File size: 71,465 Bytes
5070096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
standard library package ISQChemistryMolecular {
    doc
    /*
     * International System of Quantities and Units
     * Generated on 2022-08-07T14:44:27Z from standard ISO-80000-9:2019 "Physical chemistry and molecular physics"
     * see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-9:ed-2:v1:en
     * 
     * Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts,
     * with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks.
     * Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is 
     * defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system) 
     * or TensorMeasurementReference.
     */

    private import ScalarValues::Real;
    private import Quantities::*;
    private import MeasurementReferences::*;
    private import ISQBase::*;

    /* Quantity definitions referenced from other ISQ packages */
    private import ISQSpaceTime::AngularMeasureValue;
    private import ISQThermodynamics::EnergyValue;

    /* ISO-80000-9 item 9-1 number of entities */
    attribute numberOfEntities: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 9-1 number of entities
         * symbol(s): `N(X)`, `N_X`
         * application domain: generic
         * name: NumberOfEntities (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: number of elementary entities of kind `X` in a system
         * remarks: The elementary entities must be specified and can be atoms, molecules, ions, electrons, other particle, or a specified group of such particles. It is important to always give a precise specification of the entity involved; this should preferably be done by the empirical chemical formula of the material involved.
         */
    }

    /* ISO-80000-9 item 9-2 amount of substance, number of moles */
    /* See package ISQBase for the declarations of AmountOfSubstanceValue and AmountOfSubstanceUnit */

    alias NumberOfMolesUnit for AmountOfSubstanceUnit;
    alias NumberOfMolesValue for AmountOfSubstanceValue;
    alias numberOfMoles for amountOfSubstance;

    /* ISO-80000-9 item 9-3 relative atomic mass */
    attribute def RelativeAtomicMassValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-3 relative atomic mass
         * symbol(s): `A_r(X)`
         * application domain: generic
         * name: RelativeAtomicMass (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of the average mass (ISO 80000-4) of atom `X` and the unified atomic mass (ISO 80000-10)
         * remarks: A similar quantity "relative molecular mass" can be defined for molecules. EXAMPLE `A_r(Cl) ~~ 35.453` `A_r(CO_2) ~~ 44` The relative atomic or relative molecular mass depends on the nuclidic composition. The International Union of Pure and Applied Chemistry (IUPAC) accepts the use of the special names "atomic weight" and "molecular weight" for the quantities "relative atomic mass" and "relative molecular mass", respectively. The use of these traditional names is deprecated.
         */
    }
    attribute relativeAtomicMass: RelativeAtomicMassValue :> scalarQuantities;

    /* ISO-80000-9 item 9-4 molar mass */
    attribute def MolarMassValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-4 molar mass
         * symbol(s): `M(X)`
         * application domain: generic
         * name: MolarMass
         * quantity dimension: M^1*N^-1
         * measurement unit(s): g/mol, kg*mol^-1
         * tensor order: 0
         * definition: for a pure substance `X`, quotient of mass `m(X)` (ISO 80000-4) and amount `n` of substance (item 9-2): `M = m/n`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MolarMassUnit[1];
    }

    attribute molarMass: MolarMassValue[*] nonunique :> scalarQuantities;

    attribute def MolarMassUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-5 molar volume */
    attribute def MolarVolumeValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-5 molar volume
         * symbol(s): `V_m`
         * application domain: generic
         * name: MolarVolume
         * quantity dimension: L^3*N^-1
         * measurement unit(s): m^3*mol^-1
         * tensor order: 0
         * definition: for a pure substance, quotient of its volume `V` (ISO 80000-3) and amount `n` of substance (item 9-2): `V_m = V/n`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MolarVolumeUnit[1];
    }

    attribute molarVolume: MolarVolumeValue[*] nonunique :> scalarQuantities;

    attribute def MolarVolumeUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-6.1 molar internal energy */
    attribute def MolarInternalEnergyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-6.1 molar internal energy
         * symbol(s): `U_m`
         * application domain: generic
         * name: MolarInternalEnergy
         * quantity dimension: L^2*M^1*T^-2*N^-1
         * measurement unit(s): J/mol, kg*m^2*s^-2*mol^-1
         * tensor order: 0
         * definition: quotient of internal energy `U` (ISO 80000-5) and amount `n` of substance (item 9-2): `U_m = U/n`
         * remarks: Molar quantities are normally only used with reference to pure substances.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MolarInternalEnergyUnit[1];
    }

    attribute molarInternalEnergy: MolarInternalEnergyValue[*] nonunique :> scalarQuantities;

    attribute def MolarInternalEnergyUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-6.2 molar enthalpy */
    attribute def MolarEnthalpyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-6.2 molar enthalpy
         * symbol(s): `H_m`
         * application domain: generic
         * name: MolarEnthalpy
         * quantity dimension: L^2*M^1*T^-2*N^-1
         * measurement unit(s): J/mol, kg*m^2*s^-2*mol^-1
         * tensor order: 0
         * definition: quotient of enthalpy `H` (ISO 80000-5) and amount `n` of substance (item 9-2): `H_m = H/n`
         * remarks: Molar quantities are normally only used with reference to pure substances.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MolarEnthalpyUnit[1];
    }

    attribute molarEnthalpy: MolarEnthalpyValue[*] nonunique :> scalarQuantities;

    attribute def MolarEnthalpyUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-6.3 molar Helmholtz energy */
    attribute def MolarHelmholtzEnergyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-6.3 molar Helmholtz energy
         * symbol(s): `F_m`
         * application domain: generic
         * name: MolarHelmholtzEnergy
         * quantity dimension: L^2*M^1*T^-2*N^-1
         * measurement unit(s): J/mol, kg*m^2*s^-2*mol^-1
         * tensor order: 0
         * definition: quotient of the Helmholtz energy `F` (ISO 80000-5) and amount `n` of substance (item 9-2): `F_m = F/n`
         * remarks: Molar quantities are normally only used with reference to pure substances.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MolarHelmholtzEnergyUnit[1];
    }

    attribute molarHelmholtzEnergy: MolarHelmholtzEnergyValue[*] nonunique :> scalarQuantities;

    attribute def MolarHelmholtzEnergyUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-6.4 molar Gibbs energy */
    attribute def MolarGibbsEnergyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-6.4 molar Gibbs energy
         * symbol(s): `G_m`
         * application domain: generic
         * name: MolarGibbsEnergy
         * quantity dimension: L^2*M^1*T^-2*N^-1
         * measurement unit(s): J/mol, kg*m^2*s^-2*mol^-1
         * tensor order: 0
         * definition: quotient of the Gibbs energy `G` (ISO 80000-5) and amount `n` of substance (item 9-2): `G_m = G/n`
         * remarks: Molar quantities are normally only used with reference to pure substances.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MolarGibbsEnergyUnit[1];
    }

    attribute molarGibbsEnergy: MolarGibbsEnergyValue[*] nonunique :> scalarQuantities;

    attribute def MolarGibbsEnergyUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-7 molar heat capacity */
    attribute def MolarHeatCapacityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-7 molar heat capacity
         * symbol(s): `C_m`
         * application domain: generic
         * name: MolarHeatCapacity
         * quantity dimension: L^2*M^1*T^-2*Θ^-1*N^-1
         * measurement unit(s): J/(mol*K), kg*m^2*s^-2*K^-1*mol^-1
         * tensor order: 0
         * definition: quotient of heat capacity `C` (ISO 80000-5) and amount of substance `n` (item 9-2): `C_m = C/n`
         * remarks: Conditions (constant pressure or volume etc.) must be specified.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MolarHeatCapacityUnit[1];
    }

    attribute molarHeatCapacity: MolarHeatCapacityValue[*] nonunique :> scalarQuantities;

    attribute def MolarHeatCapacityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-8 molar entropy */
    attribute def MolarEntropyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-8 molar entropy
         * symbol(s): `S_m`
         * application domain: generic
         * name: MolarEntropy
         * quantity dimension: L^2*M^1*T^-2*Θ^-1*N^-1
         * measurement unit(s): J/(mol*K), kg*m^2*s^-2*K^-1*mol^-1
         * tensor order: 0
         * definition: quotient of entropy `S` (ISO 80000-5) and amount `n` of substance (item 9-2): `S_m = S/n`
         * remarks: Conditions (constant pressure or volume etc.) must be specified.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MolarEntropyUnit[1];
    }

    attribute molarEntropy: MolarEntropyValue[*] nonunique :> scalarQuantities;

    attribute def MolarEntropyUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-9.1 particle concentration */
    attribute def ParticleConcentrationValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-9.1 particle concentration
         * symbol(s): `n`, `(C)`
         * application domain: generic
         * name: ParticleConcentration
         * quantity dimension: L^-3
         * measurement unit(s): m^-3
         * tensor order: 0
         * definition: quotient of number `N` of particles (item 9-1) and volume `V `(ISO 80000-3): `n = N/V`
         * remarks: The term "number density" is also used.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ParticleConcentrationUnit[1];
    }

    attribute particleConcentration: ParticleConcentrationValue[*] nonunique :> scalarQuantities;

    attribute def ParticleConcentrationUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-9 item 9-9.2 molecular concentration */
    attribute molecularConcentration: ParticleConcentrationValue :> scalarQuantities {
        doc
        /*
         * source: item 9-9.2 molecular concentration
         * symbol(s): `C(X)`, `C_X`
         * application domain: generic
         * name: MolecularConcentration (specializes ParticleConcentration)
         * quantity dimension: L^-3
         * measurement unit(s): m^-3
         * tensor order: 0
         * definition: for substance `X` in a mixture, quotient of number `N_X` of molecules of substance `X` and volume `V` (ISO 80000-3) of the mixture: `C_X = N_X/V`
         * remarks: None.
         */
    }

    /* ISO-80000-9 item 9-10 mass concentration */
    attribute def MassConcentrationValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-10 mass concentration
         * symbol(s): `γ_X`, `(ρ_X)`
         * application domain: generic
         * name: MassConcentration
         * quantity dimension: L^-3*M^1
         * measurement unit(s): g/l, kg*m^-3
         * tensor order: 0
         * definition: for substance `X` in a mixture, quotient of mass `m_X` (ISO 80000-4) of substance `X` and volume `V` (ISO 80000-3) of the mixture: `γ_X = m_X/V`
         * remarks: Decided by the 16th CGPM (1979), both "l" and "L" are allowed for the symbols for the litre.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MassConcentrationUnit[1];
    }

    attribute massConcentration: MassConcentrationValue[*] nonunique :> scalarQuantities;

    attribute def MassConcentrationUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
    }

    /* ISO-80000-9 item 9-11 mass fraction */
    attribute def MassFractionValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-11 mass fraction
         * symbol(s): `w_X`
         * application domain: generic
         * name: MassFraction (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for substance `X` in a mixture, quotient of mass `m_X` (ISO 80000-4) of substance `X` and total mass `m` of the mixture: `w_X = m_X/m`
         * remarks: None.
         */
    }
    attribute massFraction: MassFractionValue :> scalarQuantities;

    /* ISO-80000-9 item 9-12.1 amount-of-substance concentration */
    attribute def AmountOfSubstanceConcentrationValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-12.1 amount-of-substance concentration
         * symbol(s): `c_X`
         * application domain: generic
         * name: AmountOfSubstanceConcentration
         * quantity dimension: L^-3*N^1
         * measurement unit(s): mol/l, mol*m^-3
         * tensor order: 0
         * definition: for substance `X` in a mixture, quotient of amount `n_X` of substance (item 9-2) of `X` and volume `V` (ISO 80000-3) of the mixture: `c_X = n_X/V`
         * remarks: In chemistry, the name "amount-of-substance concentration" is generally abbreviated to the single word "concentration", it being assumed that the adjective "amount-of-substance" is intended. For this reason, however, the word "mass" should never be omitted from the name "mass concentration" in item 9-10. Decided by the 16th CGPM (1979), both "l" and "L" are allowed for the symbols for the litre.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AmountOfSubstanceConcentrationUnit[1];
    }

    attribute amountOfSubstanceConcentration: AmountOfSubstanceConcentrationValue[*] nonunique :> scalarQuantities;

    attribute def AmountOfSubstanceConcentrationUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-12.2 standard amount-of-substance concentration */
    attribute standardAmountOfSubstanceConcentration: AmountOfSubstanceConcentrationValue :> scalarQuantities {
        doc
        /*
         * source: item 9-12.2 standard amount-of-substance concentration
         * symbol(s): `c^!(X)`
         * application domain: generic
         * name: StandardAmountOfSubstanceConcentration (specializes AmountOfSubstanceConcentration)
         * quantity dimension: L^-3*N^1
         * measurement unit(s): mol/l, mol*m^-3
         * tensor order: 0
         * definition: for substance `X`, one mole per litre
         * remarks: Decided by the 16th CGPM (1979), both "l" and "L" are allowed for the symbols for the litre.
         */
    }

