add ABAB; add __info__ string & help()
Browse files- automata.py +130 -23
automata.py
CHANGED
@@ -59,8 +59,8 @@ class SyntheticAutomataDataset(datasets.GeneratorBasedBuilder):
|
|
59 |
"""
|
60 |
if 'name' not in config:
|
61 |
config['name'] = 'parity'
|
62 |
-
if 'length' not in config: # sequence length
|
63 |
-
|
64 |
if 'size' not in config: # number of sequences
|
65 |
config['size'] = -1
|
66 |
|
@@ -113,8 +113,12 @@ class AutomatonSampler:
|
|
113 |
else:
|
114 |
self.np_rng = np.random.default_rng()
|
115 |
|
|
|
|
|
116 |
self.T = self.data_config['length']
|
117 |
|
|
|
|
|
118 |
def f(self, x):
|
119 |
"""
|
120 |
Get output sequence given an input seq
|
@@ -124,6 +128,9 @@ class AutomatonSampler:
|
|
124 |
def sample(self):
|
125 |
raise NotImplementedError()
|
126 |
|
|
|
|
|
|
|
127 |
|
128 |
class BinaryInputSampler(AutomatonSampler):
|
129 |
def __init__(self, data_config):
|
@@ -132,6 +139,8 @@ class BinaryInputSampler(AutomatonSampler):
|
|
132 |
if 'prob1' not in data_config:
|
133 |
data_config['prob1'] = 0.5
|
134 |
self.prob1 = data_config['prob1']
|
|
|
|
|
135 |
|
136 |
def f(self, x):
|
137 |
raise NotImplementedError()
|
@@ -145,6 +154,12 @@ class ParitySampler(BinaryInputSampler):
|
|
145 |
super().__init__(data_config)
|
146 |
self.name = 'parity'
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
def f(self, x):
|
149 |
return np.cumsum(x) % 2
|
150 |
|
@@ -164,8 +179,25 @@ class GridworldSampler(BinaryInputSampler):
|
|
164 |
self.n = data_config['n']
|
165 |
self.S = self.n - 1
|
166 |
|
|
|
|
|
|
|
|
|
|
|
167 |
self.name = f'Grid{self.n}'
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
def f(self, x):
|
170 |
x = copy(x)
|
171 |
x[x == 0] = -1
|
@@ -179,33 +211,95 @@ class GridworldSampler(BinaryInputSampler):
|
|
179 |
states = states[1:] # remove the 1st entry with is the (meaningless) initial value 0
|
180 |
return np.array(states).astype(np.int64)
|
181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
|
184 |
class FlipFlopSampler(AutomatonSampler):
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
|
211 |
class SymmetricSampler(AutomatonSampler):
|
@@ -265,6 +359,18 @@ class SymmetricSampler(AutomatonSampler):
|
|
265 |
cnt += 1
|
266 |
if cnt == self.n_actions: break
|
267 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
def get_state_label(self, state):
|
269 |
enc = self.state_encode(state)
|
270 |
return self.state_label_map[enc]
|
@@ -289,6 +395,7 @@ class SymmetricSampler(AutomatonSampler):
|
|
289 |
|
290 |
|
291 |
dataset_map = {
|
|
|
292 |
'gridworld': GridworldSampler,
|
293 |
'flipflop': FlipFlopSampler,
|
294 |
'parity': ParitySampler,
|
|
|
59 |
"""
|
60 |
if 'name' not in config:
|
61 |
config['name'] = 'parity'
|
62 |
+
# if 'length' not in config: # sequence length
|
63 |
+
# config['length'] = 20
|
64 |
if 'size' not in config: # number of sequences
|
65 |
config['size'] = -1
|
66 |
|
|
|
113 |
else:
|
114 |
self.np_rng = np.random.default_rng()
|
115 |
|
116 |
+
if 'length' not in data_config: # sequence length
|
117 |
+
data_config['length'] = 20
|
118 |
self.T = self.data_config['length']
|
119 |
|
120 |
+
self.__info__ = " - T (int): sequence length"
|
121 |
+
|
122 |
def f(self, x):
|
123 |
"""
|
124 |
Get output sequence given an input seq
|
|
|
128 |
def sample(self):
|
129 |
raise NotImplementedError()
