File size: 71,465 Bytes
5070096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 |
standard library package ISQChemistryMolecular {
doc
/*
* International System of Quantities and Units
* Generated on 2022-08-07T14:44:27Z from standard ISO-80000-9:2019 "Physical chemistry and molecular physics"
* see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-9:ed-2:v1:en
*
* Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts,
* with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks.
* Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is
* defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system)
* or TensorMeasurementReference.
*/
private import ScalarValues::Real;
private import Quantities::*;
private import MeasurementReferences::*;
private import ISQBase::*;
/* Quantity definitions referenced from other ISQ packages */
private import ISQSpaceTime::AngularMeasureValue;
private import ISQThermodynamics::EnergyValue;
/* ISO-80000-9 item 9-1 number of entities */
attribute numberOfEntities: CountValue :> scalarQuantities {
doc
/*
* source: item 9-1 number of entities
* symbol(s): `N(X)`, `N_X`
* application domain: generic
* name: NumberOfEntities (specializes Count)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: number of elementary entities of kind `X` in a system
* remarks: The elementary entities must be specified and can be atoms, molecules, ions, electrons, other particle, or a specified group of such particles. It is important to always give a precise specification of the entity involved; this should preferably be done by the empirical chemical formula of the material involved.
*/
}
/* ISO-80000-9 item 9-2 amount of substance, number of moles */
/* See package ISQBase for the declarations of AmountOfSubstanceValue and AmountOfSubstanceUnit */
alias NumberOfMolesUnit for AmountOfSubstanceUnit;
alias NumberOfMolesValue for AmountOfSubstanceValue;
alias numberOfMoles for amountOfSubstance;
/* ISO-80000-9 item 9-3 relative atomic mass */
attribute def RelativeAtomicMassValue :> DimensionOneValue {
doc
/*
* source: item 9-3 relative atomic mass
* symbol(s): `A_r(X)`
* application domain: generic
* name: RelativeAtomicMass (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quotient of the average mass (ISO 80000-4) of atom `X` and the unified atomic mass (ISO 80000-10)
* remarks: A similar quantity "relative molecular mass" can be defined for molecules. EXAMPLE `A_r(Cl) ~~ 35.453` `A_r(CO_2) ~~ 44` The relative atomic or relative molecular mass depends on the nuclidic composition. The International Union of Pure and Applied Chemistry (IUPAC) accepts the use of the special names "atomic weight" and "molecular weight" for the quantities "relative atomic mass" and "relative molecular mass", respectively. The use of these traditional names is deprecated.
*/
}
attribute relativeAtomicMass: RelativeAtomicMassValue :> scalarQuantities;
/* ISO-80000-9 item 9-4 molar mass */
attribute def MolarMassValue :> ScalarQuantityValue {
doc
/*
* source: item 9-4 molar mass
* symbol(s): `M(X)`
* application domain: generic
* name: MolarMass
* quantity dimension: M^1*N^-1
* measurement unit(s): g/mol, kg*mol^-1
* tensor order: 0
* definition: for a pure substance `X`, quotient of mass `m(X)` (ISO 80000-4) and amount `n` of substance (item 9-2): `M = m/n`
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: MolarMassUnit[1];
}
attribute molarMass: MolarMassValue[*] nonunique :> scalarQuantities;
attribute def MolarMassUnit :> DerivedUnit {
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-5 molar volume */
attribute def MolarVolumeValue :> ScalarQuantityValue {
doc
/*
* source: item 9-5 molar volume
* symbol(s): `V_m`
* application domain: generic
* name: MolarVolume
* quantity dimension: L^3*N^-1
* measurement unit(s): m^3*mol^-1
* tensor order: 0
* definition: for a pure substance, quotient of its volume `V` (ISO 80000-3) and amount `n` of substance (item 9-2): `V_m = V/n`
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: MolarVolumeUnit[1];
}
attribute molarVolume: MolarVolumeValue[*] nonunique :> scalarQuantities;
attribute def MolarVolumeUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-6.1 molar internal energy */
attribute def MolarInternalEnergyValue :> ScalarQuantityValue {
doc
/*
* source: item 9-6.1 molar internal energy
* symbol(s): `U_m`
* application domain: generic
* name: MolarInternalEnergy
* quantity dimension: L^2*M^1*T^-2*N^-1
* measurement unit(s): J/mol, kg*m^2*s^-2*mol^-1
* tensor order: 0
* definition: quotient of internal energy `U` (ISO 80000-5) and amount `n` of substance (item 9-2): `U_m = U/n`
* remarks: Molar quantities are normally only used with reference to pure substances.