    /* ISO-80000-9 item 9-13 amount-of-substance fraction mole fraction */
    attribute def AmountOfSubstanceFractionMoleFractionValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-13 amount-of-substance fraction mole fraction
         * symbol(s): `x_X`, `y_X`
         * application domain: generic
         * name: AmountOfSubstanceFractionMoleFraction (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for substance `X` in a mixture, quotient of amount of substance `n_X` (item 9-2) of `X` and total amount `n` of substance (item 9-2) in the mixture: `x_X = n_X/n`
         * remarks: For condensed phases, `x_X` is used, and for gaseous mixtures `y_X` may be used. The unsystematic name "mole fraction" is still used. However, the use of this name is deprecated. For this quantity, the entity used to define the amount of substance should always be a single molecule for every species in the mixture.
         */
    }
    attribute amountOfSubstanceFractionMoleFraction: AmountOfSubstanceFractionMoleFractionValue :> scalarQuantities;

    /* ISO-80000-9 item 9-14 volume fraction */
    attribute def VolumeFractionValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-14 volume fraction
         * symbol(s): `φ_X`
         * application domain: generic
         * name: VolumeFraction
         * quantity dimension: 1
         * measurement unit(s): ml/l, 1
         * tensor order: 0
         * definition: for substance `X`, quotient of product of amount of substance fraction `x_X` (item 9-13) of `X` and molar volume `V_(m,X)` (item 9-5) of the pure substance `X` at the same temperature (ISO 80000-5) and pressure (ISO 80000-4), and sum over all substances `i` of products of amount-of-substance fractions `x_i` (item 9-13) of substance `i` and their molar volumes `V_(m,i)` (item 9-5): `φ_X = (x_X V_(m,X))/(sum_i x_i V_(m,i))`
         * remarks: Generally, the volume fraction is temperature dependent. Decided by the 16th CGPM (1979), both "l" and "L" are allowed for the symbols for the litre.
         */
        attribute :>> num: Real;
        attribute :>> mRef: VolumeFractionUnit[1];
    }

    attribute volumeFraction: VolumeFractionValue[*] nonunique :> scalarQuantities;

    attribute def VolumeFractionUnit :> DimensionOneUnit {
    }

    /* ISO-80000-9 item 9-15 molality */
    attribute def MolalityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-15 molality
         * symbol(s): `b_B`, `m_B`
         * application domain: generic
         * name: Molality
         * quantity dimension: M^-1*N^1
         * measurement unit(s): mol/kg
         * tensor order: 0
         * definition: quotient of amount of substance (item 9-2) of solute `B` and mass `m_A` (ISO 80000-4) of the solvent substance `A`: `b_B = n_B/m_A`
         * remarks: The alternative symbol `m_B` should be avoided in situations where it might be mistaken for the mass of substance B. However, the symbol `m_B` is much more commonly used than the symbol `b_B` for molality, despite the possible confusion with mass.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MolalityUnit[1];
    }

    attribute molality: MolalityValue[*] nonunique :> scalarQuantities;

    attribute def MolalityUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-16 latent heat of phase transition, enthalpy of phase transition */
    attribute latentHeatOfPhaseTransition: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 9-16 latent heat of phase transition, enthalpy of phase transition
         * symbol(s): `C_"pt"`
         * application domain: generic
         * name: LatentHeatOfPhaseTransition (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, kg*m^2*s^-2
         * tensor order: 0
         * definition: energy (ISO 80000-5) necessary to be added or subtracted isothermally and isobarically to a system to completely undergo the phase transition
         * remarks: Mostly, molar or specific quantity is used and phase transition is expressed explicitly, e.g. molar latent heat of evaporation. The subscript "pt" is the qualifier for the phase transition, which may be changed to e.g. "l-g". The term "enthalpy of phase transition" is mainly used in theory.
         */
    }

    alias enthalpyOfPhaseTransition for latentHeatOfPhaseTransition;

    /* ISO-80000-9 item 9-17 chemical potential */
    attribute def ChemicalPotentialValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-17 chemical potential
         * symbol(s): `μ_X`
         * application domain: chemistry
         * name: ChemicalPotential
         * quantity dimension: L^2*M^1*T^-2*N^-1
         * measurement unit(s): J/mol, kg*m^2*s^-2*mol^-1
         * tensor order: 0
         * definition: partial derivative of the Gibbs energy (ISO 80000-5) with respect to amount `n_X` of substance `X` (item 9-2) at constant temperature `T` (ISO 80000-5) and pressure `p `(ISO 80000-4): `μ_X = ((del G)/(del n_X))_(T,p)`
         * remarks: For a pure substance, where `G_m` is the molar Gibbs energy. In a mixture, `μ_B` is the partial molar Gibbs energy. In condensed matter physics, the chemical potential of electrons is energy.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ChemicalPotentialUnit[1];
    }

    attribute chemicalPotential: ChemicalPotentialValue[*] nonunique :> scalarQuantities;

    attribute def ChemicalPotentialUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-18 absolute activity */
    attribute def AbsoluteActivityValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-18 absolute activity
         * symbol(s): `λ_X`
         * application domain: generic
         * name: AbsoluteActivity (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for substance `X`, exponential of quotient of chemical potential `μ_X` of substance `B` (item 9-17), and product of molar gas constant `R` (item 9-37.1) and thermodynamic temperature `T` (ISO 80000-5): `λ_X = exp(μ_X/(RT))`
         * remarks: None.
         */
    }
    attribute absoluteActivity: AbsoluteActivityValue :> scalarQuantities;

