5 vaccines expressing influenza HA have also been tested in humans. A rAd5-HA expressing the HA from A/Puerto Rico/8/1934 (H1N1; PR8) was delivered to humans epicutaneously or intranasally and assayed for safety and immunogenicity. The vaccine was well tolerated and induced seroconversion with the intranasal administration had a higher conversion rate and higher geometric meant HI titers [41] . While clinical trials with rAd vectors have overall been successful, demonstrating safety and some level of efficacy, rAd5 as a vector has been negatively overshadowed by two clinical trial failures. The first trial was a gene therapy examination where high-dose intravenous delivery of an Ad vector resulted in the death of an 18-year-old male [42, 43] . The second clinical failure was using an Ad5-vectored HIV vaccine being tested as a part of a Step Study, a phase 2B clinical trial. In this study, individuals were vaccinated with the Ad5 vaccine vector expressing HIV-1 gag, pol, and nef genes. The vaccine induced HIV-specific T cell responses; however, the study was stopped after interim analysis suggested the vaccine did not achieve efficacy and individuals with high preexisting Ad5 antibody titers might have an increased risk of acquiring HIV-1 [44] [45] [46] . Subsequently, the rAd5 vaccine-associated risk was confirmed [47] . While these two instances do not suggest Ad-vector vaccines are unsafe or inefficacious, the umbra cast by the clinical trials notes has affected interest for all adenovirus vaccines, but interest still remains.
Immunization with adenovirus vectors induces potent cellular and humoral immune responses that are initiated through toll-like receptor-dependent and independent pathways which induce robust pro-inflammatory cytokine responses. Recombinant Ad vaccines expressing HA antigens from pandemic H1N1 (pH1N1), H5 and H7 highly pathogenic avian influenza (HPAI) virus (HPAIV), and H9 avian influenza viruses have been tested for efficacy in a number of animal models, including chickens, mice, and ferrets, and been shown to be efficacious and provide protection from challenge [48, 49] . Several rAd5 vectors have been explored for delivery of non-HA antigens, influenza nucleoprotein (NP) and matrix 2 (M2) protein [29, [50] [51] [52] . The efficacy of non-HA antigens has led to their inclusion with HA-based vaccines to improve immunogenicity and broaden breadth of both humoral and cellular immunity [53, 54] . However, as both CD8 + T cell and neutralizing antibody responses are generated by the vector and vaccine antigens, immunological memory to these components can reduce efficacy and limit repeated use [48] .
One drawback of an Ad5 vector is the potential for preexisting immunity, so alternative adenovirus serotypes have been explored as vectors, particularly non-human and uncommon human serotypes. Non-human adenovirus vectors include those from non-human primates (NHP), dogs, sheep, pigs, cows, birds and others [48, 55] . These vectors can infect a variety of cell types, but are generally attenuated in humans avoiding concerns of preexisting immunity. Swine, NHP and bovine adenoviruses expressing H5 HA antigens have been shown to induce immunity comparable to human rAd5-H5 vaccines [33, 56] . Recombinant, replication-defective adenoviruses from low-prevalence serotypes have also been shown to be efficacious. Low prevalence serotypes such as adenovirus types 3, 7, 11, and 35 can evade anti-Ad5 immune responses while maintaining effective antigen delivery and immunogenicity [48, 57] . Prime-boost strategies, using DNA or protein immunization in conjunction with an adenovirus vaccine booster immunization have also been explored as a means to avoided preexisting immunity [52] .
Adeno-associated viruses (AAV) were first explored as gene therapy vectors. Like rAd vectors, rAAV have broad tropism infecting a variety of hosts, tissues, and proliferating and non-proliferating cell types [58] . AAVs had been generally not considered as vaccine vectors because they were widely considered to be poorly immunogenic. A seminal study using AAV-2 to express a HSV-2 glycoprotein showed this virus vaccine vector effectively induced potent CD8 + T cell and serum antibody responses, thereby opening the door to other rAAV vaccine-associated studies [59, 60] .