|
130 |
|
131 |
+
def help(self):
|
132 |
+
print(self.__info__)
|
133 |
+
|
134 |
|
135 |
class BinaryInputSampler(AutomatonSampler):
|
136 |
def __init__(self, data_config):
|
|
|
139 |
if 'prob1' not in data_config:
|
140 |
data_config['prob1'] = 0.5
|
141 |
self.prob1 = data_config['prob1']
|
142 |
+
self.__info__ = " - prob1 (float in [0,1]): probability of token 1\n" \
|
143 |
+
+ self.__info__
|
144 |
|
145 |
def f(self, x):
|
146 |
raise NotImplementedError()
|
|
|
154 |
super().__init__(data_config)
|
155 |
self.name = 'parity'
|
156 |
|
157 |
+
self.__info__ = "Parity machine with 2 states: \n" \
|
158 |
+
+ "- Inputs: binary strings\n" \
|
159 |
+
+ "- Labels: binary strings of the partial parity\n" \
|
160 |
+
+ "- Config: \n" \
|
161 |
+
+ self.__info__
|
162 |
+
|
163 |
def f(self, x):
|
164 |
return np.cumsum(x) % 2
|
165 |
|
|
|
179 |
self.n = data_config['n']
|
180 |
self.S = self.n - 1
|
181 |
|
182 |
+
if 'label_type' not in data_config:
|
183 |
+
# Options: state, parity, boundary
|
184 |
+
data_config['label_type'] = 'state'
|
185 |
+
self.label_type = data_config['label_type']
|
186 |
+
|
187 |
self.name = f'Grid{self.n}'
|
188 |
|
189 |
+
self.__info__ = f"1d Gridworld of n={self.n} states:\n" \
|
190 |
+
+ "- Inputs: binary strings, i.e. move left(0) or right(1)\n" \
|
191 |
+
+ "- Labels: depending on 'label_type'. \n" \
|
192 |
+
+ "- Config: \n" \
|
193 |
+
+ " - n (int): number of states; i.e. the states are 0,1,2,...,n-1.\n" \
|
194 |
+
+ " - label_type (str): choosing from the following options:\n" \
|
195 |
+
+ " - 'state' (default): the state id, i.e. 0 to n-1.\n" \
|
196 |
+
+ " - 'parity': the state id mod 2.\n" \
|
197 |
+
+ " - 'boundary': whether the current state is in {0, n-1} or not.\n" \
|
198 |
+
+ self.__info__
|
199 |
+
|
200 |
+
|
201 |
def f(self, x):
|
202 |
x = copy(x)
|
203 |
x[x == 0] = -1
|
|
|
211 |
states = states[1:] # remove the 1st entry with is the (meaningless) initial value 0
|
212 |
return np.array(states).astype(np.int64)
|
213 |
|
214 |
+
class ABABSampler(BinaryInputSampler):
|
215 |
+
def __init__(self, data_config):
|
216 |
+
super().__init__(data_config)
|
217 |
+
self.name = 'abab'
|
218 |
+
|
219 |
+
if 'prob_abab_pos_sample' not in data_config:
|
220 |
+
# The probability of having a positive sequence, i.e. 010101010101...
|
221 |
+
data_config['prob_abab_pos_sample'] = 0.25
|
222 |
+
if 'label_type' not in data_config:
|
223 |
+
# Options: 'state', 'boundary'
|
224 |
+
data_config['label_type'] = 'state'
|
225 |
+
|
226 |
+
self.prob_abab_pos_sample = data_config['prob_abab_pos_sample']
|
227 |
+
self.label_type = data_config['label_type']
|
228 |
+
|
229 |
+
self.transition = np.array(
|
230 |
+
[[4, 1], # state 0
|
231 |
+
[2, 4], # state 1
|
232 |
+
[4, 3], # state 2
|
233 |
+
[0, 4], # state 3
|
234 |
+
[4, 4], # state 4
|
235 |
+
])
|
236 |
+
|
237 |
+
self.__info__ = "abab: an automaton with 4 states + 1 absorbing state:\n" \
|
238 |
+
+ "- Inputs: binary strings\n" \
|
239 |
+
+ "- Labels: depending on 'label_type'.\n" \
|
240 |
+
+ "- Config:\n" \
|
241 |
+
+ " - prob_abab_pos_sample (float in [0,1]): probability of having a 'positive' sequence, i.e. 01010101010...\n" \
|
242 |
+
+ " - label_type (str): choosing from the following options:\n" \
|
243 |
+
+ " - 'state' (default): the state id.\n" \