    /* ISO-80000-9 item 9-19 partial pressure */
    attribute def PartialPressureValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-19 partial pressure
         * symbol(s): `p_X`
         * application domain: generic
         * name: PartialPressure
         * quantity dimension: L^-1*M^1*T^-2
         * measurement unit(s): Pa, kg*m^-1*s^-2
         * tensor order: 0
         * definition: for substance `X` in a gaseous mixture, product of amount-of-substance fraction `y_X` of substance X (item 9-13) and total pressure `p` (ISO 80000-4): `p_X = y_X p`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: PartialPressureUnit[1];
    }

    attribute partialPressure: PartialPressureValue[*] nonunique :> scalarQuantities;

    attribute def PartialPressureUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-9 item 9-20 fugacity */
    attribute def FugacityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-20 fugacity
         * symbol(s): `tilde(p)_X`
         * application domain: generic
         * name: Fugacity
         * quantity dimension: L^-1*M^1*T^-2
         * measurement unit(s): Pa, kg*m^-1*s^-2
         * tensor order: 0
         * definition: for substance `X`, quantity proportional to the absolute activity, `λ_X` (item 9-18), the proportionality factor, which is a function of temperature (ISO 80000-5) only, being determined by the condition that, at constant temperature and composition, `p_X/tilde(p)_X` tends to 1 for an indefinitely dilute gas
         * remarks: `tilde(p)_X = λ_X * lim_(p->0) (p_X/λ_X)` where `p` is total pressure (ISO 80000-4). The IUPAC preferred symbol for fugacity is `f`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: FugacityUnit[1];
    }

    attribute fugacity: FugacityValue[*] nonunique :> scalarQuantities;

    attribute def FugacityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-9 item 9-21 standard chemical potential */
    attribute def StandardChemicalPotentialValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-21 standard chemical potential
         * symbol(s): `μ_B^!`, `μ^!`
         * application domain: generic
         * name: StandardChemicalPotential
         * quantity dimension: L^2*M^1*T^-2*N^-1
         * measurement unit(s): J/mol, kg*m^2*s^-2*mol^-1
         * tensor order: 0
         * definition: for substance `B`, value of the chemical potential (item 9-17) at specified standard conditions
         * remarks: `μ_B^! = RT ln(λ^!)` where `μ_B^!` is a function of temperature `T` at the standard pressure `p = p^!` The standard chemical potential depends on the choice of standard state, which must be specified. In a liquid or solid solution, the standard state is referenced to the ideal dilute behaviour of the solute (substance `B`).
         */
        attribute :>> num: Real;
        attribute :>> mRef: StandardChemicalPotentialUnit[1];
    }

    attribute standardChemicalPotential: StandardChemicalPotentialValue[*] nonunique :> scalarQuantities;

    attribute def StandardChemicalPotentialUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-22 activity factor */
    attribute def ActivityFactorValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-22 activity factor
         * symbol(s): `f_X`
         * application domain: generic
         * name: ActivityFactor (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for substance `X` in a liquid or a solid mixture, quotient of absolute activity `λ_X` (item 9-18) of substance `X` and the product of absolute activity `λ_X^"*"` of the pure substance `X` at the same temperature (ISO 80000-5) and pressure (ISO 80000-4) and amount-of-substance fraction `x_X` of substance `X` (item 9-13): `f_X = λ_X/(λ_X^"*" x_X)`
         * remarks: The systematic name is "activity factor", but the name "activity coefficient" is also commonly used (see item 9-25). Activity factors can also be obtained applying Raoult’s law or Henry’s law.
         */
    }
    attribute activityFactor: ActivityFactorValue :> scalarQuantities;

    /* ISO-80000-9 item 9-23 standard absolute activity in mixture */
    attribute def StandardAbsoluteActivityInMixtureValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-23 standard absolute activity in mixture
         * symbol(s): `λ_X^!`
         * application domain: in a mixture
         * name: StandardAbsoluteActivityInMixture (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for substance `X` in a liquid or a solid mixture, absolute activity `λ_X^"*"` (item 9-18) of the pure substance `X` at the same temperature (ISO 80000-5) but at standard pressure (ISO 80000-4) `10^5 ["Pa"]`: `λ_X^! = λ_X"*" (p^!)`
         * remarks: This quantity is a function of temperature only.
         */
    }
    attribute standardAbsoluteActivityInMixture: StandardAbsoluteActivityInMixtureValue :> scalarQuantities;

    /* ISO-80000-9 item 9-24 activity of solute, relative activity of solute */
    attribute def ActivityOfSoluteValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-24 activity of solute, relative activity of solute
         * symbol(s): `a_X`, `a_(m,X)`
         * application domain: generic
         * name: ActivityOfSolute (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for a solute `X` in a solution, quantity proportional to the absolute activity, `λ_X` (item 9-18), the proportionality factor, which is a function of temperature (ISO 80000-5) and pressure (ISO 80000-4) only, being determined by the condition that, at constant temperature and pressure, `a_X` divided by the molality (item 9-15) ratio, `b_X/b^!` tends to 1 at infinite dilution; `b_X` is the molality of solute `X` (item 9-15), and `b^!` is standard molality: `a_X = λ_X * lim_(sum b_X -> 0) (b_X//b^!)/λ_X`
         * remarks: The quantity `a_(c,X)` , similarly defined in terms of the concentration ratio `c_X/c^!` , is also called the activity or relative activity of solute `X`; `c^!` is a standard amount-of-substance concentration (item 9-12.2): `a_(c,X) = λ_X * lim_(sum c_X -> 0) (c_X//c^!)/λ_X`, where `sum` denotes summation over all the solute substances. This especially applies to a dilute liquid solution.
         */
    }
    attribute activityOfSolute: ActivityOfSoluteValue :> scalarQuantities;

    alias relativeActivityOfSolute for activityOfSolute;

    /* ISO-80000-9 item 9-25 activity coefficient */
    attribute def ActivityCoefficientValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-25 activity coefficient
         * symbol(s): `γ_B`
         * application domain: generic
         * name: ActivityCoefficient (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for a solute `B` in a solution, quotient of activity `a_B` of solute `B` (item 9-24), and quotient of the molality (item 9-15) `b_B` of substance `B` and standard molality `b^!`: `γ_B = a_B/(b_B//b^!)`
         * remarks: The name "activity coefficient of solute B" is also used for the quantity `γ_B` defined as: `γ_B = a_(c,B)/(c_B//c^!)` See item 9-22.
         */
    }
    attribute activityCoefficient: ActivityCoefficientValue :> scalarQuantities;