AAV vector systems have a number of engaging properties. The wild type viruses are non-pathogenic and replication incompetent in humans and the recombinant AAV vector systems are even further attenuated [61] . As members of the parvovirus family, AAVs are small non-enveloped viruses that are stable and amenable to long-term storage without a cold chain. While there is limited preexisting immunity, availability of non-human strains as vaccine candidates eliminates these concerns. Modifications to the vector have increased immunogenicity, as well [60] .
There are limited studies using AAVs as vaccine vectors for influenza. An AAV expressing an HA antigen was first shown to induce protective in 2001 [62] . Later, a hybrid AAV derived from two non-human primate isolates (AAVrh32.33) was used to express influenza NP and protect against PR8 challenge in mice [63] . Most recently, following the 2009 H1N1 influenza virus pandemic, rAAV vectors were generated expressing the HA, NP and matrix 1 (M1) proteins of A/Mexico/4603/2009 (pH1N1), and in murine immunization and challenge studies, the rAAV-HA and rAAV-NP were shown to be protective; however, mice vaccinated with rAAV-HA + NP + M1 had the most robust protection. Also, mice vaccinated with rAAV-HA + rAAV-NP + rAAV-M1 were also partially protected against heterologous (PR8, H1N1) challenge [63] . Most recently, an AAV vector was used to deliver passive immunity to influenza [64, 65] . In these studies, AAV (AAV8 and AAV9) was used to deliver an antibody transgene encoding a broadly cross-protective anti-influenza monoclonal antibody for in vivo expression. Both intramuscular and intranasal delivery of the AAVs was shown to protect against a number of influenza virus challenges in mice and ferrets, including H1N1 and H5N1 viruses [64, 65] . These studies suggest that rAAV vectors are promising vaccine and immunoprophylaxis vectors. To this point, while approximately 80 phase I, I/II, II, or III rAAV clinical trials are open, completed, or being reviewed, these have focused upon gene transfer studies and so there is as yet limited safety data for use of rAAV as vaccines [66] .
Alphaviruses are positive-sense, single-stranded RNA viruses of the Togaviridae family. A variety of alphaviruses have been developed as vaccine vectors, including Semliki Forest virus (SFV), Sindbis (SIN) virus, Venezuelan equine encephalitis (VEE) virus, as well as chimeric viruses incorporating portions of SIN and VEE viruses. The replication defective vaccines or replicons do not encode viral structural proteins, having these portions of the genome replaces with transgenic material.
The structural proteins are provided in cell culture production systems. One important feature of the replicon systems is the self-replicating nature of the RNA. Despite the partial viral genome, the RNAs are self-replicating and can express transgenes at very high levels [67] .
SIN, SFV, and VEE have all been tested for efficacy as vaccine vectors for influenza virus [68] [69] [70] [71] . A VEE-based replicon system encoding the HA from PR8 was demonstrated to induce potent HA-specific immune response and protected from challenge in a murine model, despite repeated immunization with the vector expressing a control antigen, suggesting preexisting immunity may not be an issue for the replicon vaccine [68] . A separate study developed a VEE replicon system expressing the HA from A/Hong Kong/156/1997 (H5N1) and demonstrated varying efficacy after in ovo vaccination or vaccination of 1-day-old chicks [70] . A recombinant SIN virus was use as a vaccine vector to deliver a CD8 + T cell epitope only. The well-characterized NP epitope was transgenically expressed in the SIN system and shown to be immunogenic in mice, priming a robust CD8 + T cell response and reducing influenza virus titer after challenge [69] . More recently, a VEE replicon system expressing the HA protein of PR8 was shown to protect young adult (8-week-old) and aged (12-month-old) mice from lethal homologous challenge [72] .