*/
attribute :>> num: Real;
attribute :>> mRef: MolarInternalEnergyUnit[1];
}
attribute molarInternalEnergy: MolarInternalEnergyValue[*] nonunique :> scalarQuantities;
attribute def MolarInternalEnergyUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-6.2 molar enthalpy */
attribute def MolarEnthalpyValue :> ScalarQuantityValue {
doc
/*
* source: item 9-6.2 molar enthalpy
* symbol(s): `H_m`
* application domain: generic
* name: MolarEnthalpy
* quantity dimension: L^2*M^1*T^-2*N^-1
* measurement unit(s): J/mol, kg*m^2*s^-2*mol^-1
* tensor order: 0
* definition: quotient of enthalpy `H` (ISO 80000-5) and amount `n` of substance (item 9-2): `H_m = H/n`
* remarks: Molar quantities are normally only used with reference to pure substances.
*/
attribute :>> num: Real;
attribute :>> mRef: MolarEnthalpyUnit[1];
}
attribute molarEnthalpy: MolarEnthalpyValue[*] nonunique :> scalarQuantities;
attribute def MolarEnthalpyUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-6.3 molar Helmholtz energy */
attribute def MolarHelmholtzEnergyValue :> ScalarQuantityValue {
doc
/*
* source: item 9-6.3 molar Helmholtz energy
* symbol(s): `F_m`
* application domain: generic
* name: MolarHelmholtzEnergy
* quantity dimension: L^2*M^1*T^-2*N^-1
* measurement unit(s): J/mol, kg*m^2*s^-2*mol^-1
* tensor order: 0
* definition: quotient of the Helmholtz energy `F` (ISO 80000-5) and amount `n` of substance (item 9-2): `F_m = F/n`
* remarks: Molar quantities are normally only used with reference to pure substances.
*/
attribute :>> num: Real;
attribute :>> mRef: MolarHelmholtzEnergyUnit[1];
}
attribute molarHelmholtzEnergy: MolarHelmholtzEnergyValue[*] nonunique :> scalarQuantities;
attribute def MolarHelmholtzEnergyUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-6.4 molar Gibbs energy */
attribute def MolarGibbsEnergyValue :> ScalarQuantityValue {
doc
/*
* source: item 9-6.4 molar Gibbs energy
* symbol(s): `G_m`
* application domain: generic
* name: MolarGibbsEnergy
* quantity dimension: L^2*M^1*T^-2*N^-1
* measurement unit(s): J/mol, kg*m^2*s^-2*mol^-1
* tensor order: 0
* definition: quotient of the Gibbs energy `G` (ISO 80000-5) and amount `n` of substance (item 9-2): `G_m = G/n`
* remarks: Molar quantities are normally only used with reference to pure substances.
