File size: 151,892 Bytes
5070096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
standard library package ISQAtomicNuclear {
    doc
    /*
     * International System of Quantities and Units
     * Generated on 2022-08-07T14:44:27Z from standard ISO-80000-10:2019 "Atomic and nuclear physics"
     * see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-10:ed-2:v1:en
     * 
     * Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts,
     * with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks.
     * Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is 
     * defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system) 
     * or TensorMeasurementReference.
     */

    private import ScalarValues::Real;
    private import Quantities::*;
    private import MeasurementReferences::*;
    private import ISQBase::*;

    /* Quantity definitions referenced from other ISQ packages */
    private import ISQChemistryMolecular::DiffusionCoefficientUnit;
    private import ISQChemistryMolecular::DiffusionCoefficientValue;
    private import ISQChemistryMolecular::diffusionCoefficient;    
    private import ISQElectromagnetism::ElectricChargeValue;
    private import ISQSpaceTime::AngularFrequencyValue;
    private import ISQSpaceTime::AreaValue;
    private import ISQThermodynamics::EnergyValue;

    /* ISO-80000-10 item 10-1.1 atomic number, proton number */
    attribute atomicNumber: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 10-1.1 atomic number, proton number
         * symbol(s): `Z`
         * application domain: generic
         * name: AtomicNumber (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: number of protons in an atomic nucleus
         * remarks: A nuclide is a species of atom with specified numbers of protons and neutrons. Nuclides with the same value of `Z` but different values of `N` are called isotopes of an element. The ordinal number of an element in the periodic table is equal to the atomic number. The atomic number equals the quotient of the charge (IEC 80000-6) of the nucleus and the elementary charge (ISO 80000-1).
         */
    }

    alias protonNumber for atomicNumber;

    /* ISO-80000-10 item 10-1.2 neutron number */
    attribute neutronNumber: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 10-1.2 neutron number
         * symbol(s): `N`
         * application domain: generic
         * name: NeutronNumber (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: number of neutrons in an atomic nucleus
         * remarks: Nuclides with the same value of `N` but different values of `Z` are called isotones. `N - Z` is called the neutron excess number.
         */
    }

    /* ISO-80000-10 item 10-1.3 nucleon number, mass number */
    attribute nucleonNumber: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 10-1.3 nucleon number, mass number
         * symbol(s): `A`
         * application domain: generic
         * name: NucleonNumber (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: number of nucleons in an atomic nucleus
         * remarks: `A` = `Z` + `N` Nuclides with the same value of `A` are called isobars.
         */
    }

    alias massNumber for nucleonNumber;

    /* ISO-80000-10 item 10-2 rest mass, proper mass */
    attribute restMass: MassValue :> scalarQuantities {
        doc
        /*
         * source: item 10-2 rest mass, proper mass
         * symbol(s): `m(X)`, `m_X`
         * application domain: generic
         * name: RestMass (specializes Mass)
         * quantity dimension: M^1
         * measurement unit(s): kg, Da, u
         * tensor order: 0
         * definition: for particle X, mass (ISO 80000-4) of that particle at rest in an inertial frame
         * remarks: EXAMPLE `m(H_2O)` for a water molecule, `m_e` for an electron. Rest mass is often denoted `m_0`. 1 u is equal to 1/12 times the mass of a free carbon 12 atom, at rest and in its ground state. 1 Da = 1 u
         */
    }

    alias properMass for restMass;

    /* ISO-80000-10 item 10-3 rest energy */
    attribute restEnergy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 10-3 rest energy
         * symbol(s): `E_0`
         * application domain: generic
         * name: RestEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, N*m, kg*m^2*s^-2
         * tensor order: 0
         * definition: energy `E_0` (ISO 80000-5) of a particle at rest: `E_0 = m_0 c_0^2` where `m_0` is the rest mass (item 10-2) of that particle, and `c_0` is speed of light in vacuum (ISO 80000-1)
         * remarks: None.
         */
    }

    /* ISO-80000-10 item 10-4.1 atomic mass */
    attribute atomicMass: MassValue :> scalarQuantities {
        doc
        /*
         * source: item 10-4.1 atomic mass
         * symbol(s): `m(X)`, `m_X`
         * application domain: generic
         * name: AtomicMass (specializes Mass)
         * quantity dimension: M^1
         * measurement unit(s): kg, Da, u
         * tensor order: 0
         * definition: rest mass (item 10-2) of an atom X in the ground state
         * remarks: `m(X)/m_u` is called the relative atomic mass. 1 u is equal to 1/12 times the mass of a free carbon 12 atom, at rest and in its ground state. 1 Da = 1 u
         */
    }

    /* ISO-80000-10 item 10-4.2 nuclidic mass */
    attribute nuclidicMass: MassValue :> scalarQuantities {
        doc
        /*
         * source: item 10-4.2 nuclidic mass
         * symbol(s): `m(X)`, `m_X`
         * application domain: generic
         * name: NuclidicMass (specializes Mass)
         * quantity dimension: M^1
         * measurement unit(s): kg, Da, u
         * tensor order: 0
         * definition: rest mass (item 10-2) of a nuclide X in the ground state
         * remarks: 1 u is equal to 1/12 times the mass of a free carbon 12 atom, at rest and in its ground state. 1 Da = 1 u
         */
    }

    /* ISO-80000-10 item 10-4.3 unified atomic mass constant */
    attribute unifiedAtomicMassConstant: MassValue :> scalarQuantities {
        doc
        /*
         * source: item 10-4.3 unified atomic mass constant
         * symbol(s): `m_u`
         * application domain: generic
         * name: UnifiedAtomicMassConstant (specializes Mass)
         * quantity dimension: M^1
         * measurement unit(s): kg, Da, u
         * tensor order: 0
         * definition: 1/12 of the mass (ISO 80000-4) of an atom of the nuclide ^(12)C in the ground state at rest
         * remarks: 1 u is equal to 1/12 times the mass of a free carbon 12 atom, at rest and in its ground state. 1 Da = 1 u
         */
    }

    /* ISO-80000-10 item 10-5.1 elementary charge */
    attribute elementaryCharge: ElectricChargeValue :> scalarQuantities {
        doc
        /*
         * source: item 10-5.1 elementary charge
         * symbol(s): `e`
         * application domain: generic
         * name: ElementaryCharge (specializes ElectricCharge)
         * quantity dimension: T^1*I^1
         * measurement unit(s): C, s*A
         * tensor order: 0
         * definition: one of the fundamental constants in the SI system (ISO 80000-1), equal to the charge of the proton and opposite to the charge of the electron
         * remarks: None.
         */
    }

    /* ISO-80000-10 item 10-5.2 charge number, ionization number */
    attribute def ChargeNumberValue :> DimensionOneValue {
        doc
        /*
         * source: item 10-5.2 charge number, ionization number
         * symbol(s): `c`
         * application domain: generic
         * name: ChargeNumber (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for a particle, quotient of the electric charge (IEC 80000-6) and the elementary charge (ISO 80000-1)
         * remarks: A particle is said to be electrically neutral if its charge number is equal to zero. The charge number of a particle can be positive, negative, or zero. The state of charge of a particle may be presented as a superscript to the symbol of that particle, e.g. `H^+, He^(++), Al^(3+), Cl^-, S^(--), N^(3-)`.
         */
    }
    attribute chargeNumber: ChargeNumberValue :> scalarQuantities;

    alias ionizationNumber for chargeNumber;

    /* ISO-80000-10 item 10-6 Bohr radius */
    attribute bohrRadius: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 10-6 Bohr radius
         * symbol(s): `a_0`
         * application domain: generic
         * name: BohrRadius (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m, Å
         * tensor order: 0
         * definition: radius (ISO 80000-3) of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom: `a_0 = (4 π ε_0 ℏ^2)/(m_e e^2)` where `ε_0` is the electric constant (IEC 80000-6), `ℏ` is the reduced Planck constant (ISO 80000-1), `m_e` is the rest mass (item 10-2) of electron, and `e` is the elementary charge (ISO 80000-1)
         * remarks: The radius of the electron orbital in the H atom in its ground state is `a_0` in the Bohr model of the atom. ångström (Å), `1 Å := 10^-10 m`.
         */
    }

    /* ISO-80000-10 item 10-7 Rydberg constant */
    attribute def RydbergConstantValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-7 Rydberg constant
         * symbol(s): `R_∞`
         * application domain: generic
         * name: RydbergConstant
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 0
         * definition: spectroscopic constant that determines the wave numbers of the lines in the spectrum of hydrogen: `R_(oo) = e^2/(8 π ε_0 a_0 h c_0)` where `e` is the elementary charge (ISO 80000-1), `ε_0` is the electric constant (IEC 80000-6), `a_0` is the Bohr radius (item 10-6), `h` is the Planck constant (ISO 80000-1), and `c_0` is the speed of light in vacuum (ISO 80000-1)
         * remarks: The quantity `R_y = R_∞ h c_0` is called the Rydberg energy.
         */
        attribute :>> num: Real;
        attribute :>> mRef: RydbergConstantUnit[1];
    }

    attribute rydbergConstant: RydbergConstantValue[*] nonunique :> scalarQuantities;

    attribute def RydbergConstantUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-10 item 10-8 Hartree energy */
    attribute def HartreeEnergyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-8 Hartree energy
         * symbol(s): `E_H`, `E_h`
         * application domain: generic
         * name: HartreeEnergy
         * quantity dimension: L^6*M^3*T^-6
         * measurement unit(s): eV*J*kg*m^2*s^-2
         * tensor order: 0
         * definition: energy (ISO 80000-5) of the electron in a hydrogen atom in its ground state: `E_H = e^2/(4 π ε_0 a_0)` where `e` is the elementary charge (ISO 80000-1), `ε_0` is the electric constant (IEC 80000-6), and `a_0` is the Bohr radius (item 10-6)
         * remarks: The energy of the electron in an H atom in its ground state is `E_H`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: HartreeEnergyUnit[1];
    }

    attribute hartreeEnergy: HartreeEnergyValue[*] nonunique :> scalarQuantities;

    attribute def HartreeEnergyUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 6; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 3; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -6; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-10 item 10-9.1 magnetic dipole moment */
    attribute def MagneticDipoleMomentValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-9.1 magnetic dipole moment (magnitude)
         * symbol(s): `μ`
         * application domain: atomic physics
         * name: MagneticDipoleMoment
         * quantity dimension: L^2*I^1
         * measurement unit(s): m^2*A
         * tensor order: 0
         * definition: for a particle, vector (ISO 80000-2) quantity causing a change to its energy (ISO 80000-5) `ΔW` in an external magnetic field of field flux density `vec(B)` (IEC 80000-6): `ΔW` = -`vec(μ)` · `vec(B)`
         * remarks: For an atom or nucleus, this energy is quantized and can be written as: `W` = `g μ_x M B` where `g` is the appropriate `g` factor (item 10-14.1 or item 10-14.2), `μ_x` is mostly the Bohr magneton or nuclear magneton (item 10-9.2 or item 10-9.3), `M` is magnetic quantum number (item 10-13.4), and `B` is magnitude of the magnetic flux density. See also IEC 80000-6.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MagneticDipoleMomentUnit[1];
    }

    attribute magneticDipoleMoment: MagneticDipoleMomentValue[*] nonunique :> scalarQuantities;

    attribute def MagneticDipoleMomentUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); }
    }

    attribute def Cartesian3dMagneticDipoleMomentVector :> VectorQuantityValue {
        doc
        /*
         * source: item 10-9.1 magnetic dipole moment (vector)
         * symbol(s): `vec(μ)`
         * application domain: atomic physics
         * name: MagneticDipoleMoment
         * quantity dimension: L^2*I^1
         * measurement unit(s): m^2*A
         * tensor order: 1
         * definition: for a particle, vector (ISO 80000-2) quantity causing a change to its energy (ISO 80000-5) `ΔW` in an external magnetic field of field flux density `vec(B)` (IEC 80000-6): `ΔW` = -`vec(μ)` · `vec(B)`
         * remarks: For an atom or nucleus, this energy is quantized and can be written as: `W` = `g μ_x M B` where `g` is the appropriate `g` factor (item 10-14.1 or item 10-14.2), `μ_x` is mostly the Bohr magneton or nuclear magneton (item 10-9.2 or item 10-9.3), `M` is magnetic quantum number (item 10-13.4), and `B` is magnitude of the magnetic flux density. See also IEC 80000-6.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dMagneticDipoleMomentCoordinateFrame[1];
    }

    attribute magneticDipoleMomentVector: Cartesian3dMagneticDipoleMomentVector :> vectorQuantities;

    attribute def Cartesian3dMagneticDipoleMomentCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: MagneticDipoleMomentUnit[3];
    }

    /* ISO-80000-10 item 10-9.2 Bohr magneton */
    attribute bohrMagneton: MagneticDipoleMomentValue :> scalarQuantities {
        doc
        /*
         * source: item 10-9.2 Bohr magneton
         * symbol(s): `μ_B`
         * application domain: generic
         * name: BohrMagneton (specializes MagneticDipoleMoment)
         * quantity dimension: L^2*I^1
         * measurement unit(s): m^2*A
         * tensor order: 0
         * definition: magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number `l`=1 (item 10-13.3) due to its orbital motion: `μ_B = (e ℏ)/(2 m_e)` where `e` is the elementary charge (ISO 80000-1), `ℏ` is the reduced Planck constant (ISO 80000-1), and `m_e` is the rest mass (item 10-2) of electron
         * remarks: None.
         */
    }

    /* ISO-80000-10 item 10-9.3 nuclear magneton */
    attribute nuclearMagneton: MagneticDipoleMomentValue :> scalarQuantities {
        doc
        /*
         * source: item 10-9.3 nuclear magneton
         * symbol(s): `μ_N`
         * application domain: generic
         * name: NuclearMagneton (specializes MagneticDipoleMoment)
         * quantity dimension: L^2*I^1
         * measurement unit(s): m^2*A
         * tensor order: 0
         * definition: absolute value of the magnetic moment of a nucleus: `μ_N = (e ℏ)/(2 m_p)` where `e` is the elementary charge (ISO 80000-1), `ℏ` is the reduced Planck constant (ISO 80000-1), and `m_p` is the rest mass (item 10-2) of proton
         * remarks: Subscript N stands for nucleus. For the neutron magnetic moment, subscript n is used. The magnetic moments of protons and neutrons differ from this quantity by their specific `g` factors (item 10-14.2).
         */
    }