    /* ISO-80000-9 item 9-26 standard absolute activity in solution */
    attribute def StandardAbsoluteActivityInSolutionValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-26 standard absolute activity in solution
         * symbol(s): `λ_B^!`
         * application domain: in a solution
         * name: StandardAbsoluteActivityInSolution (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for a solute `B` in a solution: `λ_B^! = lim_(sum b_B -> 0) [λ_B ((p^!)b^!)/b_B]` where ∑ denotes summation over all solutes, `p^!` is a standard pressure (ISO 80000-4), `b^!` is standard molality, and `b_B` is the molality of substance `B` (item 9-15)
         * remarks: This quantity is a function of temperature only. It especially applies to a dilute liquid solution. The standard pressure is `10^5 ["Pa"]`.
         */
    }
    attribute standardAbsoluteActivityInSolution: StandardAbsoluteActivityInSolutionValue :> scalarQuantities;

    /* ISO-80000-9 item 9-27.1 activity of solvent, relative activity of solvent */
    attribute def ActivityOfSolventValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-27.1 activity of solvent, relative activity of solvent
         * symbol(s): `a_A`
         * application domain: generic
         * name: ActivityOfSolvent (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for the solvent `A` in a solution, quotient of the absolute activity of substance `A`, `λ_A` (item 9-18), and that, `λ_A^"*"` , of the pure solvent at the same temperature (ISO 80000-5) and pressure (ISO 80000-4): `a_A = λ_A/λ_A^"*"`
         * remarks: None.
         */
    }
    attribute activityOfSolvent: ActivityOfSolventValue :> scalarQuantities;

    alias relativeActivityOfSolvent for activityOfSolvent;

    /* ISO-80000-9 item 9-27.2 osmotic factor of solvent, osmotic coefficient of solvent A */
    attribute def OsmoticFactorOfSolventValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-27.2 osmotic factor of solvent, osmotic coefficient of solvent A
         * symbol(s): `φ`
         * application domain: generic
         * name: OsmoticFactorOfSolvent (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quantity given by: `φ = -(M_A sum b_B)^-1 ln(a_A)` where `M_A` is the molar mass (item 9-4) of the solvent A, ∑ denotes summation over all the solutes, `b_B` is the molality of solute B (item 9-15), and `a_A` is the activity of solvent A (item 9-27.1)
         * remarks: The name "osmotic coefficient" is generally used, although the name "osmotic factor" is more systematic. This concept especially applies to a dilute liquid solution.
         */
    }
    attribute osmoticFactorOfSolvent: OsmoticFactorOfSolventValue :> scalarQuantities;

    alias osmoticCoefficientOfSolventA for osmoticFactorOfSolvent;

    /* ISO-80000-9 item 9-27.3 standard absolute activity of solvent */
    attribute def StandardAbsoluteActivityOfSolventValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-27.3 standard absolute activity of solvent
         * symbol(s): `λ_A^!`
         * application domain: in a dilute solution
         * name: StandardAbsoluteActivityOfSolvent (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for solvent `A`, standard absolute activity (item 9-23) of the pure substance `A` at the same temperature (ISO 80000-5) and at a standard pressure `p^!` (ISO 80000-4): `λ_A^! = λ_A^"*" p^!`
         * remarks: None.
         */
    }
    attribute standardAbsoluteActivityOfSolvent: StandardAbsoluteActivityOfSolventValue :> scalarQuantities;

    /* ISO-80000-9 item 9-28 osmotic pressure */
    attribute def OsmoticPressureValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-28 osmotic pressure
         * symbol(s): `Π`
         * application domain: generic
         * name: OsmoticPressure
         * quantity dimension: L^-1*M^1*T^-2
         * measurement unit(s): Pa, kg*m^-1*s^-2
         * tensor order: 0
         * definition: excess pressure (ISO 80000-4) required to maintain osmotic equilibrium between a solution and the pure solvent separated by a membrane permeable to the solvent only
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: OsmoticPressureUnit[1];
    }

    attribute osmoticPressure: OsmoticPressureValue[*] nonunique :> scalarQuantities;

    attribute def OsmoticPressureUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-9 item 9-29 stoichiometric number of substance */
    attribute def StoichiometricNumberOfSubstanceValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-29 stoichiometric number of substance
         * symbol(s): `ν_B`
         * application domain: generic
         * name: StoichiometricNumberOfSubstance (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for substance `B`, an integer number or a simple fraction, being negative for a reactant and positive for a product, occurring in the expression for a chemical reaction: `0 = sum ν_B` where the symbol `B` denotes the reactants and products involved in the reaction
         * remarks: EXAMPLE `(1/2)"N"_2 + (3/2)"H"_2 = "N""H"_3` ; `ν("N"_2) = -1/2`, `ν("H"_2) = -3/2`, `ν("N""H"_3) = +1`.
         */
    }
    attribute stoichiometricNumberOfSubstance: StoichiometricNumberOfSubstanceValue :> scalarQuantities;

    /* ISO-80000-9 item 9-30 affinity of a chemical reaction */
    attribute def AffinityOfAChemicalReactionValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-30 affinity of a chemical reaction
         * symbol(s): `A`
         * application domain: generic
         * name: AffinityOfAChemicalReaction
         * quantity dimension: L^2*M^1*T^-2*N^-1
         * measurement unit(s): J/mol, kg*m^2*s^-2*mol^-1
         * tensor order: 0
         * definition: negative of the sum over all substances `B` of products of stoichiometric number `ν_B` of substance `B` (item 9-29) and chemical potential `μ_B` of substance `B` (item 9-17): `A = -sum ν_B μ_B`
         * remarks: The affinity of a reaction is a measure of the "driving force" of the reaction. When it is positive, the reaction goes spontaneously from reactants to products, and when it is negative, the reaction goes in the opposite direction. Another way to write the definition is: `A = ((del G)/(del ξ))_(p,T)` where `G` is Gibbs energy (ISO 80000-5) and `ξ` is the extent of the reaction (item 9-31). Note that `ν_B` is negative for reactants and positive for products.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AffinityOfAChemicalReactionUnit[1];
    }