The VEE replicon systems are particularly appealing as the VEE targets antigen-presenting cells in the lymphatic tissues, priming rapid and robust immune responses [73] . VEE replicon systems can induce robust mucosal immune responses through intranasal or subcutaneous immunization [72] [73] [74] , and subcutaneous immunization with virus-like replicon particles (VRP) expressing HA-induced antigen-specific systemic IgG and fecal IgA antibodies [74] . VRPs derived from VEE virus have been developed as candidate vaccines for cytomegalovirus (CMV). A phase I clinical trial with the CMV VRP showed the vaccine was immunogenic, inducing CMV-neutralizing antibody responses and potent T cell responses. Moreover, the vaccine was well tolerated and considered safe [75] . A separate clinical trial assessed efficacy of repeated immunization with a VRP expressing a tumor antigen. The vaccine was safe and despite high vector-specific immunity after initial immunization, continued to boost transgene-specific immune responses upon boost [76] . While additional clinical data is needed, these reports suggest alphavirus replicon systems or VRPs may be safe and efficacious, even in the face of preexisting immunity.
Baculovirus has been extensively used to produce recombinant proteins. Recently, a baculovirus-derived recombinant HA vaccine was approved for human use and was first available for use in the United States for the 2013-2014 influenza season [4] . Baculoviruses have also been explored as vaccine vectors. Baculoviruses have a number of advantages as vaccine vectors. The viruses have been extensively studied for protein expression and for pesticide use and so are readily manipulated. The vectors can accommodate large gene insertions, show limited cytopathic effect in mammalian cells, and have been shown to infect and express genes of interest in a spectrum of mammalian cells [77] . While the insect promoters are not effective for mammalian gene expression, appropriate promoters can be cloned into the baculovirus vaccine vectors.
Baculovirus vectors have been tested as influenza vaccines, with the first reported vaccine using Autographa californica nuclear polyhedrosis virus (AcNPV) expressing the HA of PR8 under control of the CAG promoter (AcCAG-HA) [77] . Intramuscular, intranasal, intradermal, and intraperitoneal immunization or mice with AcCAG-HA elicited HA-specific antibody responses, however only intranasal immunization provided protection from lethal challenge. Interestingly, intranasal immunization with the wild type AcNPV also resulted in protection from PR8 challenge. The robust innate immune response to the baculovirus provided non-specific protection from subsequent influenza virus infection [78] . While these studies did not demonstrate specific protection, there were antigen-specific immune responses and potential adjuvant effects by the innate response.
Baculovirus pseudotype viruses have also been explored. The G protein of vesicular stomatitis virus controlled by the insect polyhedron promoter and the HA of A/Chicken/Hubei/327/2004 (H5N1) HPAIV controlled by a CMV promoter were used to generate the BV-G-HA. Intramuscular immunization of mice or chickens with BV-G-HA elicited strong HI and VN serum antibody responses, IFN-γ responses, and protected from H5N1 challenge [79] . A separate study demonstrated efficacy using a bivalent pseudotyped baculovirus vector [80] .
Baculovirus has also been used to generate an inactivated particle vaccine. The HA of A/Indonesia/CDC669/2006(H5N1) was incorporated into a commercial baculovirus vector controlled by the e1 promoter from White Spot Syndrome Virus. The resulting recombinant virus was propagated in insect (Sf9) cells and inactivated as a particle vaccine [81, 82] . Intranasal delivery with cholera toxin B as an adjuvant elicited robust HI titers and protected from lethal challenge [81] . Oral delivery of this encapsulated vaccine induced robust serum HI titers and mucosal IgA titers in mice, and protected from H5N1 HPAIV challenge. More recently, co-formulations of inactivated baculovirus vectors have also been shown to be effective in mice [83] .
While there is growing data on the potential use of baculovirus or pseudotyped baculovirus as a vaccine vector, efficacy data in mammalian animal models other than mice is lacking. There is also no data on the safety in humans, reducing enthusiasm for baculovirus as a vaccine vector for influenza at this time.