    /* ISO-80000-10 item 10-10 spin */
    attribute def SpinValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-10 spin (magnitude)
         * symbol(s): `s`
         * application domain: generic
         * name: Spin
         * quantity dimension: L^2*M^1*T^-1
         * measurement unit(s): kg*m^2*s^-1
         * tensor order: 0
         * definition: vector (ISO 80000-2) quantity expressing the internal angular momentum (ISO 80000-4) of a particle or a particle system
         * remarks: Spin is an additive vector quantity.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SpinUnit[1];
    }

    attribute spin: SpinValue[*] nonunique :> scalarQuantities;

    attribute def SpinUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    attribute def Cartesian3dSpinVector :> VectorQuantityValue {
        doc
        /*
         * source: item 10-10 spin (vector)
         * symbol(s): `vec(s)`
         * application domain: generic
         * name: Spin
         * quantity dimension: L^2*M^1*T^-1
         * measurement unit(s): kg*m^2*s^-1
         * tensor order: 1
         * definition: vector (ISO 80000-2) quantity expressing the internal angular momentum (ISO 80000-4) of a particle or a particle system
         * remarks: Spin is an additive vector quantity.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dSpinCoordinateFrame[1];
    }

    attribute spinVector: Cartesian3dSpinVector :> vectorQuantities;

    attribute def Cartesian3dSpinCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: SpinUnit[3];
    }

    /* ISO-80000-10 item 10-11 total angular momentum */
    attribute def TotalAngularMomentumValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-11 total angular momentum (magnitude)
         * symbol(s): `J`
         * application domain: generic
         * name: TotalAngularMomentum
         * quantity dimension: L^2*M^1*T^-1
         * measurement unit(s): J*s*eV*s, kg*m^2*s^-1
         * tensor order: 0
         * definition: vector (ISO 80000-2) quantity in a quantum system composed of the vectorial sum of angular momentum `vec(L)` (ISO 80000-4) and spin `vec(s)` (item 10-10)
         * remarks: In atomic and nuclear physics, orbital angular momentum is usually denoted by `vec(l)` or `vec(L)`. The magnitude of `vec(J)` is quantized so that: `J^2 = ℏ^2 j (j+1)` where `j` is the total angular momentum quantum number (item 10-13.6). Total angular momentum and magnetic dipole moment have the same direction. `j` is not the magnitude of the total angular momentum `vec(J)` but its projection onto the quantization axis, divided by `ℏ`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: TotalAngularMomentumUnit[1];
    }

    attribute totalAngularMomentum: TotalAngularMomentumValue[*] nonunique :> scalarQuantities;

    attribute def TotalAngularMomentumUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    attribute def Cartesian3dTotalAngularMomentumVector :> VectorQuantityValue {
        doc
        /*
         * source: item 10-11 total angular momentum (vector)
         * symbol(s): `vec(J)`
         * application domain: generic
         * name: TotalAngularMomentum
         * quantity dimension: L^2*M^1*T^-1
         * measurement unit(s): J*s*eV*s, kg*m^2*s^-1
         * tensor order: 1
         * definition: vector (ISO 80000-2) quantity in a quantum system composed of the vectorial sum of angular momentum `vec(L)` (ISO 80000-4) and spin `vec(s)` (item 10-10)
         * remarks: In atomic and nuclear physics, orbital angular momentum is usually denoted by `vec(l)` or `vec(L)`. The magnitude of `vec(J)` is quantized so that: `J^2 = ℏ^2 j (j+1)` where `j` is the total angular momentum quantum number (item 10-13.6). Total angular momentum and magnetic dipole moment have the same direction. `j` is not the magnitude of the total angular momentum `vec(J)` but its projection onto the quantization axis, divided by `ℏ`.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dTotalAngularMomentumCoordinateFrame[1];
    }

    attribute totalAngularMomentumVector: Cartesian3dTotalAngularMomentumVector :> vectorQuantities;

    attribute def Cartesian3dTotalAngularMomentumCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: TotalAngularMomentumUnit[3];
    }

    /* ISO-80000-10 item 10-12.1 gyromagnetic ratio, magnetogyric ratio, gyromagnetic coefficient */
    attribute def GyromagneticRatioValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-12.1 gyromagnetic ratio, magnetogyric ratio, gyromagnetic coefficient
         * symbol(s): `γ`
         * application domain: generic
         * name: GyromagneticRatio
         * quantity dimension: M^-1*T^1*I^1
         * measurement unit(s): A*m^2*J^-1*s^-1, A*s/kg, kg^-1*s*A
         * tensor order: 0
         * definition: proportionality constant between the magnetic dipole moment and the angular momentum: `vec(μ)` = `γ` `vec(J)` where `vec(μ)` is the magnetic dipole moment (item 10-9.1), and `vec(J)` is the total angular momentum (item 10-11)
         * remarks: 1 A·m^2/(J·s) = 1 A·s/kg = 1 T^-1·s^-1 The systematic name is "gyromagnetic coefficient", but "gyromagnetic ratio" is more usual. The gyromagnetic ratio of the proton is denoted by `γ_p`. The gyromagnetic ratio of the neutron is denoted by `γ_n`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: GyromagneticRatioUnit[1];
    }

    attribute gyromagneticRatio: GyromagneticRatioValue[*] nonunique :> scalarQuantities;

    attribute def GyromagneticRatioUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; }
        private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, electricCurrentPF); }
    }

    alias MagnetogyricRatioUnit for GyromagneticRatioUnit;
    alias MagnetogyricRatioValue for GyromagneticRatioValue;
    alias magnetogyricRatio for gyromagneticRatio;

    alias GyromagneticCoefficientUnit for GyromagneticRatioUnit;
    alias GyromagneticCoefficientValue for GyromagneticRatioValue;
    alias gyromagneticCoefficient for gyromagneticRatio;

    /* ISO-80000-10 item 10-12.2 gyromagnetic ratio of the electron, magnetogyric ratio of the electron, gyromagnetic coefficient of the electron */
    attribute def GyromagneticRatioOfTheElectronValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-12.2 gyromagnetic ratio of the electron, magnetogyric ratio of the electron, gyromagnetic coefficient of the electron
         * symbol(s): `γ_e`
         * application domain: generic
         * name: GyromagneticRatioOfTheElectron
         * quantity dimension: M^-1*T^1*I^1
         * measurement unit(s): A*m^2*J^-1*s^-1, A*s/kg, kg^-1*s*A
         * tensor order: 0
         * definition: proportionality constant between the magnetic dipole moment and the angular momentum of the electron `vec(μ)` = `γ_e` `vec(J)` where `vec(μ)` is the magnetic dipole moment (item 10-9.1), and `vec(J)` is the total angular momentum (item 10-11)
         * remarks: 1 A·m^2/(J·s) = 1 A·s/kg = 1 T^-1·s^-1
         */
        attribute :>> num: Real;
        attribute :>> mRef: GyromagneticRatioOfTheElectronUnit[1];
    }

    attribute gyromagneticRatioOfTheElectron: GyromagneticRatioOfTheElectronValue[*] nonunique :> scalarQuantities;

    attribute def GyromagneticRatioOfTheElectronUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; }
        private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, electricCurrentPF); }
    }

    alias MagnetogyricRatioOfTheElectronUnit for GyromagneticRatioOfTheElectronUnit;
    alias MagnetogyricRatioOfTheElectronValue for GyromagneticRatioOfTheElectronValue;
    alias magnetogyricRatioOfTheElectron for gyromagneticRatioOfTheElectron;

    alias GyromagneticCoefficientOfTheElectronUnit for GyromagneticRatioOfTheElectronUnit;
    alias GyromagneticCoefficientOfTheElectronValue for GyromagneticRatioOfTheElectronValue;
    alias gyromagneticCoefficientOfTheElectron for gyromagneticRatioOfTheElectron;

    /* ISO-80000-10 item 10-13.1 quantum number */
    attribute def QuantumNumberValue :> DimensionOneValue {
        doc
        /*
         * source: item 10-13.1 quantum number
         * symbol(s): `N`, `L`, `M`, `j`, `s`, `F`
         * application domain: generic
         * name: QuantumNumber (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: number describing a particular state of a quantum system
         * remarks: Electron states determine the binding energy `E = E(n,l,m,j,s,f)` in an atom. Upper case letters `N, L, M, J, S, F` are usually used for the whole system. The spatial probability distribution of an electron is given by `|Ψ|^2`, where `Ψ` is its wave function. For an electron in an H atom in a non-relativistic approximation, the wave function can be presented as: `Ψ(r,θ,φ) = R_(nl)(r)*Y_l^m(θ,φ)`, where `r,θ,φ` are spherical coordinates (ISO 80000-2) with respect to the nucleus and to a given (quantization) axis, `R_(nl)(r)` is the radial distribution function, and `Y_l^m(θ,φ)` are spherical harmonics. In the Bohr model of one-electron atoms, `n`, `l`, and `m` define the possible orbits of an electron about the nucleus.
         */
    }
    attribute quantumNumber: QuantumNumberValue :> scalarQuantities;

    /* ISO-80000-10 item 10-13.2 principal quantum number */
    attribute principalQuantumNumber: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 10-13.2 principal quantum number
         * symbol(s): `n`
         * application domain: generic
         * name: PrincipalQuantumNumber (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: atomic quantum number related to the number `n`-1 of radial nodes of one-electron wave functions
         * remarks: In the Bohr model, `n = 1,2,…,∞` is related to the binding energy of an electron and the radius of spherical orbits (principal axis of the elliptic orbits). For an electron in an H atom, the semi-classical radius of its orbit is `r_n = a_0 n^2` and its binding energy is `E_n = E_H/n^2`.
         */
    }

    /* ISO-80000-10 item 10-13.3 orbital angular momentum quantum number */
    attribute orbitalAngularMomentumQuantumNumber: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 10-13.3 orbital angular momentum quantum number
         * symbol(s): `l`, `l_i`, `L`
         * application domain: generic
         * name: OrbitalAngularMomentumQuantumNumber (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: atomic quantum number related to the orbital angular momentum `l` of a one-electron state
         * remarks: `abs(l)^2 = ℏ^2 l (l-1)` , `l = 0, 1, …, n-1` where `vec(l)` is the orbital angular momentum and `ℏ` is the reduced Planck constant (ISO 80000-1). If reference is made to a specific particle `i`, the symbol `l_i` is used instead of `l`; if reference is made to the whole system, the symbol `L` is used instead of `l`. An electron in an H atom for `l = 0` appears as a spherical cloud. In the Bohr model, it is related to the form of the orbit.
         */
    }

    /* ISO-80000-10 item 10-13.4 magnetic quantum number */
    attribute magneticQuantumNumber: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 10-13.4 magnetic quantum number
         * symbol(s): `m`, `m_i`, `M`
         * application domain: generic
         * name: MagneticQuantumNumber (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: atomic quantum number related to the `z` component `l_z`, `j_z` or `s_z`, of the orbital, total, or spin angular momentum
         * remarks: `l_z = m_l ℏ` , `j_z = m_j ℏ` , and `s_z = m_s ℏ` , with the ranges from `-l` to `l`, from `-j` to `j`, and `±1/2`, respectively. `m_i` refers to a specific particle `i`. `M` is used for the whole system. Subscripts `l`, `s`, `j`, etc., as appropriate, indicate the angular momentum involved. `ℏ` is the reduced Planck constant (ISO 80000-1).
         */
    }

    /* ISO-80000-10 item 10-13.5 spin quantum number */
    attribute spinQuantumNumber: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 10-13.5 spin quantum number
         * symbol(s): `s`
         * application domain: generic
         * name: SpinQuantumNumber (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: characteristic quantum number `s` of a particle, related to its spin (item 10-10), `vec(s)`: `s^2 = ℏ^2 s (s+1)` where `ℏ` is the reduced Planck constant (ISO 80000-1)
         * remarks: Spin quantum numbers of fermions are odd multiples of 1/2, and those of bosons are integers.
         */
    }

    /* ISO-80000-10 item 10-13.6 total angular momentum quantum number */
    attribute totalAngularMomentumQuantumNumber: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 10-13.6 total angular momentum quantum number
         * symbol(s): `j`, `j_i`, `J`
         * application domain: generic
         * name: TotalAngularMomentumQuantumNumber (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quantum number in an atom describing the magnitude of total angular momentum `vec(J)` (item 10-11)
         * remarks: `j_i` refers to a specific particle `i`; `J` is used for the whole system. The quantum number `J` and the magnitude of total angular momentum `vec(J)` (item 10-11) are different quantities. The two values of `j` are `l`±1/2. (See item 10-13.3.)
         */
    }

    /* ISO-80000-10 item 10-13.7 nuclear spin quantum number */
    attribute nuclearSpinQuantumNumber: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 10-13.7 nuclear spin quantum number
         * symbol(s): `I`
         * application domain: generic
         * name: NuclearSpinQuantumNumber (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quantum number related to the total angular momentum (item 10-11), `vec(J)`, of a nucleus in any specified state, normally called nuclear spin: `vec(J)^2 = ℏ^2 I (I+1)` where `ℏ` is the reduced Planck constant (ISO 80000-1)
         * remarks: Nuclear spin is composed of spins of the nucleons (protons and neutrons) and their (orbital) motions. In principle there is no upper limit for the nuclear spin quantum number. It has possible values `I` = 0,1,2,… for even `A` and `I = 1/2, 3/2, …` for odd `A`. In nuclear and particle physics, `vec(J)` is often used.
         */
    }

    /* ISO-80000-10 item 10-13.8 hyperfine structure quantum number */
    attribute hyperfineStructureQuantumNumber: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 10-13.8 hyperfine structure quantum number
         * symbol(s): `F`
         * application domain: generic
         * name: HyperfineStructureQuantumNumber (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons
         * remarks: The interval of `F` is │`I`-`J`│, │`I`-`J`│+1, ..., `I`-`J`. This is related to the hyperfine splitting of the atomic energy levels due to the interaction between the electron and nuclear magnetic moments.
         */
    }