    attribute affinityOfAChemicalReaction: AffinityOfAChemicalReactionValue[*] nonunique :> scalarQuantities;

    attribute def AffinityOfAChemicalReactionUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-31 extent of reaction */
    attribute extentOfReaction: AmountOfSubstanceValue :> scalarQuantities {
        doc
        /*
         * source: item 9-31 extent of reaction
         * symbol(s): `ξ`
         * application domain: generic
         * name: ExtentOfReaction (specializes AmountOfSubstance)
         * quantity dimension: N^1
         * measurement unit(s): mol
         * tensor order: 0
         * definition: difference of initial amount `n_(B "in")` of substance `B` (item 9-2) and equilibrium amount `n_(B "eq")` of substance `B` (item 9-2) divided by stoichiometric number `ν_B` of substance `B` (item 9-29): `ξ = (n_(B "eq") - n_(B "in"))/ν_B`
         * remarks: See remark to item 9-30.
         */
    }

    /* ISO-80000-9 item 9-32 standard equilibrium constant, thermodynamic equilibrium constant */
    attribute def StandardEquilibriumConstantValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-32 standard equilibrium constant, thermodynamic equilibrium constant
         * symbol(s): `K^!`
         * application domain: generic
         * name: StandardEquilibriumConstant (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for a chemical reaction, product for all substances `B` of standard absolute activity `λ_B^!` of substance `B` (item 9-26) in power of minus stoichiometric number `ν_B` of substance `B` (item 9-29): `K^! = prod_B (tilde(a) λ_B^!)^(-ν_B)`
         * remarks: This quantity is a function of temperature only. Others depend on temperature, pressure, and composition. One can define in an analogous way an equilibrium constant in terms of fugacity, `K_f`, molality, `K_m`, etc.
         */
    }
    attribute standardEquilibriumConstant: StandardEquilibriumConstantValue :> scalarQuantities;

    alias thermodynamicEquilibriumConstant for standardEquilibriumConstant;

    /* ISO-80000-9 item 9-33 equilibrium constant on pressure basis */
    attribute def EquilibriumConstantOnPressureBasisValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-33 equilibrium constant on pressure basis
         * symbol(s): `K_p`
         * application domain: pressure basis
         * name: EquilibriumConstantOnPressureBasis
         * quantity dimension: L^-1*M^1*T^-2
         * measurement unit(s): Pa, kg*m^-1*s^-2
         * tensor order: 0
         * definition: for gases, product for all substances `B` of partial pressure `p_B` of substance `B` (item 9-19) in power of its stoichiometric number `ν_B` (item 9-29): `K_p = prod_B (p_B)^(ν_B)`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: EquilibriumConstantOnPressureBasisUnit[1];
    }

    attribute equilibriumConstantOnPressureBasis: EquilibriumConstantOnPressureBasisValue[*] nonunique :> scalarQuantities;

    attribute def EquilibriumConstantOnPressureBasisUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-9 item 9-34 equilibrium constant on concentration basis */
    attribute def EquilibriumConstantOnConcentrationBasisValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-34 equilibrium constant on concentration basis
         * symbol(s): `K_c`
         * application domain: concentration basis
         * name: EquilibriumConstantOnConcentrationBasis
         * quantity dimension: L^-3*N^1
         * measurement unit(s): mol/m^3
         * tensor order: 0
         * definition: for solutions, product for all substances `B` of concentration `c_B` of substance `B` (item 9-9.1) in power of its stoichiometric number `ν_B` (item 9-29): `K_c = prod_B (c_B)^(ν_B)`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: EquilibriumConstantOnConcentrationBasisUnit[1];
    }

    attribute equilibriumConstantOnConcentrationBasis: EquilibriumConstantOnConcentrationBasisValue[*] nonunique :> scalarQuantities;

    attribute def EquilibriumConstantOnConcentrationBasisUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-35.1 microcanonical partition function */
    attribute microcanonicalPartitionFunction: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 9-35.1 microcanonical partition function
         * symbol(s): `Ω`
         * application domain: generic
         * name: MicrocanonicalPartitionFunction (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: number of all quantum states `r` consistent with given energy `E` (ISO 80000-4), volume (ISO 80000-3), and external fields: `Ω = sum_r 1`
         * remarks: `S = k ln(Ω)` where `S` is entropy (ISO 80000-5) and `k` is the Boltzmann constant (ISO 80000-1).
         */
    }

    /* ISO-80000-9 item 9-35.2 canonical partition function */
    attribute def CanonicalPartitionFunctionValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-35.2 canonical partition function
         * symbol(s): `Z`
         * application domain: generic
         * name: CanonicalPartitionFunction (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: sum over quantum states of energy `E_r` (ISO 80000-4), expressed by: `Z = sum_r exp(-E_r/(kT))` where `k` is the Boltzmann constant (ISO 80000-1), and `T` is thermodynamic temperature (ISO 80000-5)
         * remarks: `A = -kT ln(Z)` where `A` is Helmholtz energy (ISO 80000-5).
         */
    }
    attribute canonicalPartitionFunction: CanonicalPartitionFunctionValue :> scalarQuantities;

    /* ISO-80000-9 item 9-35.3 grand-canonical partition function, grand partition function */
    attribute def GrandCanonicalPartitionFunctionValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-35.3 grand-canonical partition function, grand partition function
         * symbol(s): `Ξ`
         * application domain: generic
         * name: GrandCanonicalPartitionFunction (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: sum of canonical partition function `Z(N_A,N_B,…)` for the given number of particles `A,B` multiplied by absolute activities (item 9-18) `λ_A, λ_B, ...` of particles `A, B`: `Ξ = sum_(N_A, N_B, ...) Z(N_A, N_B, …) * λ_A^(N_A) * λ_B^(N_B) * ...`
         * remarks: `A - sum μ_B n_B = -kT ln(Ξ)` where `A` is Helmholtz energy (ISO 80000-5), `μ_B` is the chemical potential of substance `B`, and `n_B` is the amount of substance `B`.
         */
    }
    attribute grandCanonicalPartitionFunction: GrandCanonicalPartitionFunctionValue :> scalarQuantities;

    alias grandPartitionFunction for grandCanonicalPartitionFunction;

