File size: 4,453 Bytes
8453f96 03bcb43 8453f96 03bcb43 8453f96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# Copyright 2020 The HuggingFace Datasets Authors.
# Copyright 2023 Bingbin Liu, Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
import os
import datasets
import numpy as np
_CITATION = """\
"""
_DESCRIPTION = """\
Online dataset mockup.
"""
_HOMEPAGE = ""
_LICENSE = ""
_URLS = {}
class MockupDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("0.0.0")
BUILDER_CONFIGS = []
def __init__(self, name=None, data_config={}, **kwargs):
super().__init__(**kwargs)
"""
Set default configs
"""
if name is None:
name = 'parity'
if 'length' not in data_config:
data_config['length'] = 20
if 'size' not in data_config:
data_config['size'] = 100
self.data_config = data_config
# self.sampler = AutomatonSampler(name, data_config)
self.sampler = dataset_map[name](data_config)
def _info(self):
features = datasets.Features(
{
"x": datasets.Sequence(datasets.Value("int32"), length=-1),
"y": datasets.Sequence(datasets.Value("int32"), length=-1)
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split": "train",
},
)
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, split):
for i in range(self.data_config['size']):
x, y = self.sampler.sample()
yield i, {
"x": x,
"y": y
}
class AutomatonSampler:
def __init__(self, data_config):
# self.name = name
self.data_config = data_config
if 'seed' in self.data_config:
self.np_rng = np.random.default_rng(self.data_config['seed'])
else:
self.np_rng = np.random.default_rng()
self.n_states = data_config['n_states']
self.T = self.data_config['length']
def f(self, x):
"""
Get output sequence given an input seq
"""
raise NotImplementedError()
def sample(self):
raise NotImplementedError()
class ParitySampler(AutomatonSampler):
def __init__(self, data_config):
super(ParitySampler, self).__init__(data_config)
self.name = 'parity'
self.data_config = data_config
def f(self, x):
return np.cumsum(x) % 2
def sample(self):
x = self.np_rng.binomial(1,0.5,size=self.T)
return x, self.f(x)
class FlipflopSampler(AutomatonSampler):
def __init__(self, data_config):
super(FlipflopSampler, self).__init__(data_config)
self.name = 'parity'
self.data_config = data_config
self.n_actions = self.n_states + 1
self.transition = np.array([list(range(self.n_actions))] + [[i+1]*self.n_actions for i in range(self.n_states)]).T
def f(self, x):
state, states = 0, []
for action in x:
state = self.transition[state, action]
states += state,
return np.array(states)
def sample(self):
rand = np.random.uniform(size=self.T)
nonzero_pos = (rand < 0.5).astype(np.int64)
writes = np.random.choice(range(1, self.n_states+1), size=self.T)
x = writes * nonzero_pos
return x, self.f(x)
dataset_map = {
'parity': ParitySampler,
'flipflop': FlipflopSampler,
# TODO: more datasets
}
|