    /* ISO-80000-10 item 10-14.1 Lande factor, g factor of atom */
    attribute def LandeFactorValue :> DimensionOneValue {
        doc
        /*
         * source: item 10-14.1 Lande factor, g factor of atom
         * symbol(s): `g`
         * application domain: generic
         * name: LandeFactor (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton: `g = μ/(J*μ_B)` where `μ` is magnitude of magnetic dipole moment (item 10-9.1), `J` is total angular momentum quantum number (item 10-13.6), and `μ_B` is the Bohr magneton (item 10-9.2)
         * remarks: These quantities are also called `g` values. The Landé factor can be calculated from the expression: `g(L, S, J) = 1 + (g_e -1) xx (J(J+1) + S(S+1) - L(L+1))/(2J(J+1))` where `g_e` is the` g` factor of the electron.
         */
    }
    attribute landeFactor: LandeFactorValue :> scalarQuantities;

    alias gFactorOfAtom for landeFactor;

    /* ISO-80000-10 item 10-14.2 g factor of nucleus or nuclear particle */
    attribute def GFactorOfNucleusOrNuclearParticleValue :> DimensionOneValue {
        doc
        /*
         * source: item 10-14.2 g factor of nucleus or nuclear particle
         * symbol(s): `g`
         * application domain: generic
         * name: GFactorOfNucleusOrNuclearParticle (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton: `g = μ/(I*μ_N)` where `μ` is magnitude of magnetic dipole moment (item 10-9.1), `I` is nuclear spin quantum number (item 10-13.7), and `μ_N` is the nuclear magneton (item 10-9.3)
         * remarks: The `g` factors for nuclei or nucleons are known from measurements.
         */
    }
    attribute gFactorOfNucleusOrNuclearParticle: GFactorOfNucleusOrNuclearParticleValue :> scalarQuantities;

    /* ISO-80000-10 item 10-15.1 Larmor angular frequency */
    attribute larmorAngularFrequency: AngularFrequencyValue :> scalarQuantities {
        doc
        /*
         * source: item 10-15.1 Larmor angular frequency
         * symbol(s): `ω_L`
         * application domain: generic
         * name: LarmorAngularFrequency (specializes AngularFrequency)
         * quantity dimension: T^-1
         * measurement unit(s): rad*s^-1, s^-1
         * tensor order: 0
         * definition: angular frequency (ISO 80000-3) of the electron angular momentum (ISO 80000-4) vector precession about the axis of an external magnetic field: `ω_L = e/(2 m_e) B` where `e` is the elementary charge (ISO 80000-1), `m_e` is the rest mass (item 10-2) of electron, and `B` is magnetic flux density (IEC 80000-6)
         * remarks: None.
         */
    }

    /* ISO-80000-10 item 10-15.2 Larmor frequency */
    attribute def LarmorFrequencyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-15.2 Larmor frequency
         * symbol(s): `ν_L`
         * application domain: generic
         * name: LarmorFrequency
         * quantity dimension: T^-1
         * measurement unit(s): s^-1
         * tensor order: 0
         * definition: quotient of Larmor angular frequency (ISO 80000-3) and 2π
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: LarmorFrequencyUnit[1];
    }

    attribute larmorFrequency: LarmorFrequencyValue[*] nonunique :> scalarQuantities;

    attribute def LarmorFrequencyUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    /* ISO-80000-10 item 10-15.3 nuclear precession angular frequency */
    attribute nuclearPrecessionAngularFrequency: AngularFrequencyValue :> scalarQuantities {
        doc
        /*
         * source: item 10-15.3 nuclear precession angular frequency
         * symbol(s): `ω_N`
         * application domain: generic
         * name: NuclearPrecessionAngularFrequency (specializes AngularFrequency)
         * quantity dimension: T^-1
         * measurement unit(s): rad*s^-1, s^-1
         * tensor order: 0
         * definition: frequency (ISO 80000-3) by which the nucleus angular momentum vector (ISO 80000-4) precesses about the axis of an external magnetic field: `ω_N` = `γ` `B` where `γ` is the gyromagnetic ratio (item 10-12.1), and `B` is magnetic flux density (IEC 80000-6)
         * remarks: None.
         */
    }

    /* ISO-80000-10 item 10-16 cyclotron angular frequency */
    attribute cyclotronAngularFrequency: AngularFrequencyValue :> scalarQuantities {
        doc
        /*
         * source: item 10-16 cyclotron angular frequency
         * symbol(s): `ω_c`
         * application domain: generic
         * name: CyclotronAngularFrequency (specializes AngularFrequency)
         * quantity dimension: T^-1
         * measurement unit(s): rad*s^-1, s^-1
         * tensor order: 0
         * definition: quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass: `ω_c = abs(q)/m B` where `q` is the electric charge (IEC 80000-6) of the particle, `m` is the mass (ISO 80000-4) of the particle, and `B` is the absolute value of the magnetic flux density (IEC 80000-6)
         * remarks: The quantity `v_c` = `ω_c`/2π is called the cyclotron frequency.
         */
    }

    /* ISO-80000-10 item 10-17 gyroradius, Larmor radius */
    attribute gyroradius: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 10-17 gyroradius, Larmor radius
         * symbol(s): `r_g`, `r_L`
         * application domain: generic
         * name: Gyroradius (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: radius (ISO 80000-3) of circular movement of a particle with mass (ISO 80000-4), velocity `vec(v)` (ISO 80000-3), and electric charge `q` (IEC 80000-6), moving in a magnetic field with magnetic flux density `vec(B)` (IEC 80000-6): `r_g = (m abs(vec(v) xx vec(B)))/(q B^2)`
         * remarks: None.
         */
    }

    alias larmorRadius for gyroradius;

    /* ISO-80000-10 item 10-18 nuclear quadrupole moment */
    attribute def NuclearQuadrupoleMomentValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-18 nuclear quadrupole moment
         * symbol(s): `Q`
         * application domain: generic
         * name: NuclearQuadrupoleMoment
         * quantity dimension: L^2
         * measurement unit(s): m^2
         * tensor order: 0
         * definition: `z` component of the diagonalized tensor of nuclear quadrupole moment: `Q = (1/e) int (3z^2 - r^2) ρ(x, y, z) dV` in the quantum state with the nuclear spin in the field direction (`z`), where `e` is the elementary charge (ISO 80000-1), `r^2 = x^2 + y^2 + z^2`, `ρ(x,y,z)` is the nuclear electric charge density (IEC 80000-6), and `dV` is the volume element `dx dy dz`
         * remarks: The electric nuclear quadrupole moment is `eQ`. This value is equal to the `z` component of the diagonalized tensor of quadrupole moment.
         */
        attribute :>> num: Real;
        attribute :>> mRef: NuclearQuadrupoleMomentUnit[1];
    }

    attribute nuclearQuadrupoleMoment: NuclearQuadrupoleMomentValue[*] nonunique :> scalarQuantities;

    attribute def NuclearQuadrupoleMomentUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-10 item 10-19.1 nuclear radius */
    attribute nuclearRadius: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 10-19.1 nuclear radius
         * symbol(s): `R`
         * application domain: generic
         * name: NuclearRadius (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: conventional radius (ISO 80000-3) of sphere in which the nuclear matter is included
         * remarks: This quantity is not exactly defined. It is given approximately for nuclei in their ground state by: `R = r_0 A^(1//3)` where `r_0 ~~ 1.2 * 10^-15` m, and `A` is the nucleon number (item 10-1.3). Nuclear radius is usually expressed in femtometres, 1 fm = 10^(-15) m.
         */
    }

    /* ISO-80000-10 item 10-19.2 electron radius */
    attribute electronRadius: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 10-19.2 electron radius
         * symbol(s): `r_e`
         * application domain: generic
         * name: ElectronRadius (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: radius of a sphere such that the relativistic electron energy is distributed uniformly: `r_e = e^2/(4 π ε_0 m_e c_0^2)` where `e` is the elementary charge (ISO 80000-1), `ε_0` is the electric constant (IEC 80000-6), `m_e` is the rest mass (item 10-2) of electron, and `c_0` is the speed of light in vacuum (ISO 80000-1)
         * remarks: This quantity corresponds to the electrostatic energy `E` of a charge distributed inside a sphere of radius `r_e` as if all the rest energy (item 10-3) of the electron were attributed to the energy of electromagnetic origin, using the relation `E = m_e c_0^2`.
         */
    }

    /* ISO-80000-10 item 10-20 Compton wavelength */
    attribute comptonWavelength: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 10-20 Compton wavelength
         * symbol(s): `λ_C`
         * application domain: generic
         * name: ComptonWavelength (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum: `λ_C = h / (m c_0)` where `h` is the Planck constant (ISO 80000-1), `m` is the rest mass (item 10-2) of a particle, and `c_0` is the speed of light in vacuum (ISO 80000-1)
         * remarks: The wavelength of electromagnetic radiation scattered from free electrons (Compton scattering) is larger than that of the incident radiation by a maximum of 2`λ_C`.
         */
    }

    /* ISO-80000-10 item 10-21.1 mass excess */
    attribute massExcess: MassValue :> scalarQuantities {
        doc
        /*
         * source: item 10-21.1 mass excess
         * symbol(s): `Δ`
         * application domain: generic
         * name: MassExcess (specializes Mass)
         * quantity dimension: M^1
         * measurement unit(s): kg, Da, u
         * tensor order: 0
         * definition: difference between the mass of an atom, and the product of its mass number and the unified mass constant: `Δ = m_a - A*m_u`, where `m_a` is the rest mass (item 10-2) of the atom, `A` is its nucleon number (item 10-1.3), and `m_u` is the unified atomic mass constant (item 10-4.3)
         * remarks: The mass excess is usually expressed in daltons, 1 Da = 1 u. See item 10-2.
         */
    }

    /* ISO-80000-10 item 10-21.2 mass defect */
    attribute massDefect: MassValue :> scalarQuantities {
        doc
        /*
         * source: item 10-21.2 mass defect
         * symbol(s): `B`
         * application domain: generic
         * name: MassDefect (specializes Mass)
         * quantity dimension: M^1
         * measurement unit(s): kg, Da, u
         * tensor order: 0
         * definition: sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom: `B = Z*m(⁢^1"H") + N*m_n - m_a` where `Z` is the proton number (item 10-1.1) of the atom, `m(⁢^1"H")` is atomic mass (item 10-4.1) of `⁢^1"H"`, `N` is neutron number (item 10-1.2), `m_n` is the rest mass (item 10-2) of the neutron, and `m_a` is the rest mass (item 10-2) of the atom
         * remarks: The mass excess is usually expressed in daltons, 1 Da = 1 u. If the binding energy of the orbital electrons is neglected, `B c_0^2` is equal to the binding energy of the nucleus.
         */
    }

    /* ISO-80000-10 item 10-22.1 relative mass excess */
    attribute def RelativeMassExcessValue :> DimensionOneValue {
        doc
        /*
         * source: item 10-22.1 relative mass excess
         * symbol(s): `Δ_r`
         * application domain: generic
         * name: RelativeMassExcess (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of mass excess and the unified atomic mass constant: `Δ_r = Δ/m_u` where `Δ` is mass excess (item 10-21.1), and `m_u` is the unified atomic mass constant (item 10-4.3)
         * remarks: None.
         */
    }
    attribute relativeMassExcess: RelativeMassExcessValue :> scalarQuantities;

    /* ISO-80000-10 item 10-22.2 relative mass defect */
    attribute def RelativeMassDefectValue :> DimensionOneValue {
        doc
        /*
         * source: item 10-22.2 relative mass defect
         * symbol(s): `B_r`
         * application domain: generic
         * name: RelativeMassDefect (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of mass defect and the unified atomic mass constant: `B_r = B/m_u` where `B` is mass defect (item 10-21.2), and `m_u` is the unified atomic mass constant (item 10-4.3)
         * remarks: None.
         */
    }
    attribute relativeMassDefect: RelativeMassDefectValue :> scalarQuantities;

    /* ISO-80000-10 item 10-23.1 packing fraction */
    attribute def PackingFractionValue :> DimensionOneValue {
        doc
        /*
         * source: item 10-23.1 packing fraction
         * symbol(s): `f`
         * application domain: generic
         * name: PackingFraction (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of relative mass excess and the nucleon number: `f` = Δ_r/A` where `Δ_r` is relative mass excess (item 10-22.1), and `A` is the nucleon number (item 10-1.3)
         * remarks: None.
         */
    }
    attribute packingFraction: PackingFractionValue :> scalarQuantities;

    /* ISO-80000-10 item 10-23.2 binding fraction */
    attribute def BindingFractionValue :> DimensionOneValue {
        doc
        /*
         * source: item 10-23.2 binding fraction
         * symbol(s): `b`
         * application domain: generic
         * name: BindingFraction (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of relative mass defect and the nucleon number: `b = B_r/A` where `B_r` is relative mass defect (item 10-22.2), and `A` is the nucleon number (item 10-1.3)
         * remarks: None.
         */
    }
    attribute bindingFraction: BindingFractionValue :> scalarQuantities;

    /* ISO-80000-10 item 10-24 decay constant, disintegration constant */
    attribute def DecayConstantValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-24 decay constant, disintegration constant
         * symbol(s): `λ`
         * application domain: generic
         * name: DecayConstant
         * quantity dimension: T^-1
         * measurement unit(s): s^-1
         * tensor order: 0
         * definition: quotient of `(-dN)/N` and `dt`, where `(dN)/N` is the mean fractional change in the number of nuclei in a particular energy state due to spontaneous transformations in a time interval of duration (ISO 80000-3) `dt`: `λ = -1/N (dN)/(dt)`
         * remarks: For exponential decay, this quantity is constant. For more than one decay channel, `λ = sum λ_a` where `λ_a` denotes the decay constant for a specified final state and the sum is taken over all final states.
         */
        attribute :>> num: Real;
        attribute :>> mRef: DecayConstantUnit[1];
    }

    attribute decayConstant: DecayConstantValue[*] nonunique :> scalarQuantities;

    attribute def DecayConstantUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    alias DisintegrationConstantUnit for DecayConstantUnit;
    alias DisintegrationConstantValue for DecayConstantValue;
    alias disintegrationConstant for decayConstant;

    /* ISO-80000-10 item 10-25 mean duration of life, mean life time */
    attribute meanDurationOfLife: DurationValue :> scalarQuantities {
        doc
        /*
         * source: item 10-25 mean duration of life, mean life time
         * symbol(s): `τ`
         * application domain: atomic and nuclear physics
         * name: MeanDurationOfLife (specializes Duration)
         * quantity dimension: T^1
         * measurement unit(s): s
         * tensor order: 0
         * definition: reciprocal of the decay constant `λ` (item 10-24): `τ = 1/λ`
         * remarks: Mean duration of life is the expected value of the duration of life of an unstable particle or an excited state of a particle when the number of decay events in a short time interval follows a Poisson distribution.
         */
    }

    alias meanLifeTime for meanDurationOfLife;