    /* ISO-80000-9 item 9-35.4 molecular partition function, partition function of a molecule */
    attribute def MolecularPartitionFunctionValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-35.4 molecular partition function, partition function of a molecule
         * symbol(s): `q`
         * application domain: generic
         * name: MolecularPartitionFunction (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quantity given by: `q = sum_r exp(-ε_r/(kT))` where `ε_r` is the energy (ISO 80000-5) of the `r`-th level of the molecule consistent with given volume (ISO 80000-3) and external fields, `k` is the Boltzmann constant (ISO 80000-1), and `T` is thermodynamic temperature (ISO 80000-5)
         * remarks: None.
         */
    }
    attribute molecularPartitionFunction: MolecularPartitionFunctionValue :> scalarQuantities;

    alias partitionFunctionOfAMolecule for molecularPartitionFunction;

    /* ISO-80000-9 item 9-36.1 statistical weight of subsystem */
    attribute statisticalWeightOfSubsystem: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 9-36.1 statistical weight of subsystem
         * symbol(s): `g`
         * application domain: generic
         * name: StatisticalWeightOfSubsystem (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: number of different microstates in a subsystem
         * remarks: None.
         */
    }

    /* ISO-80000-9 item 9-36.2 degeneracy, multiplicity */
    attribute def DegeneracyValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-36.2 degeneracy, multiplicity
         * symbol(s): `g`
         * application domain: generic
         * name: Degeneracy (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for quantum level, statistical weight of that level
         * remarks: If `g = 1`, the level is called non-degenerate.
         */
    }
    attribute degeneracy: DegeneracyValue :> scalarQuantities;

    alias multiplicity for degeneracy;

    /* ISO-80000-9 item 9-37.1 molar gas constant */
    attribute def MolarGasConstantValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-37.1 molar gas constant
         * symbol(s): `R`
         * application domain: generic
         * name: MolarGasConstant
         * quantity dimension: L^2*M^1*T^-2*Θ^-1*N^-1
         * measurement unit(s): J/(mol*K), kg*m^2*s^-2*K^-1*mol^-1
         * tensor order: 0
         * definition: product of the Boltzmann constant (ISO 80000-1) and the Avogadro constant (ISO 80000-1)
         * remarks: For an ideal gas, `pV_m = RT`
         */
        attribute :>> num: Real;
        attribute :>> mRef: MolarGasConstantUnit[1];
    }

    attribute molarGasConstant: MolarGasConstantValue[*] nonunique :> scalarQuantities;

    attribute def MolarGasConstantUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-37.2 specific gas constant */
    /* Refer to declaration for SpecificGasConstant in ISQThermodynamics item 5-26 specific gas constant */

    /* ISO-80000-9 item 9-38 mean free path */
    attribute meanFreePath: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 9-38 mean free path
         * symbol(s): `l`, `λ`
         * application domain: chemistry
         * name: MeanFreePath (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: for a particle, the average distance `d` (ISO 80000-3) between two successive collisions with other particles
         * remarks: None.
         */
    }

    /* ISO-80000-9 item 9-39 diffusion coefficient */
    attribute def DiffusionCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-39 diffusion coefficient
         * symbol(s): `D`
         * application domain: chemistry
         * name: DiffusionCoefficient
         * quantity dimension: L^2*T^-1
         * measurement unit(s): m^2*s^-1
         * tensor order: 0
         * definition: proportionality coefficient of local molecular concentration `C_B` (item 9-9.2) of substance `B` in the mixture multiplied by the local average velocity (ISO 80000-3) `v_B` of the molecules of `B`, and minus the gradient of the local molecular concentration `C_B` (item 9-9.2) of substance `B` in the mixture, expressed by: `C_B(v_B) = -D grad C_B`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: DiffusionCoefficientUnit[1];
    }

    attribute diffusionCoefficient: DiffusionCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def DiffusionCoefficientUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-9 item 9-40.1 thermal diffusion ratio */
    attribute def ThermalDiffusionRatioValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-40.1 thermal diffusion ratio
         * symbol(s): `k_T`
         * application domain: generic
         * name: ThermalDiffusionRatio (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: in a steady-state of a binary mixture in which thermal diffusion occurs, proportionality factor between gradient of the amount-of-subsstance fraction `x_B` (item 9-13) of the heavier substance `B`, and negative gradient of the local thermodynamic temperature `T` (ISO 80000-5) divided by that temperature (ISO 80000-5): `grad x_B = -(k_T/T) grad T`
         * remarks: None.
         */
    }
    attribute thermalDiffusionRatio: ThermalDiffusionRatioValue :> scalarQuantities;

    /* ISO-80000-9 item 9-40.2 thermal diffusion factor */
    attribute def ThermalDiffusionFactorValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-40.2 thermal diffusion factor
         * symbol(s): `α_T`
         * application domain: generic
         * name: ThermalDiffusionFactor (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of the thermal diffusion ratio `k_T` (item 9-40.1), and the product of the local amount-of-substance fractions `x_A`, `x_B` (item 9-13) of two substances `A` and `B`: `α_T = k_T//(x_A x_B)`
         * remarks: None.
         */
    }
    attribute thermalDiffusionFactor: ThermalDiffusionFactorValue :> scalarQuantities;

