File size: 4,398 Bytes
8453f96
03bcb43
8453f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d59b4
8453f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5377ed8
8453f96
 
 
 
 
e970a6f
 
8453f96
e970a6f
8453f96
 
 
 
 
 
 
ce771b8
8453f96
 
a934872
8453f96
a934872
5377ed8
8453f96
 
 
0a3368a
 
8453f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d59b4
e572ba6
87d59b4
8453f96
 
0a3368a
 
8453f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e970a6f
8453f96
 
 
 
 
 
 
 
 
 
 
c0124b2
8453f96
e970a6f
c0124b2
8453f96
 
 
 
 
 
 
 
c0124b2
 
8453f96
 
 
 
 
 
 
 
 
 
 
 
c0124b2
8453f96
a934872
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright 2020 The HuggingFace Datasets Authors.
# Copyright 2023 Bingbin Liu, Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import csv
import json
import os
import itertools

import datasets
import numpy as np


_CITATION = """\
"""

_DESCRIPTION = """\
Online dataset mockup.
"""

_HOMEPAGE = ""

_LICENSE = ""

_URLS = {}

class SyntheticAutomataDataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("0.0.0")
    BUILDER_CONFIGS = []
    
    def __init__(self, name=None, data_config={}, **kwargs):
        print(name, data_config)
        super().__init__(**kwargs)
        print(name, data_config)
        
        """
        Set default configs
        """
        if 'length' not in data_config:
            data_config['length'] = 20
        if 'size' not in data_config:
            data_config['size'] = -1

        self.data_config = data_config
        self.sampler = dataset_map[data_name](data_config)

        print(data_name, self.sampler)

    def _info(self):
        features = datasets.Features(
            {
                "input_ids": datasets.Sequence(datasets.Value("int32"), length=-1),
                "label_ids": datasets.Sequence(datasets.Value("int32"), length=-1)
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "split": "train",
                },
            )
        ]

    def _generate_examples(self, split):
        for i in itertools.count(start=0):
            if i == self.data_config['size']:
                break
            x, y = self.sampler.sample()
            yield i, {
                "input_ids": x,
                "label_ids": y
            }


class AutomatonSampler:
    def __init__(self, data_config):
        # self.name = name
        self.data_config = data_config

        if 'seed' in self.data_config:
            self.np_rng = np.random.default_rng(self.data_config['seed'])
        else:
            self.np_rng = np.random.default_rng()

        self.T = self.data_config['length']

    def f(self, x):
        """
        Get output sequence given an input seq
        """
        raise NotImplementedError()

    def sample(self):
        raise NotImplementedError()


class ParitySampler(AutomatonSampler):
    def __init__(self, data_config):
        super().__init__(data_config)
        self.name = 'parity'
        self.data_config = data_config

    def f(self, x):
        return np.cumsum(x) % 2

    def sample(self):
        x = self.np_rng.binomial(1,0.5,size=self.T)
        return x, self.f(x)


class FlipFlopSampler(AutomatonSampler):
    def __init__(self, data_config):
        super().__init__(data_config)
        self.name = 'flipflop'
        self.data_config = data_config

        self.n_actions = self.n_states + 1
        self.transition = np.array([list(range(self.n_actions))] + [[i+1]*self.n_actions for i in range(self.n_states)]).T

    def f(self, x):
        state, states = 0, []
        for action in x:
            state = self.transition[state, action]
            states += state,
        return np.array(states)

    def sample(self):
        rand = np.random.uniform(size=self.T)
        nonzero_pos = (rand < 0.5).astype(np.int64)
        writes = np.random.choice(range(1, self.n_states+1), size=self.T)
        x = writes * nonzero_pos
        return x, self.f(x)


dataset_map = {
  'parity': ParitySampler,
  'flipflop': FlipFlopSampler,
  # TODO: more datasets
  }