|
244 |
+
+ " - 'boundary': whether the state is in state 3 (the states are 0,1,2,3).\n" \
|
245 |
+
+ self.__info__
|
246 |
+
|
247 |
+
def f(self, x):
|
248 |
+
labels = []
|
249 |
+
curr_state = 3
|
250 |
+
for each in x:
|
251 |
+
curr_state = self.transition[curr_state, each]
|
252 |
+
labels += curr_state,
|
253 |
+
labels = np.array(labels).astype(np.int64)
|
254 |
+
if self.label_type == 'boundary':
|
255 |
+
labels = (labels == 3).astype(np.int64)
|
256 |
+
return labels
|
257 |
+
|
258 |
+
def sample(self):
|
259 |
+
pos_sample = np.random.random() < self.prob_abab_pos_sample
|
260 |
+
if pos_sample:
|
261 |
+
x = [0,1,0,1] * (self.T//4)
|
262 |
+
x += [0,1,0,1][:(self.T%4)]
|
263 |
+
x = np.array(x)
|
264 |
+
return x, self.f(x)
|
265 |
+
else:
|
266 |
+
return super().sample()
|
267 |
+
|
268 |
+
|
269 |
|
270 |
|
271 |
class FlipFlopSampler(AutomatonSampler):
|
272 |
+
def __init__(self, data_config):
|
273 |
+
super().__init__(data_config)
|
274 |
+
self.name = 'flipflop'
|
275 |
|
276 |
+
if 'n' not in data_config:
|
277 |
+
data_config['n'] = 2
|
278 |
+
|
279 |
+
self.n_states = data_config['n']
|
280 |
+
self.n_actions = self.n_states + 1
|
281 |
+
self.transition = np.array([list(range(self.n_actions))] + [[i+1]*self.n_actions for i in range(self.n_states)]).T
|
282 |
|
283 |
+
self.__info__ = f"Flipflop with n={self.n_states} states:\n" \
|
284 |
+
+f"- Inputs: tokens are either 0 (read) or 1:{self.n} (write).\n" \
|
285 |
+
+ "- Labels: depending on 'label_type'.\n" \
|
286 |
+
+ "- Config:\n" \
|
287 |
+
+ " - n (int): number of write states; i.e. the states are 1,2,...,n, plus a default start state 0.\n" \
|
288 |
+
+ self.__info__
|
289 |
|
290 |
+
def f(self, x):
|
291 |
+
state, states = 0, []
|
292 |
+
for action in x:
|
293 |
+
state = self.transition[state, action]
|
294 |
+
states += state,
|
295 |
+
return np.array(states)
|
296 |
+
|
297 |
+
def sample(self):
|
298 |
+
rand = np.random.uniform(size=self.T)
|
299 |
+
nonzero_pos = (rand < 0.5).astype(np.int64)
|
300 |
+
writes = np.random.choice(range(1, self.n_states+1), size=self.T)
|
301 |
+
x = writes * nonzero_pos
|
302 |
+
return x, self.f(x)
|
303 |
|
304 |
|
305 |
class SymmetricSampler(AutomatonSampler):
|
|
|
359 |
cnt += 1
|
360 |
if cnt == self.n_actions: break
|
361 |
|
362 |
+
self.__info__ = f"Symmetric group on n={self.n} objects:\n" \
|
363 |
+
+f"- Inputs: tokens are either 0 (no-op), or 1:{self.n_actions} (corresponding to {self.n_actions} permutations).\n" \
|
364 |
+
+ "- Labels: depending on 'label_type'.\n" \
|
365 |
+
+ "- Config:\n" \
|
366 |
+
+ " - n (int): number of objects, i.e. there are n! states.\n" \
|
367 |
+
+ " - label_type (str): choosing from the following options:\n" \
|
368 |
+
+ " - 'state' (default): the state id.\n" \
|
369 |
+
+ " - 'first_chair': the element in the first position of the permutation.\n" \
|
370 |
+
+ " e.g. if the current permutation is [2,3,1,4], then 'first_chair' is 2.\n" \
|
371 |
+
+ self.__info__
|
372 |
+
|
373 |
+
|
374 |
def get_state_label(self, state):
|
375 |
enc = self.state_encode(state)
|
376 |
return self.state_label_map[enc]
|
|
|
395 |
|
396 |
|
397 |
dataset_map = {
|
398 |
+
'abab': ABABSampler,
|
399 |
'gridworld': GridworldSampler,
|
400 |
'flipflop': FlipFlopSampler,
|
401 |
'parity': ParitySampler,
|