    /* ISO-80000-9 item 9-41 thermal diffusion coefficient */
    attribute def ThermalDiffusionCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-41 thermal diffusion coefficient
         * symbol(s): `D_T`
         * application domain: generic
         * name: ThermalDiffusionCoefficient
         * quantity dimension: L^2*T^-1
         * measurement unit(s): m^2*s^-1
         * tensor order: 0
         * definition: product of the thermal diffusion ratio `k_T` (item 9-40.1) and the diffusion coefficient `D` (item 9-39): `D_T = k_T*D`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ThermalDiffusionCoefficientUnit[1];
    }

    attribute thermalDiffusionCoefficient: ThermalDiffusionCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def ThermalDiffusionCoefficientUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-9 item 9-42 ionic strength */
    attribute def IonicStrengthValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-42 ionic strength
         * symbol(s): `I`
         * application domain: generic
         * name: IonicStrength
         * quantity dimension: M^-1*N^1
         * measurement unit(s): mol*kg^-1
         * tensor order: 0
         * definition: in a sample, one half of the sum of square of the charge number `z_i` (ISO 80000-10) of `i`-th ion multiplied by its molality `b_i` (item 9-15) over any involved ion: `I = 1/2 sum z_i^2 b_i`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: IonicStrengthUnit[1];
    }

    attribute ionicStrength: IonicStrengthValue[*] nonunique :> scalarQuantities;

    attribute def IonicStrengthUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-43 degree of dissociation, dissociation fraction */
    attribute def DegreeOfDissociationValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-43 degree of dissociation, dissociation fraction
         * symbol(s): `α`
         * application domain: generic
         * name: DegreeOfDissociation (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: in a sample, quotient of the number `n_d` of dissociated molecules and the total number `n` of molecules: `α = n_D / n`
         * remarks: None.
         */
    }
    attribute degreeOfDissociation: DegreeOfDissociationValue :> scalarQuantities;

    alias dissociationFraction for degreeOfDissociation;

    /* ISO-80000-9 item 9-44 electrolytic conductivity */
    attribute def ElectrolyticConductivityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-44 electrolytic conductivity
         * symbol(s): `κ`
         * application domain: generic
         * name: ElectrolyticConductivity
         * quantity dimension: L^-3*M^-1*T^3*I^2
         * measurement unit(s): S/m, kg^-1*m^-3*s^3*A^2
         * tensor order: 0
         * definition: quotient of the magnitude of electric current density `J` (IEC 80000-6) and the magnitude electric field strength `E` (IEC 80000-6) in an electrolyte: `κ = J/E`
         * remarks: For anisotropic media, `κ` is a tensor. In IEC 80000-6 the symbols `σ`, `γ` are used.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ElectrolyticConductivityUnit[1];
    }

    attribute electrolyticConductivity: ElectrolyticConductivityValue[*] nonunique :> scalarQuantities;

    attribute def ElectrolyticConductivityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; }
        private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
    }

    /* ISO-80000-9 item 9-45 molar conductivity */
    attribute def MolarConductivityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-45 molar conductivity
         * symbol(s): `Λ_m`
         * application domain: generic
         * name: MolarConductivity
         * quantity dimension: M^-1*T^3*I^2*N^-1
         * measurement unit(s): S*m^2/mol, kg^-1*s^3*A^2*mol^-1
         * tensor order: 0
         * definition: in an electrolyte, quotient of electrolytic conductivity `κ` (item 9-44) and amount-of-substance concentration `c_B` (item 9-12.1): `Λ_m = κ/c_B`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MolarConductivityUnit[1];
    }

    attribute molarConductivity: MolarConductivityValue[*] nonunique :> scalarQuantities;

    attribute def MolarConductivityUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; }
        private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, electricCurrentPF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-46 transport number of the ion B, current fraction of the ion B */
    attribute def TransportNumberOfTheIonBValue :> DimensionOneValue {
        doc
        /*
         * source: item 9-46 transport number of the ion B, current fraction of the ion B
         * symbol(s): `t_B`
         * application domain: generic
         * name: TransportNumberOfTheIonB (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: for the ion `B`, quotient of electric current `i_B` (IEC 80000-6) carried by the ion `B` and total electric current `i` (IEC 80000-6) in an electrolyte: `t_B = i_B/i`
         * remarks: None.
         */
    }
    attribute transportNumberOfTheIonB: TransportNumberOfTheIonBValue :> scalarQuantities;

    alias currentFractionOfTheIonB for transportNumberOfTheIonB;

    /* ISO-80000-9 item 9-47 angle of optical rotation */
    attribute angleOfOpticalRotation: AngularMeasureValue :> scalarQuantities {
        doc
        /*
         * source: item 9-47 angle of optical rotation
         * symbol(s): `α`
         * application domain: generic
         * name: AngleOfOpticalRotation (specializes AngularMeasure)
         * quantity dimension: 1
         * measurement unit(s): rad
         * tensor order: 0
         * definition: angle through which plane-polarized light is rotated clockwise, as seen when facing the light source, in passing through an optically active medium
         * remarks: None.
         */
    }

    /* ISO-80000-9 item 9-48 molar optical rotatory power */
    attribute def MolarOpticalRotatoryPowerValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-48 molar optical rotatory power
         * symbol(s): `α_n`
         * application domain: generic
         * name: MolarOpticalRotatoryPower
         * quantity dimension: L^2*N^-1
         * measurement unit(s): rad*m^2/mol, m^2*mol^-1
         * tensor order: 0
         * definition: angle `α` of optical rotation (item 9-47), multiplied by the quotient of cross-sectional area `A` (ISO 80000-3) of a linearly polarized light beam and the amount of substance `n` (item 9-2) of the optically active component in the path of the beam: `α_n = (α A)/n`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MolarOpticalRotatoryPowerUnit[1];
    }

    attribute molarOpticalRotatoryPower: MolarOpticalRotatoryPowerValue[*] nonunique :> scalarQuantities;

    attribute def MolarOpticalRotatoryPowerUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, amountOfSubstancePF); }
    }

    /* ISO-80000-9 item 9-49 specific optical rotatory power */
    attribute def SpecificOpticalRotatoryPowerValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 9-49 specific optical rotatory power
         * symbol(s): `α_m`
         * application domain: generic
         * name: SpecificOpticalRotatoryPower
         * quantity dimension: L^2*M^-1
         * measurement unit(s): rad*m^2/kg^1, kg^-1*m^2
         * tensor order: 0
         * definition: angle `α` of optical rotation (item 9-47), multiplied by the quotient of cross-sectional area `A` (ISO 80000-3) of a linearly polarized light beam and the mass `m` (ISO 80000-4) of the optically active component in the path of the beam: `α_m = (α A)/m`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SpecificOpticalRotatoryPowerUnit[1];
    }

    attribute specificOpticalRotatoryPower: SpecificOpticalRotatoryPowerValue[*] nonunique :> scalarQuantities;

    attribute def SpecificOpticalRotatoryPowerUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
    }

}