    /* ISO-80000-10 item 10-26 level width */
    attribute levelWidth: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 10-26 level width
         * symbol(s): `Γ`
         * application domain: generic
         * name: LevelWidth (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): eV, J, kg*m^2*s^-2
         * tensor order: 0
         * definition: quotient of the reduced Planck constant and the mean life: `Γ = ℏ/τ` where `ℏ` is the reduced Planck constant (ISO 80000-1), and `τ` is mean duration of life (item 10-25)
         * remarks: Level width is the uncertainty of the energy of an unstable particle or an excited state of a system due to the Heisenberg principle. The term energy level refers to the configuration of the distribution function of the density of states. Energy levels may be considered as discrete, like those in an atom, or may have a finite width, like e.g. this item or like e.g. the valence or conduction band in solid state physics. Energy levels are applicable to both real and virtual particles, e.g. electrons and phonons, respectively.
         */
    }

    /* ISO-80000-10 item 10-27 nuclear activity */
    attribute def NuclearActivityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-27 nuclear activity
         * symbol(s): `A`
         * application domain: generic
         * name: NuclearActivity
         * quantity dimension: T^-1
         * measurement unit(s): Bq, s^-1
         * tensor order: 0
         * definition: differential quotient of `N` with respect to time, where `N` is the mean change in the number of nuclei in a particular energy state due to spontaneous nuclear transformations in a time interval of duration (ISO 80000-3) `dt`: `A = -(dN)/(dt)`
         * remarks: For exponential decay, `A = λN`, where `λ` is the decay constant (item 10-24). The becquerel (Bq) is a special name for second to the power minus one, to be used as the coherent SI unit of activity. In report 85a of the ICRU a definition with an equivalent meaning is given as: The activity, `A`, of an amount of a radionuclide in a particular energy state at a given time is the quotient of `-dN` by `dt`, where `dN` is the mean change in the number of nuclei in that energy state due to spontaneous nuclear transformations in the time interval `dt`: `A = -(dN)/(dt)`. See also section 0.3.
         */
        attribute :>> num: Real;
        attribute :>> mRef: NuclearActivityUnit[1];
    }

    attribute nuclearActivity: NuclearActivityValue[*] nonunique :> scalarQuantities;

    attribute def NuclearActivityUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    /* ISO-80000-10 item 10-28 specific activity, massic activity */
    attribute def SpecificActivityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-28 specific activity, massic activity
         * symbol(s): `a`
         * application domain: generic
         * name: SpecificActivity
         * quantity dimension: M^-1*T^-1
         * measurement unit(s): Bq/kg, kg^-1*s^-1
         * tensor order: 0
         * definition: quotient of the activity `A` (item 10-27) of a sample and the mass `m` (ISO 80000-4) of that sample: `a = A/m`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SpecificActivityUnit[1];
    }

    attribute specificActivity: SpecificActivityValue[*] nonunique :> scalarQuantities;

    attribute def SpecificActivityUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); }
    }

    alias MassicActivityUnit for SpecificActivityUnit;
    alias MassicActivityValue for SpecificActivityValue;
    alias massicActivity for specificActivity;

    /* ISO-80000-10 item 10-29 activity density, volumic activity, activity concentration */
    attribute def ActivityDensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-29 activity density, volumic activity, activity concentration
         * symbol(s): `c_A`
         * application domain: generic
         * name: ActivityDensity
         * quantity dimension: L^-3*T^-1
         * measurement unit(s): Bq/m^3, m^-3*s^-1
         * tensor order: 0
         * definition: quotient of the activity `A` (item 10-27) of a sample and the mass `m` (ISO 80000-4) of that sample: `a = A/m`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ActivityDensityUnit[1];
    }

    attribute activityDensity: ActivityDensityValue[*] nonunique :> scalarQuantities;

    attribute def ActivityDensityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    alias VolumicActivityUnit for ActivityDensityUnit;
    alias VolumicActivityValue for ActivityDensityValue;
    alias volumicActivity for activityDensity;

    alias ActivityConcentrationUnit for ActivityDensityUnit;
    alias ActivityConcentrationValue for ActivityDensityValue;
    alias activityConcentration for activityDensity;

    /* ISO-80000-10 item 10-30 surface-activity density */
    attribute def SurfaceActivityDensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-30 surface-activity density
         * symbol(s): `a_S`
         * application domain: generic
         * name: SurfaceActivityDensity
         * quantity dimension: L^-2*T^-1
         * measurement unit(s): Bq/m^2, m^-2*s^-1
         * tensor order: 0
         * definition: quotient of the activity `A` (item 10-27) of a sample and the total area `S` (ISO 80000-3) of the surface of that sample: `a_S` = `A`/`S`
         * remarks: This value is usually defined for flat sources, where `S` corresponds to the total area of surface of one side of the source.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SurfaceActivityDensityUnit[1];
    }

    attribute surfaceActivityDensity: SurfaceActivityDensityValue[*] nonunique :> scalarQuantities;

    attribute def SurfaceActivityDensityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-10 item 10-31 half life */
    attribute halfLife: DurationValue :> scalarQuantities {
        doc
        /*
         * source: item 10-31 half life
         * symbol(s): `T_(1/2)`
         * application domain: generic
         * name: HalfLife (specializes Duration)
         * quantity dimension: T^1
         * measurement unit(s): s
         * tensor order: 0
         * definition: mean duration (ISO 80000-3) required for the decay of one half of the atoms or nuclei
         * remarks: For exponential decay, `T_(1/2) = (ln2)/λ`, where `λ` is the decay constant (item 10-24).
         */
    }

    /* ISO-80000-10 item 10-32 alpha disintegration energy */
    attribute alphaDisintegrationEnergy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 10-32 alpha disintegration energy
         * symbol(s): `Q_α`
         * application domain: generic
         * name: AlphaDisintegrationEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): eV, J, kg*m^2*s^-2
         * tensor order: 0
         * definition: sum of the kinetic energy (ISO 80000-4) of the α-particle produced in the disintegration process and the recoil energy (ISO 80000-5) of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration
         * remarks: The ground-state alpha disintegration energy, `Q_(α,0)`, also includes the energy of any nuclear transitions that take place in the daughter produced.
         */
    }

    /* ISO-80000-10 item 10-33 maximum beta-particle energy */
    attribute maximumBetaParticleEnergy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 10-33 maximum beta-particle energy
         * symbol(s): `E_β`
         * application domain: generic
         * name: MaximumBetaParticleEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): eV, J, kg*m^2*s^-2
         * tensor order: 0
         * definition: maximum kinetic energy (ISO 80000-4) of the emitted beta particle produced in the nuclear disintegration process
         * remarks: The maximum kinetic energy corresponds to the highest energy of the beta spectrum.
         */
    }

    /* ISO-80000-10 item 10-34 beta disintegration energy */
    attribute betaDisintegrationEnergy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 10-34 beta disintegration energy
         * symbol(s): `Q_β`
         * application domain: generic
         * name: BetaDisintegrationEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): eV, J, kg*m^2*s^-2
         * tensor order: 0
         * definition: sum of the maximum beta-particle kinetic energy (item 10-33) and the recoil energy (ISO 80000-5) of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration
         * remarks: For positron emitters, the energy for the production of the annihilation radiation created in the combination of an electron with the positron is part of the beta disintegration energy. The ground-state beta disintegration energy, `Q_(β,0)`, also includes the energy of any nuclear transitions that take place in the daughter product.
         */
    }

    /* ISO-80000-10 item 10-35 internal conversion factor */
    attribute def InternalConversionFactorValue :> DimensionOneValue {
        doc
        /*
         * source: item 10-35 internal conversion factor
         * symbol(s): `α`
         * application domain: generic
         * name: InternalConversionFactor (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay
         * remarks: The quantity `α/(α+1)` is also used and called the internal-conversion fraction. Partial conversion fractions referring to the various electron shells `K, L, ...` are indicated by `α_K`, `α_L`, ... `α_K/α_L` is called the K-to-L internal conversion ratio.
         */
    }
    attribute internalConversionFactor: InternalConversionFactorValue :> scalarQuantities;

    /* ISO-80000-10 item 10-36 particle emission rate */
    attribute def ParticleEmissionRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-36 particle emission rate
         * symbol(s): `dot(N)`
         * application domain: generic
         * name: ParticleEmissionRate
         * quantity dimension: T^-1
         * measurement unit(s): s^-1
         * tensor order: 0
         * definition: differential quotient of `N` with respect to time, where `N` is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration `dt` (ISO 80000-3), and `dt`: `dot(N) = (dN)/(dt)`
         * remarks: Usually the kind of particles is specified, e.g. neutron emission rate or alpha particle emission rate.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ParticleEmissionRateUnit[1];
    }

    attribute particleEmissionRate: ParticleEmissionRateValue[*] nonunique :> scalarQuantities;

    attribute def ParticleEmissionRateUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    /* ISO-80000-10 item 10-37.1 reaction energy */
    attribute reactionEnergy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 10-37.1 reaction energy
         * symbol(s): `Q`
         * application domain: generic
         * name: ReactionEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): eV, J, kg*m^2*s^-2
         * tensor order: 0
         * definition: in a nuclear reaction, sum of the kinetic energies (ISO 80000-4) and photon energies (ISO 80000-5) of the reaction products minus the sum of the kinetic and photon energies of the reactants
         * remarks: For exothermic nuclear reactions, `Q>0`. For endothermic nuclear reactions, `Q<0`.
         */
    }

    /* ISO-80000-10 item 10-37.2 resonance energy */
    attribute resonanceEnergy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 10-37.2 resonance energy
         * symbol(s): `E_r`, `E_"res"`
         * application domain: generic
         * name: ResonanceEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): eV, J, kg*m^2*s^-2
         * tensor order: 0
         * definition: kinetic energy (ISO 80000-4) of an incident particle, in the reference frame of the target, corresponding to a resonance in a nuclear reaction
         * remarks: The energy of the resonance corresponds to the difference of the energy levels involved of the nucleus.
         */
    }

    /* ISO-80000-10 item 10-38.1 cross section */
    attribute crossSection: AreaValue :> scalarQuantities {
        doc
        /*
         * source: item 10-38.1 cross section
         * symbol(s): `σ`
         * application domain: atomic physics
         * name: CrossSection (specializes Area)
         * quantity dimension: L^2
         * measurement unit(s): m^2, b
         * tensor order: 0
         * definition: for a specified target entity and for a specified reaction or process produced by incident charged or uncharged particles of a given type and energy, the quotient of the mean number of such reactions or processes and the incident-particle fluence (item 10-43)
         * remarks: The type of process is indicated by subscripts, e.g. absorption cross section `σ_a`, scattering cross section `σ_s`, fission cross section `σ_f`. `1 "barn" ("b") = 10^(-28) "m"^2`.
         */
    }

    /* ISO-80000-10 item 10-38.2 total cross section */
    attribute totalCrossSection: AreaValue :> scalarQuantities {
        doc
        /*
         * source: item 10-38.2 total cross section
         * symbol(s): `σ_"tot"`, `σ_"T"`
         * application domain: atomic physics
         * name: TotalCrossSection (specializes Area)
         * quantity dimension: L^2
         * measurement unit(s): m^2, b
         * tensor order: 0
         * definition: sum of all cross sections (item 10-38.1) corresponding to the various reactions or processes between an incident particle of specified type and energy (ISO 80000-5) and a target entity
         * remarks: In the case of a narrow unidirectional beam of incident particles, this is the effective cross section for the removal of an incident particle from the beam. See the Remarks for item 10-52. `1 "barn" ("b") = 10^(-28) "m"^2`.
         */
    }

    /* ISO-80000-10 item 10-39 direction distribution of cross section */
    attribute def DirectionDistributionOfCrossSectionValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-39 direction distribution of cross section
         * symbol(s): `σ_Ω`
         * application domain: atomic physics
         * name: DirectionDistributionOfCrossSection
         * quantity dimension: L^2
         * measurement unit(s): m^2*sr^-1, m^2
         * tensor order: 0
         * definition: differential quotient of `σ` with respect to `Ω`, where `σ` is the cross section (item 10-38.1) for ejecting or scattering a particle into a specified direction, and `Ω` is the solid angle (ISO 80000-3) around that direction: `σ_Ω = (dσ)/(dΩ)`
         * remarks: Quantities listed under items 10-39, 10-40 and 10-41 are sometimes called differential cross sections. The type of interaction needs to be specified.
         */
        attribute :>> num: Real;
        attribute :>> mRef: DirectionDistributionOfCrossSectionUnit[1];
    }

    attribute directionDistributionOfCrossSection: DirectionDistributionOfCrossSectionValue[*] nonunique :> scalarQuantities;

    attribute def DirectionDistributionOfCrossSectionUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-10 item 10-40 energy distribution of cross section */
    attribute def EnergyDistributionOfCrossSectionValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-40 energy distribution of cross section
         * symbol(s): `σ_E`
         * application domain: atomic physics
         * name: EnergyDistributionOfCrossSection
         * quantity dimension: M^-1*T^2
         * measurement unit(s): m^2/J, kg^-1*s^2
         * tensor order: 0
         * definition: differential quotient of `σ` with respect to energy, where `σ` is the cross section (item 10-38.1) for a process in which the energy `E` (ISO 80000-5) of the ejected or scattered particle is between `E` and `E + dE`: `σ_E = (dσ)/(dE)`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: EnergyDistributionOfCrossSectionUnit[1];
    }

    attribute energyDistributionOfCrossSection: EnergyDistributionOfCrossSectionValue[*] nonunique :> scalarQuantities;

    attribute def EnergyDistributionOfCrossSectionUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); }
    }

    /* ISO-80000-10 item 10-41 direction and energy distribution of cross section */
    attribute def DirectionAndEnergyDistributionOfCrossSectionValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-41 direction and energy distribution of cross section
         * symbol(s): `σ_(Ω,E)`
         * application domain: atomic physics
         * name: DirectionAndEnergyDistributionOfCrossSection
         * quantity dimension: M^-1*T^2
         * measurement unit(s): m^2/(J*sr), kg^-1*s^2
         * tensor order: 0
         * definition: partial differential quotient of `σ` with respect to solid angle and energy, where `σ` is the cross section (item 10-38.1) for ejecting or scattering a particle into a solid angle `dΩ` around a specified direction and with an energy between `E` and `E+dE`: `σ_(Ω,E) = (del^2 σ) / (del Ω del E)`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: DirectionAndEnergyDistributionOfCrossSectionUnit[1];
    }

    attribute directionAndEnergyDistributionOfCrossSection: DirectionAndEnergyDistributionOfCrossSectionValue[*] nonunique :> scalarQuantities;

    attribute def DirectionAndEnergyDistributionOfCrossSectionUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); }
    }