Newcastle disease virus (NDV) is a single-stranded, negative-sense RNA virus that causes disease in poultry. NDV has a number of appealing qualities as a vaccine vector. As an avian virus, there is little or no preexisting immunity to NDV in humans and NDV propagates to high titers in both chicken eggs and cell culture. As a paramyxovirus, there is no DNA phase in the virus lifecycle reducing concerns of integration events, and the levels of gene expression are driven by the proximity to the leader sequence at the 3' end of the viral genome. This gradient of gene expression enables attenuation through rearrangement of the genome, or by insertion of transgenes within the genome. Finally, pathogenicity of NDV is largely determined by features of the fusion protein enabling ready attenuation of the vaccine vector [84] .
Reverse genetics, a method that allows NDV to be rescued from plasmids expressing the viral RNA polymerase and nucleocapsid proteins, was first reported in 1999 [85, 86] . This process has enabled manipulation of the NDV genome as well as incorporation of transgenes and the development of NDV vectors. Influenza was the first infectious disease targeted with a recombinant NDV (rNDV) vector. The HA protein of A/WSN/1933 (H1N1) was inserted into the Hitchner B1 vaccine strain. The HA protein was expressed on infected cells and was incorporated into infectious virions. While the virus was attenuated compared to the parental vaccine strain, it induced a robust serum antibody response and protected against homologous influenza virus challenge in a murine model of infection [87] . Subsequently, rNDV was tested as a vaccine vector for HPAIV having varying efficacy against H5 and H7 influenza virus infections in poultry [88] [89] [90] [91] [92] [93] [94] . These vaccines have the added benefit of potentially providing protection against both the influenza virus and NDV infection.
NDV has also been explored as a vaccine vector for humans. Two NHP studies assessed the immunogenicity and efficacy of an rNDV expressing the HA or NA of A/Vietnam/1203/2004 (H5N1; VN1203) [95, 96] . Intranasal and intratracheal delivery of the rNDV-HA or rNDV-NA vaccines induced both serum and mucosal antibody responses and protected from HPAIV challenge [95, 96] . NDV has limited clinical data; however, phase I and phase I/II clinical trials have shown that the NDV vector is well-tolerated, even at high doses delivered intravenously [44, 97] . While these results are promising, additional studies are needed to advance NDV as a human vaccine vector for influenza.
Parainfluenza virus type 5 (PIV5) is a paramyxovirus vaccine vector being explored for delivery of influenza and other infectious disease vaccine antigens. PIV5 has only recently been described as a vaccine vector [98] . Similar to other RNA viruses, PIV5 has a number of features that make it an attractive vaccine vector. For example, PIV5 has a stable RNA genome and no DNA phase in virus replication cycle reducing concerns of host genome integration or modification. PIV5 can be grown to very high titers in mammalian vaccine cell culture substrates and is not cytopathic allowing for extended culture and harvest of vaccine virus [98, 99] . Like NDV, PIV5 has a 3'-to 5' gradient of gene expression and insertion of transgenes at different locations in the genome can variably attenuate the virus and alter transgene expression [100] . PIV5 has broad tropism, infecting many cell types, tissues, and species without causing clinical disease, although PIV5 has been associated with -kennel cough‖ in dogs [99] . A reverse genetics system for PIV5 was first used to insert the HA gene from A/Udorn/307/72 (H3N2) into the PIV5 genome between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Similar to NDV, the HA was expressed at high levels in infected cells and replicated similarly to the wild type virus, and importantly, was not pathogenic in immunodeficient mice [98] . Additionally, a single intranasal immunization in a murine model of influenza infection was shown to induce neutralizing antibody responses and protect against a virus expressing homologous HA protein [98] . PIV5 has also been explored as a vaccine against HPAIV. Recombinant PIV5 vaccines expressing the HA or NP from VN1203 were tested for efficacy in a murine challenge model. Mice intranasally vaccinated with a single dose of PIV5-H5 vaccine had robust serum and mucosal antibody responses, and were protected from lethal challenge. Notably, although cellular immune responses appeared to contribute to protection, serum antibody was sufficient for protection from challenge [100, 101] . Intramuscular immunization with PIV5-H5 was also shown to be effective at inducing neutralizing antibody responses and protecting against lethal influenza virus challenge [101] . PIV5 expressing the NP protein of HPAIV was also efficacious in the murine immunization and challenge model, where a single intranasal immunization induced robust CD8 + T cell responses and protected against homologous (H5N1) and heterosubtypic (H1N1) virus challenge [102] .