*/
attribute :>> num: Real;
attribute :>> mRef: MolarGibbsEnergyUnit[1];
}
attribute molarGibbsEnergy: MolarGibbsEnergyValue[*] nonunique :> scalarQuantities;
attribute def MolarGibbsEnergyUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-7 molar heat capacity */
attribute def MolarHeatCapacityValue :> ScalarQuantityValue {
doc
/*
* source: item 9-7 molar heat capacity
* symbol(s): `C_m`
* application domain: generic
* name: MolarHeatCapacity
* quantity dimension: L^2*M^1*T^-2*Θ^-1*N^-1
* measurement unit(s): J/(mol*K), kg*m^2*s^-2*K^-1*mol^-1
* tensor order: 0
* definition: quotient of heat capacity `C` (ISO 80000-5) and amount of substance `n` (item 9-2): `C_m = C/n`
* remarks: Conditions (constant pressure or volume etc.) must be specified.
*/
attribute :>> num: Real;
attribute :>> mRef: MolarHeatCapacityUnit[1];
}
attribute molarHeatCapacity: MolarHeatCapacityValue[*] nonunique :> scalarQuantities;
attribute def MolarHeatCapacityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-8 molar entropy */
attribute def MolarEntropyValue :> ScalarQuantityValue {
doc
/*
* source: item 9-8 molar entropy
* symbol(s): `S_m`
* application domain: generic
* name: MolarEntropy
* quantity dimension: L^2*M^1*T^-2*Θ^-1*N^-1
* measurement unit(s): J/(mol*K), kg*m^2*s^-2*K^-1*mol^-1
* tensor order: 0
* definition: quotient of entropy `S` (ISO 80000-5) and amount `n` of substance (item 9-2): `S_m = S/n`
* remarks: Conditions (constant pressure or volume etc.) must be specified.
*/
attribute :>> num: Real;
attribute :>> mRef: MolarEntropyUnit[1];
}
attribute molarEntropy: MolarEntropyValue[*] nonunique :> scalarQuantities;
attribute def MolarEntropyUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-9.1 particle concentration */
attribute def ParticleConcentrationValue :> ScalarQuantityValue {
doc
/*
* source: item 9-9.1 particle concentration
* symbol(s): `n`, `(C)`
* application domain: generic
* name: ParticleConcentration
* quantity dimension: L^-3
* measurement unit(s): m^-3
* tensor order: 0
* definition: quotient of number `N` of particles (item 9-1) and volume `V `(ISO 80000-3): `n = N/V`
* remarks: The term "number density" is also used.
*/
attribute :>> num: Real;
attribute :>> mRef: ParticleConcentrationUnit[1];
}
attribute particleConcentration: ParticleConcentrationValue[*] nonunique :> scalarQuantities;
attribute def ParticleConcentrationUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
/* ISO-80000-9 item 9-9.2 molecular concentration */
attribute molecularConcentration: ParticleConcentrationValue :> scalarQuantities {
doc
/*
* source: item 9-9.2 molecular concentration
* symbol(s): `C(X)`, `C_X`
* application domain: generic
* name: MolecularConcentration (specializes ParticleConcentration)
* quantity dimension: L^-3
* measurement unit(s): m^-3
* tensor order: 0
* definition: for substance `X` in a mixture, quotient of number `N_X` of molecules of substance `X` and volume `V` (ISO 80000-3) of the mixture: `C_X = N_X/V`
* remarks: None.
*/
}
/* ISO-80000-9 item 9-10 mass concentration */
attribute def MassConcentrationValue :> ScalarQuantityValue {
doc
/*
* source: item 9-10 mass concentration
* symbol(s): `γ_X`, `(ρ_X)`
* application domain: generic
* name: MassConcentration
* quantity dimension: L^-3*M^1
* measurement unit(s): g/l, kg*m^-3
* tensor order: 0
* definition: for substance `X` in a mixture, quotient of mass `m_X` (ISO 80000-4) of substance `X` and volume `V` (ISO 80000-3) of the mixture: `γ_X = m_X/V`
* remarks: Decided by the 16th CGPM (1979), both "l" and "L" are allowed for the symbols for the litre.