    /* ISO-80000-10 item 10-42.1 volumic cross section, macroscopic cross section */
    attribute def VolumicCrossSectionValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-42.1 volumic cross section, macroscopic cross section
         * symbol(s): `Σ`
         * application domain: atomic physics
         * name: VolumicCrossSection
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 0
         * definition: product of the number density `n_a` of the atoms and of the cross section (item 10-38.1) `σ_a` for a given type of atoms: `Σ = n_a σ_a`
         * remarks: When the target particles of the medium are at rest, `Σ = 1/l`, where `l` is the mean free path (item 10-71).
         */
        attribute :>> num: Real;
        attribute :>> mRef: VolumicCrossSectionUnit[1];
    }

    attribute volumicCrossSection: VolumicCrossSectionValue[*] nonunique :> scalarQuantities;

    attribute def VolumicCrossSectionUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    alias MacroscopicCrossSectionUnit for VolumicCrossSectionUnit;
    alias MacroscopicCrossSectionValue for VolumicCrossSectionValue;
    alias macroscopicCrossSection for volumicCrossSection;

    /* ISO-80000-10 item 10-42.2 volumic total cross section, macroscopic total cross section */
    attribute def VolumicTotalCrossSectionValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-42.2 volumic total cross section, macroscopic total cross section
         * symbol(s): `Σ_"tot"`, `Σ_"T"`
         * application domain: atomic physics
         * name: VolumicTotalCrossSection
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 0
         * definition: product of the number density `n_a` of the atoms and the cross section (item 10-38.1) `σ_"tot"` for a given type of atoms: `Σ_"tot" = n_a*σ_"tot"`
         * remarks: See the Remarks for item 10-49.
         */
        attribute :>> num: Real;
        attribute :>> mRef: VolumicTotalCrossSectionUnit[1];
    }

    attribute volumicTotalCrossSection: VolumicTotalCrossSectionValue[*] nonunique :> scalarQuantities;

    attribute def VolumicTotalCrossSectionUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    alias MacroscopicTotalCrossSectionUnit for VolumicTotalCrossSectionUnit;
    alias MacroscopicTotalCrossSectionValue for VolumicTotalCrossSectionValue;
    alias macroscopicTotalCrossSection for volumicTotalCrossSection;

    /* ISO-80000-10 item 10-43 particle fluence */
    attribute def ParticleFluenceValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-43 particle fluence
         * symbol(s): `Φ`
         * application domain: generic
         * name: ParticleFluence
         * quantity dimension: L^-2
         * measurement unit(s): m^-2
         * tensor order: 0
         * definition: differential quotient of `N` with respect to `a`, where `N` is the number of particles incident on a sphere of cross-sectional area `a` (item 10-38.1): `Φ = (dN)/(da)`
         * remarks: The word "particle" is usually replaced by the name of a specific particle, for example `proton` fluence. If a flat area of size `dA` is passed perpendicularly by a number of `dN` particles, the corresponding particle fluence is: `Φ = (dN)/(dA)`. A plane area of size `dA` crossed at an angle `α` with respect to the surface normal by a number of `dN` particles results in the particle fluence: `Φ = (dN)/(cos(α) dA)` In report 85a of the ICRU a definition with an equivalent meaning is given as: The fluence, `Φ` , is the quotient of `dN` and `da`, where `dN` is the number of particles incident on a sphere of cross-sectional area `da`: `Φ = (dN)/(dA)`. See also section 0.3.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ParticleFluenceUnit[1];
    }

    attribute particleFluence: ParticleFluenceValue[*] nonunique :> scalarQuantities;

    attribute def ParticleFluenceUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-10 item 10-44 particle fluence rate */
    attribute def ParticleFluenceRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-44 particle fluence rate
         * symbol(s): `dot(Φ)`
         * application domain: generic
         * name: ParticleFluenceRate
         * quantity dimension: L^-2*T^-1
         * measurement unit(s): m^-2*s^-1
         * tensor order: 0
         * definition: differential quotient of fluence `Φ` (item 10-43) with respect to time (ISO 80000-3): `dot(Φ) = (dΦ)/(dA)`
         * remarks: The word "particle" is usually replaced by the name of a specific particle, for example proton fluence rate. The distribution function expressed in terms of speed and energy, `dot(Φ)_v` and `dot(Φ)_E` , are related to by: `dot(Φ) = int dot(Φ)_v dv = int dot(Φ)_E dE`. This quantity has also been termed particle flux density. Because the word "density" has several connotations, the term "fluence rate" is preferred. For a radiation field composed of particles of velocity `v`, the fluence rate is equal to `n`·`v` where `n` is the particle number density. See Remarks for item 10-43. In report 85a of the ICRU a definition with an equivalent meaning is given as: The fluence rate, `dot(Φ)` , is the quotient of `d Φ` and `dt`, where `d Φ` is the increment of the fluence in the time interval `dt`: `dot(Φ) = (dΦ)/(dt)`. See also section 0.3.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ParticleFluenceRateUnit[1];
    }

    attribute particleFluenceRate: ParticleFluenceRateValue[*] nonunique :> scalarQuantities;

    attribute def ParticleFluenceRateUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-10 item 10-45 radiant energy */
    attribute radiantEnergyForIonizingRadiation: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 10-45 radiant energy
         * symbol(s): `R`
         * application domain: ionizing radiation
         * name: RadiantEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): eV, J, kg*m^2*s^-2
         * tensor order: 0
         * definition: mean energy (ISO 80000-5), excluding rest energy (item 10-3), of the particles that are emitted, transferred, or received
         * remarks: For particles of energy `E` (excluding rest energy), the radiant energy, `R`, is equal to the product `N·E` where `N` is the number of the particles that are emitted, transferred, or received The distributions, `N_E` and `R_E`, of the particle number and the radiant energy with respect to energy are given by `N_E` = `dN`/d`E` and `R_E` = `dR`/d`E`, respectively, where `dN` is the number of particles with energy between `E` and `E`+d`E`, and `dR` is their radiant energy. The two distributions are related by `R_E` = `E`·`N_E`.
         */
    }

    /* ISO-80000-10 item 10-46 energy fluence */
    attribute def EnergyFluenceValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-46 energy fluence
         * symbol(s): `Ψ`
         * application domain: generic
         * name: EnergyFluence
         * quantity dimension: M^1*T^-2
         * measurement unit(s): eV/m^2, J/m^2, kg*s^-2
         * tensor order: 0
         * definition: differential quotient of radiant energy `R` (item 10-45) incident on a sphere of cross-sectional area (item 10-38.1) `a` with respect to that area: `Ψ = (dR)/(da)`
         * remarks: In report 85a of the ICRU a definition with an equivalent meaning is given as: The energy fluence, `Ψ` is the quotient of `dR` and `da`, where `dR` is the radiant energy incident on a sphere of cross-sectional area `da`: `Ψ = (dR)/(da)`. See also section 0.3.
         */
        attribute :>> num: Real;
        attribute :>> mRef: EnergyFluenceUnit[1];
    }

    attribute energyFluence: EnergyFluenceValue[*] nonunique :> scalarQuantities;

    attribute def EnergyFluenceUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); }
    }

    /* ISO-80000-10 item 10-47 energy fluence rate */
    attribute def EnergyFluenceRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-47 energy fluence rate
         * symbol(s): `dot(Ψ)`
         * application domain: generic
         * name: EnergyFluenceRate
         * quantity dimension: M^1*T^-3
         * measurement unit(s): W/m^2, kg*s^-3
         * tensor order: 0
         * definition: differential quotient of the energy fluence `Ψ` (item 10-46) with respect to time (ISO 80000-3): `dot(Ψ) = (d Ψ)/(dt)`
         * remarks: In report 85a of the ICRU a definition with an equivalent meaning is given as: The energy-fluence rate, `dot(Ψ)` , is the quotient of `d Ψ` by `dt`, where `d Ψ` is the increment of the energy fluence in the time interval `dt`: `dot(Ψ) = (d Ψ)/(dt)`. See also section 0.3.
         */
        attribute :>> num: Real;
        attribute :>> mRef: EnergyFluenceRateUnit[1];
    }

    attribute energyFluenceRate: EnergyFluenceRateValue[*] nonunique :> scalarQuantities;

    attribute def EnergyFluenceRateUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); }
    }

    /* ISO-80000-10 item 10-48 particle current density */
    attribute def ParticleCurrentDensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-48 particle current density (magnitude)
         * symbol(s): `J`, `S`
         * application domain: generic
         * name: ParticleCurrentDensity
         * quantity dimension: L^-2*T^-1
         * measurement unit(s): m^-2*s^-1
         * tensor order: 0
         * definition: vector whose component in direction of an area normal is given by: `vec(J_n) = int Φ_Ω(θ, α) cos(θ) dΩ` where `Φ_Ω(θ, α)` is the directional distribution of the particle fluence rate (item 10-44), and ` θ` and `α` are polar and azimuthal angles, respectively
         * remarks: Usually the word "particle" is replaced by the name of a specific particle, for example proton current. Symbol `vec(S)` is recommended when there is a possibility of confusion with the symbol `vec(J)` for electric current density. For neutron current, the symbol `vec(J)` is generally used. The distribution functions expressed in terms of speed and energy, `vec(J_v)` and `vec(J_E)`, are related to `vec(J)` by: `vec(J) = int vec(J_v) dv = int vec(J_E) dE`. The directional distribution of the particle fluence rate is also denoted as particle radiance.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ParticleCurrentDensityUnit[1];
    }

    attribute particleCurrentDensity: ParticleCurrentDensityValue[*] nonunique :> scalarQuantities;

    attribute def ParticleCurrentDensityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    attribute def Cartesian3dParticleCurrentDensityVector :> VectorQuantityValue {
        doc
        /*
         * source: item 10-48 particle current density (vector)
         * symbol(s): `vec(J)`, `vec(S)`
         * application domain: generic
         * name: ParticleCurrentDensity
         * quantity dimension: L^-2*T^-1
         * measurement unit(s): m^-2*s^-1
         * tensor order: 1
         * definition: vector whose component in direction of an area normal is given by: `vec(J_n) = int Φ_Ω(θ, α) cos(θ) dΩ` where `Φ_Ω(θ, α)` is the directional distribution of the particle fluence rate (item 10-44), and ` θ` and `α` are polar and azimuthal angles, respectively
         * remarks: Usually the word "particle" is replaced by the name of a specific particle, for example proton current. Symbol `vec(S)` is recommended when there is a possibility of confusion with the symbol `vec(J)` for electric current density. For neutron current, the symbol `vec(J)` is generally used. The distribution functions expressed in terms of speed and energy, `vec(J_v)` and `vec(J_E)`, are related to `vec(J)` by: `vec(J) = int vec(J_v) dv = int vec(J_E) dE`. The directional distribution of the particle fluence rate is also denoted as particle radiance.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dParticleCurrentDensityCoordinateFrame[1];
    }

    attribute particleCurrentDensityVector: Cartesian3dParticleCurrentDensityVector :> vectorQuantities;

    attribute def Cartesian3dParticleCurrentDensityCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: ParticleCurrentDensityUnit[3];
    }

    /* ISO-80000-10 item 10-49 linear attenuation coefficient */
    attribute def LinearAttenuationCoefficientForIonizingRadiationValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-49 linear attenuation coefficient
         * symbol(s): `μ`, `μ_l`
         * application domain: ionizing radiation
         * name: LinearAttenuationCoefficient
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 0
         * definition: for uncharged particles of a given type and energy the differential quotient `n` with respect to `l,` where `n` is the fraction of `N` incoming particles that experience interactions in traversing a distance (ISO 80000-3) `l` in a given material: `μ = (dn)/(dl) = 1/N (dN)/(dl)` where `dN` is the number of particles that experience interactions in traversing `dl`
         * remarks: `μ` is equal to the macroscopic total cross section `Σ_"tot"` for the removal of particles from the beam. Using the relation `μ_m = μ/ρ` between the linear attenuation coefficient `μ`, the mass attenuation coefficient `μ_m` (item 10-50) and the density `ρ`, the definition given for the mass attenuation coefficient in report 85a of the ICRU can be applied to the linear attenuation coefficient resulting in: The linear attenuation coefficient, `μ`, of a material, for uncharged particles of a given type and energy, is the quotient of `(dN)/N` by `dl`, where `(dN)/N` is the mean fraction of the particles that experience interactions in traversing a distance `dl` in the material: `μ = 1/(dl) (dN)/(N)`. This definition has an equivalent meaning as the one given in column 4 of this item. See also section 0.3.
         */
        attribute :>> num: Real;
        attribute :>> mRef: LinearAttenuationCoefficientForIonizingRadiationUnit[1];
    }

    attribute linearAttenuationCoefficientForIonizingRadiation: LinearAttenuationCoefficientForIonizingRadiationValue[*] nonunique :> scalarQuantities;

    attribute def LinearAttenuationCoefficientForIonizingRadiationUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-10 item 10-50 mass attenuation coefficient */
    attribute def MassAttenuationCoefficientForIonizingRadiationValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-50 mass attenuation coefficient
         * symbol(s): `μ_m`
         * application domain: ionizing radiation
         * name: MassAttenuationCoefficient
         * quantity dimension: L^2*M^-1
         * measurement unit(s): kg^-1*m^2
         * tensor order: 0
         * definition: quotient of the linear attenuation coefficient `µ` (item 10-49) and the mass density `ρ` (ISO 80000-4) of the medium: `μ_m = μ/ρ`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MassAttenuationCoefficientForIonizingRadiationUnit[1];
    }

    attribute massAttenuationCoefficientForIonizingRadiation: MassAttenuationCoefficientForIonizingRadiationValue[*] nonunique :> scalarQuantities;

    attribute def MassAttenuationCoefficientForIonizingRadiationUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
    }