Currently there is no clinical safety data for use of PIV5 in humans. However, live PIV5 has been a component of veterinary vaccines for -kennel cough‖ for >30 years, and veterinarians and dog owners are exposed to live PIV5 without reported disease [99] . This combined with preclinical data from a variety of animal models suggests that PIV5 as a vector is likely to be safe in humans. As preexisting immunity is a concern for all virus-vectored vaccines, it should be noted that there is no data on the levels of preexisting immunity to PIV5 in humans. However, a study evaluating the efficacy of a PIV5-H3 vaccine in canines previously vaccinated against PIV5 (kennel cough) showed induction of robust anti-H3 serum antibody responses as well as high serum antibody levels to the PIV5 vaccine, suggesting preexisting immunity to the PIV5 vector may not affect immunogenicity of vaccines even with repeated use [99] .
Poxvirus vaccines have a long history and the notable hallmark of being responsible for eradication of smallpox. The termination of the smallpox virus vaccination program has resulted in a large population of poxvirus-naï ve individuals that provides the opportunity for the use of poxviruses as vectors without preexisting immunity concerns [103] . Poxvirus-vectored vaccines were first proposed for use in 1982 with two reports of recombinant vaccinia viruses encoding and expressing functional thymidine kinase gene from herpes virus [104, 105] . Within a year, a vaccinia virus encoding the HA of an H2N2 virus was shown to express a functional HA protein (cleaved in the HA1 and HA2 subunits) and be immunogenic in rabbits and hamsters [106] . Subsequently, all ten of the primary influenza proteins have been expressed in vaccine virus [107] .
Early work with intact vaccinia virus vectors raised safety concerns, as there was substantial reactogenicity that hindered recombinant vaccine development [108] . Two vaccinia vectors were developed to address these safety concerns. The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames [109] [110] [111] .
Modified vaccinia virus Ankara (MVA) was developed prior to smallpox eradication to reduce or prevent adverse effects of other smallpox vaccines [109] . Serial tissue culture passage of MVA resulted in loss of 15% of the genome, and established a growth restriction for avian cells. The defects affected late stages in virus assembly in non-avian cells, a feature enabling use of the vector as single-round expression vector in non-permissive hosts. Interestingly, over two decades ago, recombinant MVA expressing the HA and NP of influenza virus was shown to be effective against lethal influenza virus challenge in a murine model [112] . Subsequently, MVA expressing various antigens from seasonal, pandemic (A/California/04/2009, pH1N1), equine (A/Equine/Kentucky/1/81 H3N8), and HPAI (VN1203) viruses have been shown to be efficacious in murine, ferret, NHP, and equine challenge models [113] . MVA vaccines are very effective stimulators of both cellular and humoral immunity. For example, abortive infection provides native expression of the influenza antigens enabling robust antibody responses to native surface viral antigens. Concurrently, the intracellular influenza peptides expressed by the pox vector enter the class I MHC antigen processing and presentation pathway enabling induction of CD8 + T cell antiviral responses. MVA also induces CD4 + T cell responses further contributing to the magnitude of the antigen-specific effector functions [107, [112] [113] [114] [115] . MVA is also a potent activator of early innate immune responses further enhancing adaptive immune responses [116] . Between early smallpox vaccine development and more recent vaccine vector development, MVA has undergone extensive safety testing and shown to be attenuated in severely immunocompromised animals and safe for use in children, adults, elderly, and immunocompromised persons. With extensive pre-clinical data, recombinant MVA vaccines expressing influenza antigens have been tested in clinical trials and been shown to be safe and immunogenic in humans [117] [118] [119] . These results combined with data from other (non-influenza) clinical and pre-clinical studies support MVA as a leading viral-vectored candidate vaccine.