*/
attribute :>> num: Real;
attribute :>> mRef: MassConcentrationUnit[1];
}
attribute massConcentration: MassConcentrationValue[*] nonunique :> scalarQuantities;
attribute def MassConcentrationUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
}
/* ISO-80000-9 item 9-11 mass fraction */
attribute def MassFractionValue :> DimensionOneValue {
doc
/*
* source: item 9-11 mass fraction
* symbol(s): `w_X`
* application domain: generic
* name: MassFraction (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for substance `X` in a mixture, quotient of mass `m_X` (ISO 80000-4) of substance `X` and total mass `m` of the mixture: `w_X = m_X/m`
* remarks: None.
*/
}
attribute massFraction: MassFractionValue :> scalarQuantities;
/* ISO-80000-9 item 9-12.1 amount-of-substance concentration */
attribute def AmountOfSubstanceConcentrationValue :> ScalarQuantityValue {
doc
/*
* source: item 9-12.1 amount-of-substance concentration
* symbol(s): `c_X`
* application domain: generic
* name: AmountOfSubstanceConcentration
* quantity dimension: L^-3*N^1
* measurement unit(s): mol/l, mol*m^-3
* tensor order: 0
* definition: for substance `X` in a mixture, quotient of amount `n_X` of substance (item 9-2) of `X` and volume `V` (ISO 80000-3) of the mixture: `c_X = n_X/V`
* remarks: In chemistry, the name "amount-of-substance concentration" is generally abbreviated to the single word "concentration", it being assumed that the adjective "amount-of-substance" is intended. For this reason, however, the word "mass" should never be omitted from the name "mass concentration" in item 9-10. Decided by the 16th CGPM (1979), both "l" and "L" are allowed for the symbols for the litre.
*/
attribute :>> num: Real;
attribute :>> mRef: AmountOfSubstanceConcentrationUnit[1];
}
attribute amountOfSubstanceConcentration: AmountOfSubstanceConcentrationValue[*] nonunique :> scalarQuantities;
attribute def AmountOfSubstanceConcentrationUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-12.2 standard amount-of-substance concentration */
attribute standardAmountOfSubstanceConcentration: AmountOfSubstanceConcentrationValue :> scalarQuantities {
doc
/*
* source: item 9-12.2 standard amount-of-substance concentration
* symbol(s): `c^!(X)`
* application domain: generic
* name: StandardAmountOfSubstanceConcentration (specializes AmountOfSubstanceConcentration)
* quantity dimension: L^-3*N^1
* measurement unit(s): mol/l, mol*m^-3
* tensor order: 0
* definition: for substance `X`, one mole per litre
* remarks: Decided by the 16th CGPM (1979), both "l" and "L" are allowed for the symbols for the litre.
*/
}
/* ISO-80000-9 item 9-13 amount-of-substance fraction mole fraction */
attribute def AmountOfSubstanceFractionMoleFractionValue :> DimensionOneValue {
doc
/*
* source: item 9-13 amount-of-substance fraction mole fraction
* symbol(s): `x_X`, `y_X`
* application domain: generic
* name: AmountOfSubstanceFractionMoleFraction (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for substance `X` in a mixture, quotient of amount of substance `n_X` (item 9-2) of `X` and total amount `n` of substance (item 9-2) in the mixture: `x_X = n_X/n`
* remarks: For condensed phases, `x_X` is used, and for gaseous mixtures `y_X` may be used. The unsystematic name "mole fraction" is still used. However, the use of this name is deprecated. For this quantity, the entity used to define the amount of substance should always be a single molecule for every species in the mixture.