    /* ISO-80000-10 item 10-51 molar attenuation coefficient */
    attribute def MolarAttenuationCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-51 molar attenuation coefficient
         * symbol(s): `μ_c`
         * application domain: generic
         * name: MolarAttenuationCoefficient
         * quantity dimension: L^2*N^-1
         * measurement unit(s): m^2*mol^-1
         * tensor order: 0
         * definition: quotient of linear attenuation coefficient `µ` (item 10-49) and the amount c (ISO 80000-9) of the medium: `μ_c = μ/c`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MolarAttenuationCoefficientUnit[1];
    }

    attribute molarAttenuationCoefficient: MolarAttenuationCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def MolarAttenuationCoefficientUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, amountOfSubstancePF); }
    }

    /* ISO-80000-10 item 10-52 atomic attenuation coefficient */
    attribute def AtomicAttenuationCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-52 atomic attenuation coefficient
         * symbol(s): `μ_a`
         * application domain: generic
         * name: AtomicAttenuationCoefficient
         * quantity dimension: L^2
         * measurement unit(s): m^2
         * tensor order: 0
         * definition: quotient of the linear attenuation coefficient `µ` (item 10-49) and the number density (item 10-62.1), `n`, of atoms in the substance: `μ_a = μ/n`
         * remarks: `μ` is equal to the total cross section `σ_"tot"` for the removal of particles from the beam. See also item 10-38.2.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AtomicAttenuationCoefficientUnit[1];
    }

    attribute atomicAttenuationCoefficient: AtomicAttenuationCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def AtomicAttenuationCoefficientUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-10 item 10-53 half-value thickness */
    attribute halfValueThickness: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 10-53 half-value thickness
         * symbol(s): `d_(1//2)`
         * application domain: generic
         * name: HalfValueThickness (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: thickness (ISO 80000-3) of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value
         * remarks: For exponential attenuation, `d_(1/2) = ln(2)/μ`. The quantity of interest is often the air kerma or exposure.
         */
    }

    /* ISO-80000-10 item 10-54 total linear stopping power, linear stopping power */
    attribute def TotalLinearStoppingPowerValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-54 total linear stopping power, linear stopping power
         * symbol(s): `S`, `S_l`
         * application domain: generic
         * name: TotalLinearStoppingPower
         * quantity dimension: L^1*M^1*T^-2
         * measurement unit(s): eV/m, J/m, kg*m*s^-2
         * tensor order: 0
         * definition: for charged particles of a given type and energy `E_0` the differential quotient of `E` with respect to `x,` where `E` is the mean energy (ISO 80000-4) lost by the charged particles in traversing a distance (ISO 80000-3) `x` in the given material: `S = -(dE)/(dx)`
         * remarks: The total linear stopping power is sometimes also called stopping power. Both electronic losses and radiative losses are included. The quotient of the total linear stopping power of a substance and that of a reference substance is called the relative linear stopping power. See also item 10-85. Using the relation `S_m = S/ρ` between the total mass stopping power `S_m` (item 10-55), the total linear stopping power `S`, and the density `ρ`, the definition given for the mass stopping in report 85a of the ICRU can be applied to that of the total linear stopping power resulting in: The linear stopping power, `S`, of a material, for charged particles of a given type and energy, is the quotient of `dE` by `dl`, where `dE` is the mean energy lost by the charged particles in traversing a distance `dl` in the material: `S = -(dE)/(dx)`. This definition has an equivalent meaning as the one given in column 4 of this item. See also section 0.3.
         */
        attribute :>> num: Real;
        attribute :>> mRef: TotalLinearStoppingPowerUnit[1];
    }

    attribute totalLinearStoppingPower: TotalLinearStoppingPowerValue[*] nonunique :> scalarQuantities;

    attribute def TotalLinearStoppingPowerUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    alias LinearStoppingPowerUnit for TotalLinearStoppingPowerUnit;
    alias LinearStoppingPowerValue for TotalLinearStoppingPowerValue;
    alias linearStoppingPower for totalLinearStoppingPower;

    /* ISO-80000-10 item 10-55 total mass stopping power, mass stopping power */
    attribute def TotalMassStoppingPowerValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-55 total mass stopping power, mass stopping power
         * symbol(s): `S_m`
         * application domain: generic
         * name: TotalMassStoppingPower
         * quantity dimension: L^4*T^-2
         * measurement unit(s): eV*m^-2/kg, J*m^2/kg, m^4*s^-2
         * tensor order: 0
         * definition: quotient of the total linear stopping power `S` (item 10-54) and the mass density `ρ` (ISO 80000-4) of the material: `S_m = S/ρ`
         * remarks: The quotient of total mass stopping power of a material and that of a reference material is called relative mass stopping power.
         */
        attribute :>> num: Real;
        attribute :>> mRef: TotalMassStoppingPowerUnit[1];
    }

    attribute totalMassStoppingPower: TotalMassStoppingPowerValue[*] nonunique :> scalarQuantities;

    attribute def TotalMassStoppingPowerUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 4; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    alias MassStoppingPowerUnit for TotalMassStoppingPowerUnit;
    alias MassStoppingPowerValue for TotalMassStoppingPowerValue;
    alias massStoppingPower for totalMassStoppingPower;

    /* ISO-80000-10 item 10-56 mean linear range */
    attribute meanLinearRange: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 10-56 mean linear range
         * symbol(s): `R`, `R_l`
         * application domain: generic
         * name: MeanLinearRange (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: mean total rectified path length (ISO 80000-3) travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy (ISO 80000-5)
         * remarks: None.
         */
    }

    /* ISO-80000-10 item 10-57 mean mass range */
    attribute def MeanMassRangeValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-57 mean mass range
         * symbol(s): `R_ρ`, `R_m`
         * application domain: generic
         * name: MeanMassRange
         * quantity dimension: L^-2*M^1
         * measurement unit(s): kg*m^-2
         * tensor order: 0
         * definition: product of the mean linear range (item 10-56) `R` and the mass density `ρ` (ISO 80000-4) of the material: `R_ρ = R*ρ`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MeanMassRangeUnit[1];
    }

    attribute meanMassRange: MeanMassRangeValue[*] nonunique :> scalarQuantities;

    attribute def MeanMassRangeUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
    }

    /* ISO-80000-10 item 10-58 linear ionization */
    attribute def LinearIonizationValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-58 linear ionization
         * symbol(s): `N_{i_l}`
         * application domain: generic
         * name: LinearIonization
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 0
         * definition: differential quotient of `q` with respect to `l`, where `q` is the average total charge (IEC 80000-6) of all positive ions produced by an ionizing charged particle over a path `l` (ISO 80000-3), divided by the elementary charge, `e` (ISO 80000-1): `N_{i_l} = 1/e*(dq)/(dl)`
         * remarks: Ionization due to secondary ionizing particles is included.
         */
        attribute :>> num: Real;
        attribute :>> mRef: LinearIonizationUnit[1];
    }

    attribute linearIonization: LinearIonizationValue[*] nonunique :> scalarQuantities;

    attribute def LinearIonizationUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-10 item 10-59 total ionization */
    attribute def TotalIonizationValue :> DimensionOneValue {
        doc
        /*
         * source: item 10-59 total ionization
         * symbol(s): `N_i`
         * application domain: generic
         * name: TotalIonization (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge, `e` (ISO 80000-1)
         * remarks: `N_i = int N_(il) dl` See item 10-58.
         */
    }
    attribute totalIonization: TotalIonizationValue :> scalarQuantities;

    /* ISO-80000-10 item 10-60 average energy loss per elementary charge produced */
    attribute def AverageEnergyLossPerElementaryChargeProducedValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-60 average energy loss per elementary charge produced
         * symbol(s): `W_i`
         * application domain: generic
         * name: AverageEnergyLossPerElementaryChargeProduced
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): eV, J, kg*m^2*s^-2
         * tensor order: 0
         * definition: quotient of the initial kinetic energy `E_k` (ISO 80000-4) of an ionizing charged particle and the total ionization `N_i` (item 10-59) produced by that particle: `W_i = E_k/N_i`
         * remarks: The name "average energy loss per ion pair formed" is usually used, although it is ambiguous. In the practical dosimetry of ionizing radiation the term `W`/`e`, the quotient of `W`, the average energy deposited in dry air per ion pair formed, and `e`, the elementary charge, is used as the factor which, when multiplied with the electric charge of one sign carried by all ion pairs formed in dry air of given mass, gives the energy deposited in this amount of dry air in the form of excitations and ionizations. In ICRU Report 85a, the mean energy expended in a gas per ion pair formed, `W`, is the quotient of `E` by `N,` where `N` is the mean total liberated charge of either sign, divided by the elementary charge when the initial kinetic energy `E` of a charged particle introduced into the gas is completely dissipated in the gas. Thus, `W` = `E`/`N`. It follows from the definition of `W` that the ions produced by bremsstrahlung or other secondary radiation emitted by the initial and secondary charged particles are included in `N`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AverageEnergyLossPerElementaryChargeProducedUnit[1];
    }

    attribute averageEnergyLossPerElementaryChargeProduced: AverageEnergyLossPerElementaryChargeProducedValue[*] nonunique :> scalarQuantities;

    attribute def AverageEnergyLossPerElementaryChargeProducedUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-10 item 10-61 mobility */
    attribute def MobilityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-61 mobility
         * symbol(s): `μ`, `μ_m`
         * application domain: generic
         * name: Mobility
         * quantity dimension: M^-1*T^2*I^1
         * measurement unit(s): m^2/(V*s), kg^-1*s^2*A
         * tensor order: 0
         * definition: quotient of average drift speed (ISO 80000-3) imparted to a charged particle in a medium by an electric field, and the electric field strength (IEC 80000-6)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MobilityUnit[1];
    }

    attribute mobility: MobilityValue[*] nonunique :> scalarQuantities;

    attribute def MobilityUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; }
        private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, electricCurrentPF); }
    }

    /* ISO-80000-10 item 10-62.1 particle number density */
    attribute def ParticleNumberDensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-62.1 particle number density
         * symbol(s): `n`
         * application domain: generic
         * name: ParticleNumberDensity
         * quantity dimension: L^-3
         * measurement unit(s): m^-3
         * tensor order: 0
         * definition: quotient of the mean number `N` of particles in the volume (ISO 80000-3) `V` and volume: `n = N/V`
         * remarks: `n` is the general symbol for the number density of particles. The distribution functions expressed in terms of speed and energy, `n_v` and `n_E`, are related to `n` by: `n = int n_v dv = int n_E dE`. The word "particle" is usually replaced by the name of a specific particle, for example `neutron` number density.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ParticleNumberDensityUnit[1];
    }

    attribute particleNumberDensity: ParticleNumberDensityValue[*] nonunique :> scalarQuantities;

    attribute def ParticleNumberDensityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-10 item 10-62.2 ion number density, ion density */
    attribute def IonNumberDensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-62.2 ion number density, ion density
         * symbol(s): `n^"+"`, `n^"-"`
         * application domain: generic
         * name: IonNumberDensity
         * quantity dimension: L^-3
         * measurement unit(s): m^-3
         * tensor order: 0
         * definition: quotient of the number of positive and negative ions, `N^"+"` and `N^"-"`, respectively, in the volume `V` (ISO 80000-3), and that volume: `n^"+" = N^"+" / V`, `n^"-" = N^"-" / V`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: IonNumberDensityUnit[1];
    }

    attribute ionNumberDensity: IonNumberDensityValue[*] nonunique :> scalarQuantities;

    attribute def IonNumberDensityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    alias IonDensityUnit for IonNumberDensityUnit;
    alias IonDensityValue for IonNumberDensityValue;
    alias ionDensity for ionNumberDensity;

    /* ISO-80000-10 item 10-63 Recombination coefficient */
    attribute def RecombinationCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-63 Recombination coefficient
         * symbol(s): `α`
         * application domain: generic
         * name: RecombinationCoefficient
         * quantity dimension: L^3*T^-1
         * measurement unit(s): m^3*s^-1
         * tensor order: 0
         * definition: coefficient in the law of recombination: `-(dn^"+")/(dt) = -(dn^"-")/(dt) = α*n^"+"*n^"-"`, where `n^"+"` and `n^"-"` are the ion number densities (item 10-62.2) of positive and negative ions, respectively, recombined during a time interval of duration `dt` (ISO 80000-3)
         * remarks: The widely used term "recombination factor" is not correct because "factor" should only be used for quantities with dimension 1. The terms `(dn^"+")/(dt)` , `(dn^"-")/(dt)` are differential quotients.
         */
        attribute :>> num: Real;
        attribute :>> mRef: RecombinationCoefficientUnit[1];
    }

    attribute recombinationCoefficient: RecombinationCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def RecombinationCoefficientUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-10 item 10-64 diffusion coefficient, diffusion coefficient for particle number density */
    /* Refer to declaration for DiffusionCoefficient in ISQChemistryMolecular item 9-39 diffusion coefficient */

    alias DiffusionCoefficientForParticleNumberDensityUnit for DiffusionCoefficientUnit;
    alias DiffusionCoefficientForParticleNumberDensityValue for DiffusionCoefficientValue;
    alias diffusionCoefficientForParticleNumberDensity for diffusionCoefficient;

    /* ISO-80000-10 item 10-65 diffusion coefficient for fluence rate */
    attribute diffusionCoefficientForFluenceRate: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 10-65 diffusion coefficient for fluence rate
         * symbol(s): `D_ϕ`, `D`
         * application domain: generic
         * name: DiffusionCoefficientForFluenceRate (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: proportionality constant between the particle current density `vec(J )`(item 10-48) and the gradient of the particle fluence rate `dot(Φ)` (item 10-44): `vec(J) = -vec(D) * nabla Φ`
         * remarks: For a particle of a given speed `v`: `D_Ψ(v) = -J_{v,x}/(partial Ψ // partial x)` and `vec(v) * vec(D_Ψ)(v) = -vec(D_n)(v)`
         */
    }