The NYVAC vector is a highly attenuated vaccinia virus strain. NYVAC is replication-restricted; however, it grows in chick embryo fibroblasts and Vero cells enabling vaccine-scale production. In non-permissive cells, critical late structural proteins are not produced stopping replication at the immature virion stage [120] . NYVAC is very attenuated and considered safe for use in humans of all ages; however, it predominantly induces a CD4 + T cell response which is different compared to MVA [114] . Both MVA and NYVAC provoke robust humoral responses, and can be delivered mucosally to induce mucosal antibody responses [121] . There has been only limited exploration of NYVAC as a vaccine vector for influenza virus; however, a vaccine expressing the HA from A/chicken/Indonesia/7/2003 (H5N1) was shown to induce potent neutralizing antibody responses and protect against challenge in swine [122] .
While there is strong safety and efficacy data for use of NYVAC or MVA-vectored influenza vaccines, preexisting immunity remains a concern. Although the smallpox vaccination campaign has resulted in a population of poxvirus-naï ve people, the initiation of an MVA or NYVAC vaccination program for HIV, influenza or other pathogens will rapidly reduce this susceptible population. While there is significant interest in development of pox-vectored influenza virus vaccines, current influenza vaccination strategies rely upon regular immunization with vaccines matched to circulating strains. This would likely limit the use and/or efficacy of poxvirus-vectored influenza virus vaccines for regular and seasonal use [13] . Intriguingly, NYVAC may have an advantage for use as an influenza vaccine vector, because immunization with this vector induces weaker vaccine-specific immune responses compared to other poxvirus vaccines, a feature that may address the concerns surrounding preexisting immunity [123] .
While poxvirus-vectored vaccines have not yet been approved for use in humans, there is a growing list of licensed poxvirus for veterinary use that include fowlpox-and canarypox-vectored vaccines for avian and equine influenza viruses, respectively [124, 125] . The fowlpox-vectored vaccine expressing the avian influenza virus HA antigen has the added benefit of providing protection against fowlpox infection. Currently, at least ten poxvirus-vectored vaccines have been licensed for veterinary use [126] . These poxvirus vectors have the potential for use as vaccine vectors in humans, similar to the first use of cowpox for vaccination against smallpox [127] . The availability of these non-human poxvirus vectors with extensive animal safety and efficacy data may address the issues with preexisting immunity to the human vaccine strains, although the cross-reactivity originally described with cowpox could also limit use.
Influenza vaccines utilizing vesicular stomatitis virus (VSV), a rhabdovirus, as a vaccine vector have a number of advantages shared with other RNA virus vaccine vectors. Both live and replication-defective VSV vaccine vectors have been shown to be immunogenic [128, 129] , and like Paramyxoviridae, the Rhabdoviridae genome has a 3'-to-5' gradient of gene expression enabling attention by selective vaccine gene insertion or genome rearrangement [130] . VSV has a number of other advantages including broad tissue tropism, and the potential for intramuscular or intranasal immunization. The latter delivery method enables induction of mucosal immunity and elimination of needles required for vaccination. Also, there is little evidence of VSV seropositivity in humans eliminating concerns of preexisting immunity, although repeated use may be a concern. Also, VSV vaccine can be produced using existing mammalian vaccine manufacturing cell lines.