*/
}
attribute amountOfSubstanceFractionMoleFraction: AmountOfSubstanceFractionMoleFractionValue :> scalarQuantities;
/* ISO-80000-9 item 9-14 volume fraction */
attribute def VolumeFractionValue :> ScalarQuantityValue {
doc
/*
* source: item 9-14 volume fraction
* symbol(s): `φ_X`
* application domain: generic
* name: VolumeFraction
* quantity dimension: 1
* measurement unit(s): ml/l, 1
* tensor order: 0
* definition: for substance `X`, quotient of product of amount of substance fraction `x_X` (item 9-13) of `X` and molar volume `V_(m,X)` (item 9-5) of the pure substance `X` at the same temperature (ISO 80000-5) and pressure (ISO 80000-4), and sum over all substances `i` of products of amount-of-substance fractions `x_i` (item 9-13) of substance `i` and their molar volumes `V_(m,i)` (item 9-5): `φ_X = (x_X V_(m,X))/(sum_i x_i V_(m,i))`
* remarks: Generally, the volume fraction is temperature dependent. Decided by the 16th CGPM (1979), both "l" and "L" are allowed for the symbols for the litre.
*/
attribute :>> num: Real;
attribute :>> mRef: VolumeFractionUnit[1];
}
attribute volumeFraction: VolumeFractionValue[*] nonunique :> scalarQuantities;
attribute def VolumeFractionUnit :> DimensionOneUnit {
}
/* ISO-80000-9 item 9-15 molality */
attribute def MolalityValue :> ScalarQuantityValue {
doc
/*
* source: item 9-15 molality
* symbol(s): `b_B`, `m_B`
* application domain: generic
* name: Molality
* quantity dimension: M^-1*N^1
* measurement unit(s): mol/kg
* tensor order: 0
* definition: quotient of amount of substance (item 9-2) of solute `B` and mass `m_A` (ISO 80000-4) of the solvent substance `A`: `b_B = n_B/m_A`
* remarks: The alternative symbol `m_B` should be avoided in situations where it might be mistaken for the mass of substance B. However, the symbol `m_B` is much more commonly used than the symbol `b_B` for molality, despite the possible confusion with mass.
*/
attribute :>> num: Real;
attribute :>> mRef: MolalityUnit[1];
}
attribute molality: MolalityValue[*] nonunique :> scalarQuantities;
attribute def MolalityUnit :> DerivedUnit {
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-16 latent heat of phase transition, enthalpy of phase transition */
attribute latentHeatOfPhaseTransition: EnergyValue :> scalarQuantities {
doc
/*
* source: item 9-16 latent heat of phase transition, enthalpy of phase transition
* symbol(s): `C_"pt"`
* application domain: generic
* name: LatentHeatOfPhaseTransition (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, kg*m^2*s^-2
* tensor order: 0
* definition: energy (ISO 80000-5) necessary to be added or subtracted isothermally and isobarically to a system to completely undergo the phase transition
* remarks: Mostly, molar or specific quantity is used and phase transition is expressed explicitly, e.g. molar latent heat of evaporation. The subscript "pt" is the qualifier for the phase transition, which may be changed to e.g. "l-g". The term "enthalpy of phase transition" is mainly used in theory.
*/
}
alias enthalpyOfPhaseTransition for latentHeatOfPhaseTransition;
/* ISO-80000-9 item 9-17 chemical potential */
attribute def ChemicalPotentialValue :> ScalarQuantityValue {
doc
/*
* source: item 9-17 chemical potential
* symbol(s): `μ_X`
* application domain: chemistry
* name: ChemicalPotential
* quantity dimension: L^2*M^1*T^-2*N^-1
* measurement unit(s): J/mol, kg*m^2*s^-2*mol^-1
* tensor order: 0
* definition: partial derivative of the Gibbs energy (ISO 80000-5) with respect to amount `n_X` of substance `X` (item 9-2) at constant temperature `T` (ISO 80000-5) and pressure `p `(ISO 80000-4): `μ_X = ((del G)/(del n_X))_(T,p)`
* remarks: For a pure substance, where `G_m` is the molar Gibbs energy. In a mixture, `μ_B` is the partial molar Gibbs energy. In condensed matter physics, the chemical potential of electrons is energy.