    /* ISO-80000-10 item 10-66 particle source density */
    attribute def ParticleSourceDensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-66 particle source density
         * symbol(s): `S`
         * application domain: generic
         * name: ParticleSourceDensity
         * quantity dimension: L^-3*T^-1
         * measurement unit(s): m^-3*s^-1
         * tensor order: 0
         * definition: quotient of the mean rate of production of particles in a volume, and that volume (ISO 80000-3)
         * remarks: The word "particle" is usually replaced by the name of a specific particle, for example `proton` source density. The distribution functions expressed in terms of speed and energy, `S_v` and `S_E`, are related to `S` by: `S = int S_v dv = int S_E dE`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ParticleSourceDensityUnit[1];
    }

    attribute particleSourceDensity: ParticleSourceDensityValue[*] nonunique :> scalarQuantities;

    attribute def ParticleSourceDensityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-10 item 10-67 slowing-down density */
    attribute def SlowingDownDensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-67 slowing-down density
         * symbol(s): `q`
         * application domain: generic
         * name: SlowingDownDensity
         * quantity dimension: L^-3*T^-1
         * measurement unit(s): m^-3*s^-1
         * tensor order: 0
         * definition: differential quotient of `n` with respect to time, where `n` is the number density of particles that are slowed down in a time interval of duration (ISO 80000-3) `t`: `q = -(dn)/(dt)`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SlowingDownDensityUnit[1];
    }

    attribute slowingDownDensity: SlowingDownDensityValue[*] nonunique :> scalarQuantities;

    attribute def SlowingDownDensityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-10 item 10-68 resonance escape probability */
    attribute def ResonanceEscapeProbabilityValue :> DimensionOneValue {
        doc
        /*
         * source: item 10-68 resonance escape probability
         * symbol(s): `p`
         * application domain: generic
         * name: ResonanceEscapeProbability (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: in an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies (item 10-37.2) without being absorbed
         * remarks: None.
         */
    }
    attribute resonanceEscapeProbability: ResonanceEscapeProbabilityValue :> scalarQuantities;

    /* ISO-80000-10 item 10-69 lethargy */
    attribute def LethargyValue :> DimensionOneValue {
        doc
        /*
         * source: item 10-69 lethargy
         * symbol(s): `u`
         * application domain: generic
         * name: Lethargy (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for a neutron of kinetic energy `E` (ISO 80000-4) : `u = ln(E_0/E)`, where `E_0` is a reference energy
         * remarks: Lethargy is also referred to as logarithmic energy decrement.
         */
    }
    attribute lethargy: LethargyValue :> scalarQuantities;

    /* ISO-80000-10 item 10-70 average logarithmic energy decrement */
    attribute def AverageLogarithmicEnergyDecrementValue :> DimensionOneValue {
        doc
        /*
         * source: item 10-70 average logarithmic energy decrement
         * symbol(s): `ζ`
         * application domain: generic
         * name: AverageLogarithmicEnergyDecrement (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: average value of the increase in lethargy (item 10-69) in elastic collisions between neutrons and nuclei whose kinetic energy (ISO 80000-4) is negligible compared with that of the neutrons
         * remarks: None.
         */
    }
    attribute averageLogarithmicEnergyDecrement: AverageLogarithmicEnergyDecrementValue :> scalarQuantities;

    /* ISO-80000-10 item 10-71 mean free path */
    attribute meanFreePathForAtomicPhysics: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 10-71 mean free path
         * symbol(s): `l`, `λ`
         * application domain: atomic physics
         * name: MeanFreePath (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: average distance (ISO 80000-3) that particles travel between two successive specified reactions or processes
         * remarks: See the Remarks for item 10-42.1.
         */
    }

    /* ISO-80000-10 item 10-72.1 slowing-down area */
    attribute slowingDownArea: AreaValue :> scalarQuantities {
        doc
        /*
         * source: item 10-72.1 slowing-down area
         * symbol(s): `L_s^2`, `L_"sl"^2`
         * application domain: generic
         * name: SlowingDownArea (specializes Area)
         * quantity dimension: L^2
         * measurement unit(s): m^2
         * tensor order: 0
         * definition: in an infinite homogenous medium, one-sixth of the mean square of the distance (ISO 80000-3) between the neutron source and the point where a neutron reaches a given energy (ISO 80000-5)
         * remarks: None.
         */
    }

    /* ISO-80000-10 item 10-72.2 diffusion area */
    attribute diffusionArea: AreaValue :> scalarQuantities {
        doc
        /*
         * source: item 10-72.2 diffusion area
         * symbol(s): `L^2`
         * application domain: generic
         * name: DiffusionArea (specializes Area)
         * quantity dimension: L^2
         * measurement unit(s): m^2
         * tensor order: 0
         * definition: in an infinite homogenous medium, one-sixth of the mean square distance (ISO 80000-3) between the point where a neutron enters a specified class and the point where it leaves this class
         * remarks: The class of neutrons must be specified, e.g. thermal.
         */
    }

    /* ISO-80000-10 item 10-72.3 migration area */
    attribute migrationArea: AreaValue :> scalarQuantities {
        doc
        /*
         * source: item 10-72.3 migration area
         * symbol(s): `M^2`
         * application domain: generic
         * name: MigrationArea (specializes Area)
         * quantity dimension: L^2
         * measurement unit(s): m^2
         * tensor order: 0
         * definition: sum of the slowing-down area (item 10-72.1) from fission energy to thermal energy (ISO 80000-5) and the diffusion area (item 10-72.2) for thermal neutrons
         * remarks: None.
         */
    }

    /* ISO-80000-10 item 10-73.1 slowing-down length */
    attribute slowingDownLength: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 10-73.1 slowing-down length
         * symbol(s): `L_s`, `L_"sl"`
         * application domain: generic
         * name: SlowingDownLength (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: square root of the slowing down area `L_s^2` (item 10-72.1): `L_s = sqrt(L_s^2)`
         * remarks: None.
         */
    }

    /* ISO-80000-10 item 10-73.2 diffusion length */
    attribute diffusionLength: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 10-73.2 diffusion length
         * symbol(s): `L`
         * application domain: atomic physics
         * name: DiffusionLength (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: square root of the diffusion area `L^2` (item 10-72.2): `L = sqrt(L^2)`
         * remarks: None.
         */
    }

    /* ISO-80000-10 item 10-73.3 migration length */
    attribute migrationLength: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 10-73.3 migration length
         * symbol(s): `M`
         * application domain: generic
         * name: MigrationLength (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: square root of the migration area `M^2` (item 10-72.3): `M = sqrt(M^2)`
         * remarks: None.
         */
    }

    /* ISO-80000-10 item 10-74.1 neutron yield per fission */
    attribute neutronYieldPerFission: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 10-74.1 neutron yield per fission
         * symbol(s): `ν`
         * application domain: generic
         * name: NeutronYieldPerFission (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: average number of fission neutrons, both prompt and delayed, emitted per fission event
         * remarks: None.
         */
    }

    /* ISO-80000-10 item 10-74.2 neutron yield per absorption */
    attribute neutronYieldPerAbsorption: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 10-74.2 neutron yield per absorption
         * symbol(s): `η`
         * application domain: generic
         * name: NeutronYieldPerAbsorption (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified
         * remarks: `ν/η` is equal to the quotient of the macroscopic cross section for fission and that for absorption, both for neutrons in the fuel material.
         */
    }

    /* ISO-80000-10 item 10-75 fast fission factor */
    attribute def FastFissionFactorValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-75 fast fission factor
         * symbol(s): `φ`
         * application domain: generic
         * name: FastFissionFactor
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: in an infinite medium, the quotient of the mean number of neutrons produced by fission due to neutrons of all energies (ISO 80000-5) and the mean number of neutrons produced by fissions due to thermal neutrons only
         * remarks: The class of neutrons must be specified, e.g. thermal.
         */
        attribute :>> num: Real;
        attribute :>> mRef: FastFissionFactorUnit[1];
    }

    attribute fastFissionFactor: FastFissionFactorValue[*] nonunique :> scalarQuantities;

    attribute def FastFissionFactorUnit :> DimensionOneUnit {
    }

    /* ISO-80000-10 item 10-76 thermal utilization factor */
    attribute def ThermalUtilizationFactorValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-76 thermal utilization factor
         * symbol(s): `f`
         * application domain: generic
         * name: ThermalUtilizationFactor
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: in an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ThermalUtilizationFactorUnit[1];
    }

    attribute thermalUtilizationFactor: ThermalUtilizationFactorValue[*] nonunique :> scalarQuantities;

    attribute def ThermalUtilizationFactorUnit :> DimensionOneUnit {
    }

    /* ISO-80000-10 item 10-77 non-leakage probability */
    attribute def NonLeakageProbabilityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-77 non-leakage probability
         * symbol(s): `Λ`
         * application domain: generic
         * name: NonLeakageProbability
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: NonLeakageProbabilityUnit[1];
    }

    attribute nonLeakageProbability: NonLeakageProbabilityValue[*] nonunique :> scalarQuantities;

    attribute def NonLeakageProbabilityUnit :> DimensionOneUnit {
    }

    /* ISO-80000-10 item 10-78.1 multiplication factor */
    attribute def MultiplicationFactorValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-78.1 multiplication factor
         * symbol(s): `k`
         * application domain: generic
         * name: MultiplicationFactor
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MultiplicationFactorUnit[1];
    }

    attribute multiplicationFactor: MultiplicationFactorValue[*] nonunique :> scalarQuantities;

    attribute def MultiplicationFactorUnit :> DimensionOneUnit {
    }

    /* ISO-80000-10 item 10-78.2 infinite multiplication factor */
    attribute def InfiniteMultiplicationFactorValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-78.2 infinite multiplication factor
         * symbol(s): `k_∞`
         * application domain: generic
         * name: InfiniteMultiplicationFactor
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: multiplication factor (item 10-78.1) for an infinite medium or for an infinite repeating lattice
         * remarks: For a thermal reactor, `k_∞ = η*ε*p*f`
         */
        attribute :>> num: Real;
        attribute :>> mRef: InfiniteMultiplicationFactorUnit[1];
    }

    attribute infiniteMultiplicationFactor: InfiniteMultiplicationFactorValue[*] nonunique :> scalarQuantities;

    attribute def InfiniteMultiplicationFactorUnit :> DimensionOneUnit {
    }

    /* ISO-80000-10 item 10-79 reactor time constant */
    attribute reactorTimeConstant: DurationValue :> scalarQuantities {
        doc
        /*
         * source: item 10-79 reactor time constant
         * symbol(s): `T`
         * application domain: generic
         * name: ReactorTimeConstant (specializes Duration)
         * quantity dimension: T^1
         * measurement unit(s): s
         * tensor order: 0
         * definition: duration (ISO 80000-3) required for the neutron fluence rate (item 10-44) in a reactor to change by the factor e when the fluence rate is rising or falling exponentially
         * remarks: Also called reactor period.
         */
    }

    /* ISO-80000-10 item 10-80.1 energy imparted */
    attribute energyImparted: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 10-80.1 energy imparted
         * symbol(s): `ε`
         * application domain: generic
         * name: EnergyImparted (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): eV, J, kg*m^2*s^-2
         * tensor order: 0
         * definition: sum of all energy deposits in a given volume: `ε = sum_i ε_i` where the summation is performed over all energy (ISO 80000-5) deposits `ε_i` of interaction `i` in that volume
         * remarks: Energy imparted is a stochastic quantity. `ε_i` is given by: `ε_i = ε_(i n) - ε_"out" + Q` where `ε_(i n)` is the energy (ISO 80000-5) of the incident ionizing particle, excluding rest energy (item 10-3), `ε_"out"` is the sum of the energies (ISO 80000-5) of all ionizing particles leaving the interaction, excluding rest energy (item 10-3), and `Q` is the change in the rest energies (item 10-3) of the nucleus and of all particles involved in the interaction. `Q > 0` means decrease of rest energy; `Q < 0` means increase of rest energy. Stochastic quantities such as the energy imparted and the specific energy imparted (item 10-81.2) and their probability distributions have been introduced as they describe the discontinuous nature of the ionizing radiations as a determinant of radiochemical and radiobiological effects. In radiation applications involving large numbers of ionizing particles, e.g. in medicine, radiation protection and materials testing and processing, these fluctuations are adequately represented by the expectation values of the probability distributions. Non-stochastic quantities such as particle fluence (item 10-43), absorbed dose (item 10-81.1) and kerma (item 10-86.1) are based on these expectation values.
         */
    }

    /* ISO-80000-10 item 10-80.2 mean energy imparted */
    attribute meanEnergyImparted: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 10-80.2 mean energy imparted
         * symbol(s): `bar(ε)`
         * application domain: generic
         * name: MeanEnergyImparted (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): eV, J, kg*m^2*s^-2
         * tensor order: 0
         * definition: expectation value of the energy imparted (item 10-80.1): `bar(ε) = R_"in" - R_"out" + sum Q` where `R_"in"` is the radiant energy (item 10-45) of all those charged and uncharged ionizing particles that enter the volume, `R_"out"` is the radiant energy of all those charged and uncharged ionizing particles that leave the volume, and `sum Q` is the sum of all changes of the rest energy (item 10-3) of nuclei and elementary particles that occur in that volume
         * remarks: Sometimes, it has been called the integral absorbed dose. `Q > 0` means decrease of rest energy; `Q < 0` means increase of rest energy.
         */
    }

    /* ISO-80000-10 item 10-81.1 absorbed dose */
    attribute def AbsorbedDoseValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-81.1 absorbed dose
         * symbol(s): `D`
         * application domain: generic
         * name: AbsorbedDose
         * quantity dimension: L^2*T^-2
         * measurement unit(s): Gy, J/kg, m^2*s^-2
         * tensor order: 0
         * definition: differential quotient of `bar(ε)` with respect to `m`, where `bar(ε)` is the mean energy (ISO 80000-5) imparted by ionizing radiation to matter of mass (ISO 80000-4) `m`: `D = (d bar(ε))/(dm)`
         * remarks: The gray is a special name for joule per kilogram, to be used as the coherent SI unit for absorbed dose. `1 "Gy" = 1 "J"/"kg"`. `bar(ε) = int D dm` where `dm` is the element of mass of the irradiated matter. In the limit of a small domain, the mean specific energy `bar(z) = (Δ bar(ε))/(Δ m)` is equal to the absorbed dose `D`. The absorbed dose can also be expressed in terms of the volume of the mass element by: `D = (d bar(ε))/(dm) = (d bar(ε))/(ρ dV)` where `ρ` is the mass density of the mass element. In report 85a of the ICRU a definition with an equivalent meaning is given as: The absorbed dose, `D`, is the quotient of `d bar(ε)` by dm, where `d bar(ε)` is the mean energy imparted by ionizing radiation to matter of mass `dm`: `D = (d bar(ε))/(dm)`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AbsorbedDoseUnit[1];
    }

    attribute absorbedDose: AbsorbedDoseValue[*] nonunique :> scalarQuantities;

    attribute def AbsorbedDoseUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-10 item 10-81.2 specific energy imparted */
    attribute specificEnergyImparted: AbsorbedDoseValue :> scalarQuantities {
        doc
        /*
         * source: item 10-81.2 specific energy imparted
         * symbol(s): `z`
         * application domain: generic
         * name: SpecificEnergyImparted (specializes AbsorbedDose)
         * quantity dimension: L^2*T^-2
         * measurement unit(s): Gy, J/kg, m^2*s^-2
         * tensor order: 0
         * definition: quotient of the energy imparted `ε` (item 10-80.1) and the mass `m` (ISO 80000-4) of the matter in a given volume element: `z = ε / m`
         * remarks: `z` is a stochastic quantity. In the limit of a small domain, the mean specific energy `bar(z)` is equal to the absorbed dose `D`. The specific energy imparted can be due to one or more (energy-deposition) events.
         */
    }