Influenza antigens were first expressed in a VSV vector in 1997. Both the HA and NA were shown to be expressed as functional proteins and incorporated into the recombinant VSV particles [131] . Subsequently, VSV-HA, expressing the HA protein from A/WSN/1933 (H1N1) was shown to be immunogenic and protect mice from lethal influenza virus challenge [129] . To reduce safety concerns, attenuated VSV vectors were developed. One candidate vaccine had a truncated VSV G protein, while a second candidate was deficient in G protein expression and relied on G protein expressed by a helper vaccine cell line to the provide the virus receptor. Both vectors were found to be attenuated in mice, but maintained immunogenicity [128] . More recently, single-cycle replicating VSV vaccines have been tested for efficacy against H5N1 HPAIV. VSV vectors expressing the HA from A/Hong Kong/156/97 (H5N1) were shown to be immunogenic and induce cross-reactive antibody responses and protect against challenge with heterologous H5N1 challenge in murine and NHP models [132] [133] [134] .
VSV vectors are not without potential concerns. VSV can cause disease in a number of species, including humans [135] . The virus is also potentially neuroinvasive in some species [136] , although NHP studies suggest this is not a concern in humans [137] . Also, while the incorporation of the influenza antigen in to the virion may provide some benefit in immunogenicity, changes in tropism or attenuation could arise from incorporation of different influenza glycoproteins. There is no evidence for this, however [134] . Currently, there is no human safety data for VSV-vectored vaccines. While experimental data is promising, additional work is needed before consideration for human influenza vaccination.
Current influenza vaccines rely on matching the HA antigen of the vaccine with circulating strains to provide strain-specific neutralizing antibody responses [4, 14, 24] . There is significant interest in developing universal influenza vaccines that would not require annual reformulation to provide protective robust and durable immunity. These vaccines rely on generating focused immune responses to highly conserved portions of the virus that are refractory to mutation [30] [31] [32] . Traditional vaccines may not be suitable for these vaccination strategies; however, vectored vaccines that have the ability to be readily modified and to express transgenes are compatible for these applications.
The NP and M2 proteins have been explored as universal vaccine antigens for decades. Early work with recombinant viral vectors demonstrated that immunization with vaccines expressing influenza antigens induced potent CD8 + T cell responses [107, [138] [139] [140] [141] . These responses, even to the HA antigen, could be cross-protective [138] . A number of studies have shown that immunization with NP expressed by AAV, rAd5, alphavirus vectors, MVA, or other vector systems induces potent CD8 + T cell responses and protects against influenza virus challenge [52, 63, 69, 102, 139, 142] . As the NP protein is highly conserved across influenza A viruses, NP-specific T cells can protect against heterologous and even heterosubtypic virus challenges [30] .
The M2 protein is also highly conserved and expressed on the surface of infected cells, although to a lesser extent on the surface of virus particles [30] . Much of the vaccine work in this area has focused on virus-like or subunit particles expressing the M2 ectodomain; however, studies utilizing a DNA-prime, rAd-boost strategies to vaccinate against the entire M2 protein have shown the antigen to be immunogenic and protective [50] . In these studies, antibodies to the M2 protein protected against homologous and heterosubtypic challenge, including a H5N1 HPAIV challenge. More recently, NP and M2 have been combined to induce broadly cross-reactive CD8 + T cell and antibody responses, and rAd5 vaccines expressing these antigens have been shown to protect against pH1N1 and H5N1 challenges [29, 51] .
Historically, the HA has not been widely considered as a universal vaccine antigen. However, the recent identification of virus neutralizing monoclonal antibodies that cross-react with many subtypes of influenza virus [143] has presented the opportunity to design vaccine antigens to prime focused antibody responses to the highly conserved regions recognized by these monoclonal antibodies. The majority of these broadly cross-reactive antibodies recognize regions on the stalk of the HA protein [143] . The HA stalk is generally less immunogenic compared to the globular head of the HA protein so most approaches have utilized -headless‖ HA proteins as immunogens. HA stalk vaccines have been designed using DNA and virus-like particles [144] and MVA [142] ; however, these approaches are amenable to expression in any of the viruses vectors described here.