*/
attribute :>> num: Real;
attribute :>> mRef: ChemicalPotentialUnit[1];
}
attribute chemicalPotential: ChemicalPotentialValue[*] nonunique :> scalarQuantities;
attribute def ChemicalPotentialUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-18 absolute activity */
attribute def AbsoluteActivityValue :> DimensionOneValue {
doc
/*
* source: item 9-18 absolute activity
* symbol(s): `λ_X`
* application domain: generic
* name: AbsoluteActivity (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for substance `X`, exponential of quotient of chemical potential `μ_X` of substance `B` (item 9-17), and product of molar gas constant `R` (item 9-37.1) and thermodynamic temperature `T` (ISO 80000-5): `λ_X = exp(μ_X/(RT))`
* remarks: None.
*/
}
attribute absoluteActivity: AbsoluteActivityValue :> scalarQuantities;
/* ISO-80000-9 item 9-19 partial pressure */
attribute def PartialPressureValue :> ScalarQuantityValue {
doc
/*
* source: item 9-19 partial pressure
* symbol(s): `p_X`
* application domain: generic
* name: PartialPressure
* quantity dimension: L^-1*M^1*T^-2
* measurement unit(s): Pa, kg*m^-1*s^-2
* tensor order: 0
* definition: for substance `X` in a gaseous mixture, product of amount-of-substance fraction `y_X` of substance X (item 9-13) and total pressure `p` (ISO 80000-4): `p_X = y_X p`
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: PartialPressureUnit[1];
}
attribute partialPressure: PartialPressureValue[*] nonunique :> scalarQuantities;
attribute def PartialPressureUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
}
/* ISO-80000-9 item 9-20 fugacity */
attribute def FugacityValue :> ScalarQuantityValue {
doc
/*
* source: item 9-20 fugacity
* symbol(s): `tilde(p)_X`
* application domain: generic
* name: Fugacity
* quantity dimension: L^-1*M^1*T^-2
* measurement unit(s): Pa, kg*m^-1*s^-2
* tensor order: 0
* definition: for substance `X`, quantity proportional to the absolute activity, `λ_X` (item 9-18), the proportionality factor, which is a function of temperature (ISO 80000-5) only, being determined by the condition that, at constant temperature and composition, `p_X/tilde(p)_X` tends to 1 for an indefinitely dilute gas
* remarks: `tilde(p)_X = λ_X * lim_(p->0) (p_X/λ_X)` where `p` is total pressure (ISO 80000-4). The IUPAC preferred symbol for fugacity is `f`.
*/
attribute :>> num: Real;
attribute :>> mRef: FugacityUnit[1];
}
attribute fugacity: FugacityValue[*] nonunique :> scalarQuantities;
attribute def FugacityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
}
/* ISO-80000-9 item 9-21 standard chemical potential */
attribute def StandardChemicalPotentialValue :> ScalarQuantityValue {
doc
/*
* source: item 9-21 standard chemical potential
* symbol(s): `μ_B^!`, `μ^!`
* application domain: generic
* name: StandardChemicalPotential
* quantity dimension: L^2*M^1*T^-2*N^-1
* measurement unit(s): J/mol, kg*m^2*s^-2*mol^-1
* tensor order: 0
* definition: for substance `B`, value of the chemical potential (item 9-17) at specified standard conditions
* remarks: `μ_B^! = RT ln(λ^!)` where `μ_B^!` is a function of temperature `T` at the standard pressure `p = p^!` The standard chemical potential depends on the choice of standard state, which must be specified. In a liquid or solid solution, the standard state is referenced to the ideal dilute behaviour of the solute (substance `B`).