    /* ISO-80000-10 item 10-82 quality factor */
    attribute def QualityFactorForIonizingRadiationValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-82 quality factor
         * symbol(s): `Q`
         * application domain: ionizing radiation
         * name: QualityFactor
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: factor in the calculation and measurement of dose equivalent (item 10-83.1), by which the absorbed dose (item 10-81.1) is to be weighted in order to account for different biological effectiveness of radiations, for radiation protection purposes
         * remarks: `Q` is determined by the linear energy transfer (item 10-85) for `Δ -> ∞` , `L_∞` (often denoted as `L` or LET), of charged particles passing through a small volume element at this point (the value of `L_∞` refers to water, not to tissue; the difference, however, is small). The relationship between `L` and `Q` is given in ICRP Publication 103 (ICRP, 2007).
         */
        attribute :>> num: Real;
        attribute :>> mRef: QualityFactorForIonizingRadiationUnit[1];
    }

    attribute qualityFactorForIonizingRadiation: QualityFactorForIonizingRadiationValue[*] nonunique :> scalarQuantities;

    attribute def QualityFactorForIonizingRadiationUnit :> DimensionOneUnit {
    }

    /* ISO-80000-10 item 10-83.1 dose equivalent */
    attribute def DoseEquivalentValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-83.1 dose equivalent
         * symbol(s): `H`
         * application domain: generic
         * name: DoseEquivalent
         * quantity dimension: L^2*T^-2
         * measurement unit(s): Sv, J/kg, m^2*s^-2
         * tensor order: 0
         * definition: product of the absorbed dose `D` (item 10-81.1) to tissue at the point of interest and the quality factor `Q` (item 10-82) at that point: `H = DQ`
         * remarks: The sievert (Sv) is a special name for joule per kilogram, and is the coherent SI unit for dose equivalent. `1 "Sv" = 1 "J/kg"`. The dose equivalent at a point in tissue is given by: `H = int_0^∞ Q(L) D_L dL` where `D_L = (dD)/(dL)` is the distribution of `D` in `L` at the point of interest. See ICRP Publication 103 (ICRP, 2007). The quantities measured with radiation protection dosimeters are based on the definition `H = Q*D`. If various radiation qualities `i` have to be simultaneously accounted for, the definition is: `H = sum_i Q_i*D_i`. In ICRU 51 this quantity is denoted as "dose equivalent". In order to quantify the radiation exposition of the human body and to specify dose limits, use is made of a quantity defined in ICRP 103, the "equivalent dose to a tissue or organ": `H_T = w_T*sum_R w_R*D_{T,R}`. The weighting factors `w_T` for various tissues and organs `T` and `w_R` for various radiation qualities `R` have been numerically laid down in ICRP 103. `D_{T,R}` is the mean absorbed dose to tissue within a tissue or organ `T`, imparted by radiation with radiation quality `R`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: DoseEquivalentUnit[1];
    }

    attribute doseEquivalent: DoseEquivalentValue[*] nonunique :> scalarQuantities;

    attribute def DoseEquivalentUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-10 item 10-83.2 dose equivalent rate */
    attribute doseEquivalentRate: DoseEquivalentValue :> scalarQuantities {
        doc
        /*
         * source: item 10-83.2 dose equivalent rate
         * symbol(s): `dot(H)`
         * application domain: generic
         * name: DoseEquivalentRate (specializes DoseEquivalent)
         * quantity dimension: L^2*T^-3
         * measurement unit(s): Sv/s, W/kg, m^2*s^-3
         * tensor order: 0
         * definition: differential quotient of dose equivalent `H` (item 10-83.1) with respect to time (ISO 80000-3): `dot(H) = (dH)/(dt)`
         * remarks: `1 "Sv/s" = 1 "W/kg"`. See the remarks for item 10-83.1.
         */
    }

    /* ISO-80000-10 item 10-84 absorbed-dose rate */
    attribute def AbsorbedDoseRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-84 absorbed-dose rate
         * symbol(s): `dot(D)`
         * application domain: generic
         * name: AbsorbedDoseRate
         * quantity dimension: L^2*T^-3
         * measurement unit(s): Gy/s, W/kg, m^2*s^-3
         * tensor order: 0
         * definition: differential quotient of the absorbed dose `D` (item 10-81.1) with respect to time (ISO 80000-3): `dot(D) = (dD)/(dt)`
         * remarks: `1 "Gy/s"  = 1 "W/kg"` See the remarks for item 10-81.1. In report 85a of the ICRU a definition with an equivalent meaning is given as: The absorbed-does rate, `dot(D)` , is the quotient of `dD` by `dt`, where `dD` is the increment of absorbed does in the time interval `dt`: `dot(D) = (dD)/(dt)`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AbsorbedDoseRateUnit[1];
    }

    attribute absorbedDoseRate: AbsorbedDoseRateValue[*] nonunique :> scalarQuantities;

    attribute def AbsorbedDoseRateUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-10 item 10-85 linear energy transfer */
    attribute def LinearEnergyTransferValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-85 linear energy transfer
         * symbol(s): `L_Δ`
         * application domain: generic
         * name: LinearEnergyTransfer
         * quantity dimension: L^1*M^1*T^-2
         * measurement unit(s): eV/m, J/m, kg*m*s^-2
         * tensor order: 0
         * definition: quotient of the mean energy (ISO 80000-4) `dE_Δ` lost by the charged particles due to electronic interactions in traversing a distance (ISO 80000-3) `dl`, minus the mean sum of the kinetic energies in excess of `Δ` of all the electrons released by the charged particles and `dl`: `L_Δ = (dE_Δ)/(dl)`
         * remarks: This quantity is not completely defined unless `Δ` is specified, i.e. the maximum kinetic energy of secondary electrons whose energy is considered to be "locally deposited". `Δ` may be expressed in `"eV"`. Note that the abbreviation LET specifically refers to the quantity `L_∞` mentioned in the remark to 10-82.
         */
        attribute :>> num: Real;
        attribute :>> mRef: LinearEnergyTransferUnit[1];
    }

    attribute linearEnergyTransfer: LinearEnergyTransferValue[*] nonunique :> scalarQuantities;

    attribute def LinearEnergyTransferUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-10 item 10-86.1 kerma */
    attribute def KermaValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-86.1 kerma
         * symbol(s): `K`
         * application domain: generic
         * name: Kerma
         * quantity dimension: L^2*T^-2
         * measurement unit(s): Gy, J/kg, m^2*s^-2
         * tensor order: 0
         * definition: for uncharged ionizing radiation, differential quotient of `E_(`tr) with respect to `m`, where `E_(`tr) is the mean sum of the initial kinetic energies (ISO 80000-4) of all the charged ionizing particles liberated in a mass (ISO 80000-4) `m` of a material: `K = (dE_tr)/(dm)`
         * remarks: `1 "Gy" = 1 "J/kg"` See the remarks for item 10-81.1. The name "kerma" is derived from Kinetic Energy Released in MAtter (or MAss or MAterial). The quantity `dE_(tr)` includes also the kinetic energy of the charged particles emitted in the decay of excited atoms, molecules, or nuclei. When the mass element `dm` consists of air the term air kerma is used. It can be convenient to refer to a value of air kerma in free space or at a point inside a material different from air, e.g. to the air kerma at a point inside a water phantom. In report 85a of the ICRU a definition with an equivalent meaning is given as: The kerma, `K`, for ionizing uncharged particles, is the quotient of `dE_(tr)` by `dm`, where `dE_(tr)` is the mean sum of the initial kinetic energies of all the charged particles liberated in a mass `dm` of a material by the uncharged particles incident on `dm`: `K = (dE_(tr))/(dm)`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: KermaUnit[1];
    }

    attribute kerma: KermaValue[*] nonunique :> scalarQuantities;

    attribute def KermaUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-10 item 10-86.2 kerma rate */
    attribute def KermaRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-86.2 kerma rate
         * symbol(s): `dot(K)`
         * application domain: generic
         * name: KermaRate
         * quantity dimension: L^2*T^-3
         * measurement unit(s): Gy/s, W/kg, m^2*s^-3
         * tensor order: 0
         * definition: differential quotient of kerma (item 10-86.1) with respect to time (ISO 80000-3): `dot(K) = (dK)/(dt)`
         * remarks: `1 "Gy/s" = 1 "W/kg"`. See the Remarks for item 10-81.1. In report 85a of the ICRU a definition with an equivalent meaning is given as: The kerma rate, `dot(K)` , is the quotient of `dK` by `dt`, where `dK` is the increment of kerma in the time interval `dt`: `dot(K) = (dK)/(dt)`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: KermaRateUnit[1];
    }

    attribute kermaRate: KermaRateValue[*] nonunique :> scalarQuantities;

    attribute def KermaRateUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-10 item 10-87 mass energy-transfer coefficient */
    attribute def MassEnergyTransferCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-87 mass energy-transfer coefficient
         * symbol(s): `μ_"tr"/ρ`
         * application domain: generic
         * name: MassEnergyTransferCoefficient
         * quantity dimension: L^2*M^-1
         * measurement unit(s): kg^-1*m^2
         * tensor order: 0
         * definition: for ionizing uncharged particles of a given type and energy, the differential quotient of `R_"tr"` with respect to `l`: `m_"tr"/ρ = 1/ρ 1/R (dR_"tr")/(dl)` where `R_"tr"` is the mean energy (ISO 80000-5) that is transferred to kinetic energy (ISO 80000-4) of charged particles by interactions of the uncharged particles of incident radiant energy `R` (item 10-45) in traversing a distance (ISO 80000-3) `l` in the material of density (ISO 80000-4) `ρ`, divided by `ρ` and `R`
         * remarks: `m_(tr)/ρ = (dot(K))/ψ` , where `dot(K)` is kerma rate (item 10-86.2) and `ψ` is energy fluence rate (item 10-47). The quantity: `μ_(en)/ρ = μ_(tr)/ρ(1-g)` where `g` is mean fraction of the kinetic energy of the liberated charged particles that is lost in radiative processes in the material, is called mass energy-absorption coefficient. The mass energy-absorption coefficient of a compound material depends on the stopping power of the material. Thus, its evaluation cannot, in principle, be reduced to a simple summation of the mass energy-absorption coefficient of the atomic constituents. Such a summation can provide an adequate approximation when the value of `g` is sufficiently small. In report 85a of the ICRU a definition with an equivalent meaning is given as: The mass energy-transfer coefficient, `μ_(tr)/ρ` , of a material, for uncharged particles of a given type and energy, is the quotient of `(dR_(tr))/R` by `ρ dl`, where `dR_(tr)` is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy `R` in traversing a distance `dl` in the material of density `ρ` : `μ_(tr)/ρ = 1/(ρ dl) (d R_(tr))/R`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MassEnergyTransferCoefficientUnit[1];
    }

    attribute massEnergyTransferCoefficient: MassEnergyTransferCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def MassEnergyTransferCoefficientUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
    }

    /* ISO-80000-10 item 10-88 exposure */
    attribute def ExposureValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-88 exposure
         * symbol(s): `X`
         * application domain: ionizing radiation
         * name: Exposure
         * quantity dimension: M^-1*T^1*I^1
         * measurement unit(s): C/kg, kg^-1*s*A
         * tensor order: 0
         * definition: for X- or gamma radiation the differential quotient of `q` with respect to `m`, where `q` is the absolute value of the mean total electric charge of the ions of one sign produced when all the electrons and positrons liberated or created by photons incident on an element of dry air with mass `m` (ISO 80000-4) are completely stopped in dry air: `X = (dq)/(dm)`
         * remarks: The ionization produced by electrons emitted in atomic or molecular relaxation is included in `dq`. The ionization due to photons emitted by radiative processes (i.e. bremsstrahlung and fluorescence photons) is not included in `dq`. This quantity should not be confused with the quantity photon exposure (ISO 80000-7), radiation exposure (ISO 80000-7), or the quantity luminous exposure (ISO 80000-7). It can be convenient to refer to a value of exposure in free space or at a point inside a material different from air, e.g. to the exposure at a point inside a water phantom. The exposure is related to the air kerma, `K_a`, (see item 10-86.1) by: `X = (e (1-g))/W K_a` , where `e` is the elementary charge (ISO 80000-1), `W` the average energy loss per elementary charge produced (item 10-60), and `g` is the fraction of the kinetic energy of liberated charged particles that is lost in radiative processes. In report 85a of the ICRU a definition with an equivalent meaning is given as: The exposure, `X`, is the quotient of `dq` by `dm`, where `dq` is the absolute value of the mean total charge of the ions of one sign produced when all the electrons and positrons liberated or created by photons incident on a mass `dm` of dry air are completely stopped in dry air: `X = (dq)/(dm)`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ExposureUnit[1];
    }

    attribute exposure: ExposureValue[*] nonunique :> scalarQuantities;

    attribute def ExposureUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; }
        private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, electricCurrentPF); }
    }

    /* ISO-80000-10 item 10-89 exposure rate */
    attribute def ExposureRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 10-89 exposure rate
         * symbol(s): `dot(X)`
         * application domain: generic
         * name: ExposureRate
         * quantity dimension: M^-1*I^1
         * measurement unit(s): C/(kg*s), kg^-1*A
         * tensor order: 0
         * definition: differential quotient of the exposure `X` (item 10-88) with respect to time (ISO 80000-3): `dot(X) = (dX)/(dt)`
         * remarks: `1 "C/(kg s)" = 1 "A/kg"`. In report 85a of the ICRU a definition with an equivalent meaning is given as: The exposure rate, `dot(X)` , is the quotient of `dX` by `dt`, where `dX` is the increment of exposure in the time interval `dt`: `dot(X) = (dX)/(dt)`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ExposureRateUnit[1];
    }

    attribute exposureRate: ExposureRateValue[*] nonunique :> scalarQuantities;

    attribute def ExposureRateUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, electricCurrentPF); }
    }

}