The goal of any vaccine is to protect against infection and disease, while inducing population-based immunity to reduce or eliminate virus transmission within the population. It is clear that currently licensed influenza vaccines have not fully met these goals, nor those specific to inducing long-term, robust immunity. There are a number of vaccine-related issues that must be addressed before population-based influenza vaccination strategies are optimized. The concept of a -one size fits all‖ vaccine needs to be updated, given the recent ability to probe the virus-host interface through RNA interference approaches that facilitate the identification of host genes affecting virus replication, immunity, and disease. There is also a need for revision of the current influenza virus vaccine strategies for at-risk populations, particularly those at either end of the age spectrum. An example of an improved vaccine regime might include the use of a vectored influenza virus vaccine that expresses the HA, NA and M and/or NP proteins for the two currently circulating influenza A subtypes and both influenza B strains so that vaccine take and vaccine antigen levels are not an issue in inducing protective immunity. Recombinant live-attenuated or replication-deficient influenza viruses may offer an advantage for this and other approaches.
Vectored vaccines can be constructed to express full-length influenza virus proteins, as well as generate conformationally restricted epitopes, features critical in generating appropriate humoral protection. Inclusion of internal influenza antigens in a vectored vaccine can also induce high levels of protective cellular immunity. To generate sustained immunity, it is an advantage to induce immunity at sites of inductive immunity to natural infection, in this case the respiratory tract. Several vectored vaccines target the respiratory tract. Typically, vectored vaccines generate antigen for weeks after immunization, in contrast to subunit vaccination. This increased presence and level of vaccine antigen contributes to and helps sustain a durable memory immune response, even augmenting the selection of higher affinity antibody secreting cells. The enhanced memory response is in part linked to the intrinsic augmentation of immunity induced by the vector. Thus, for weaker antigens typical of HA, vectored vaccines have the capacity to overcome real limitations in achieving robust and durable protection.
Meeting the mandates of seasonal influenza vaccine development is difficult, and to respond to a pandemic strain is even more challenging. Issues with influenza vaccine strain selection based on recently circulating viruses often reflect recommendations by the World Health Organization (WHO)-a process that is cumbersome. The strains of influenza A viruses to be used in vaccine manufacture are not wild-type viruses but rather reassortants that are hybrid viruses containing at least the HA and NA gene segments from the target strains and other gene segments from the master strain, PR8, which has properties of high growth in fertilized hen's eggs. This additional process requires more time and quality control, and specifically for HPAI viruses, it is a process that may fail because of the nature of those viruses. In contrast, viral-vectored vaccines are relatively easy to manipulate and produce, and have well-established safety profiles. There are several viral-based vectors currently employed as antigen delivery systems, including poxviruses, adenoviruses baculovirus, paramyxovirus, rhabdovirus, and others; however, the majority of human clinical trials assessing viral-vectored influenza vaccines use poxvirus and adenovirus vectors. While each of these vector approaches has unique features and is in different stages of development, the combined successes of these approaches supports the virus-vectored vaccine approach as a whole. Issues such as preexisting immunity and cold chain requirements, and lingering safety concerns will have to be overcome; however, each approach is making progress in addressing these issues, and all of the approaches are still viable. Virus-vectored vaccines hold particular promise for vaccination with universal or focused antigens where traditional vaccination methods are not suited to efficacious delivery of these antigens. The most promising approaches currently in development are arguably those targeting conserved HA stalk region epitopes. Given the findings to date, virus-vectored vaccines hold great promise and may overcome the current limitations of influenza vaccines. | 1,719 | What vaccinia vectors were created to address safety concerns? | {
"answer_start": [
29857
],
"text": [
"The modified vaccinia virus Ankara (MVA) strain was attenuated by passage 530 times in chick embryo fibroblasts cultures. The second, New York vaccinia virus (NYVAC) was a plaque-purified clone of the Copenhagen vaccine strain rationally attenuated by deletion of 18 open reading frames"
]
} | 1,637 |