*/
attribute :>> num: Real;
attribute :>> mRef: StandardChemicalPotentialUnit[1];
}
attribute standardChemicalPotential: StandardChemicalPotentialValue[*] nonunique :> scalarQuantities;
attribute def StandardChemicalPotentialUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-22 activity factor */
attribute def ActivityFactorValue :> DimensionOneValue {
doc
/*
* source: item 9-22 activity factor
* symbol(s): `f_X`
* application domain: generic
* name: ActivityFactor (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for substance `X` in a liquid or a solid mixture, quotient of absolute activity `λ_X` (item 9-18) of substance `X` and the product of absolute activity `λ_X^"*"` of the pure substance `X` at the same temperature (ISO 80000-5) and pressure (ISO 80000-4) and amount-of-substance fraction `x_X` of substance `X` (item 9-13): `f_X = λ_X/(λ_X^"*" x_X)`
* remarks: The systematic name is "activity factor", but the name "activity coefficient" is also commonly used (see item 9-25). Activity factors can also be obtained applying Raoult’s law or Henry’s law.
*/
}
attribute activityFactor: ActivityFactorValue :> scalarQuantities;
/* ISO-80000-9 item 9-23 standard absolute activity in mixture */
attribute def StandardAbsoluteActivityInMixtureValue :> DimensionOneValue {
doc
/*
* source: item 9-23 standard absolute activity in mixture
* symbol(s): `λ_X^!`
* application domain: in a mixture
* name: StandardAbsoluteActivityInMixture (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for substance `X` in a liquid or a solid mixture, absolute activity `λ_X^"*"` (item 9-18) of the pure substance `X` at the same temperature (ISO 80000-5) but at standard pressure (ISO 80000-4) `10^5 ["Pa"]`: `λ_X^! = λ_X"*" (p^!)`
* remarks: This quantity is a function of temperature only.
*/
}
attribute standardAbsoluteActivityInMixture: StandardAbsoluteActivityInMixtureValue :> scalarQuantities;
/* ISO-80000-9 item 9-24 activity of solute, relative activity of solute */
attribute def ActivityOfSoluteValue :> DimensionOneValue {
doc
/*
* source: item 9-24 activity of solute, relative activity of solute
* symbol(s): `a_X`, `a_(m,X)`
* application domain: generic
* name: ActivityOfSolute (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for a solute `X` in a solution, quantity proportional to the absolute activity, `λ_X` (item 9-18), the proportionality factor, which is a function of temperature (ISO 80000-5) and pressure (ISO 80000-4) only, being determined by the condition that, at constant temperature and pressure, `a_X` divided by the molality (item 9-15) ratio, `b_X/b^!` tends to 1 at infinite dilution; `b_X` is the molality of solute `X` (item 9-15), and `b^!` is standard molality: `a_X = λ_X * lim_(sum b_X -> 0) (b_X//b^!)/λ_X`
* remarks: The quantity `a_(c,X)` , similarly defined in terms of the concentration ratio `c_X/c^!` , is also called the activity or relative activity of solute `X`; `c^!` is a standard amount-of-substance concentration (item 9-12.2): `a_(c,X) = λ_X * lim_(sum c_X -> 0) (c_X//c^!)/λ_X`, where `sum` denotes summation over all the solute substances. This especially applies to a dilute liquid solution.
*/
}
attribute activityOfSolute: ActivityOfSoluteValue :> scalarQuantities;
alias relativeActivityOfSolute for activityOfSolute;
/* ISO-80000-9 item 9-25 activity coefficient */
attribute def ActivityCoefficientValue :> DimensionOneValue {
doc
/*
* source: item 9-25 activity coefficient
* symbol(s): `γ_B`
* application domain: generic
* name: ActivityCoefficient (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for a solute `B` in a solution, quotient of activity `a_B` of solute `B` (item 9-24), and quotient of the molality (item 9-15) `b_B` of substance `B` and standard molality `b^!`: `γ_B = a_B/(b_B//b^!)`
* remarks: The name "activity coefficient of solute B" is also used for the quantity `γ_B` defined as: `γ_B = a_(c,B)/(c_B//c^!)` See item 9-22.
*/
}
attribute activityCoefficient: ActivityCoefficientValue :> scalarQuantities;
/* ISO-80000-9 item 9-26 standard absolute activity in solution */
attribute def StandardAbsoluteActivityInSolutionValue :> DimensionOneValue {
doc
/*
* source: item 9-26 standard absolute activity in solution
* symbol(s): `λ_B^!`
* application domain: in a solution
* name: StandardAbsoluteActivityInSolution (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for a solute `B` in a solution: `λ_B^! = lim_(sum b_B -> 0) [λ_B ((p^!)b^!)/b_B]` where ∑ denotes summation over all solutes, `p^!` is a standard pressure (ISO 80000-4), `b^!` is standard molality, and `b_B` is the molality of substance `B` (item 9-15)
* remarks: This quantity is a function of temperature only. It especially applies to a dilute liquid solution. The standard pressure is `10^5 ["Pa"]`.
*/
}
attribute standardAbsoluteActivityInSolution: StandardAbsoluteActivityInSolutionValue :> scalarQuantities;
/* ISO-80000-9 item 9-27.1 activity of solvent, relative activity of solvent */
attribute def ActivityOfSolventValue :> DimensionOneValue {
doc
/*
* source: item 9-27.1 activity of solvent, relative activity of solvent
* symbol(s): `a_A`
* application domain: generic
* name: ActivityOfSolvent (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for the solvent `A` in a solution, quotient of the absolute activity of substance `A`, `λ_A` (item 9-18), and that, `λ_A^"*"` , of the pure solvent at the same temperature (ISO 80000-5) and pressure (ISO 80000-4): `a_A = λ_A/λ_A^"*"`
* remarks: None.
*/
}
attribute activityOfSolvent: ActivityOfSolventValue :> scalarQuantities;
alias relativeActivityOfSolvent for activityOfSolvent;
/* ISO-80000-9 item 9-27.2 osmotic factor of solvent, osmotic coefficient of solvent A */
attribute def OsmoticFactorOfSolventValue :> DimensionOneValue {
doc
/*
* source: item 9-27.2 osmotic factor of solvent, osmotic coefficient of solvent A
* symbol(s): `φ`
* application domain: generic
* name: OsmoticFactorOfSolvent (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quantity given by: `φ = -(M_A sum b_B)^-1 ln(a_A)` where `M_A` is the molar mass (item 9-4) of the solvent A, ∑ denotes summation over all the solutes, `b_B` is the molality of solute B (item 9-15), and `a_A` is the activity of solvent A (item 9-27.1)
* remarks: The name "osmotic coefficient" is generally used, although the name "osmotic factor" is more systematic. This concept especially applies to a dilute liquid solution.
*/
}
attribute osmoticFactorOfSolvent: OsmoticFactorOfSolventValue :> scalarQuantities;
alias osmoticCoefficientOfSolventA for osmoticFactorOfSolvent;
/* ISO-80000-9 item 9-27.3 standard absolute activity of solvent */
attribute def StandardAbsoluteActivityOfSolventValue :> DimensionOneValue {
doc
/*
* source: item 9-27.3 standard absolute activity of solvent
* symbol(s): `λ_A^!`
* application domain: in a dilute solution
* name: StandardAbsoluteActivityOfSolvent (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for solvent `A`, standard absolute activity (item 9-23) of the pure substance `A` at the same temperature (ISO 80000-5) and at a standard pressure `p^!` (ISO 80000-4): `λ_A^! = λ_A^"*" p^!`
* remarks: None.
*/
}
attribute standardAbsoluteActivityOfSolvent: StandardAbsoluteActivityOfSolventValue :> scalarQuantities;
/* ISO-80000-9 item 9-28 osmotic pressure */
attribute def OsmoticPressureValue :> ScalarQuantityValue {
doc
/*
* source: item 9-28 osmotic pressure
* symbol(s): `Π`
* application domain: generic
* name: OsmoticPressure
* quantity dimension: L^-1*M^1*T^-2
* measurement unit(s): Pa, kg*m^-1*s^-2
* tensor order: 0
* definition: excess pressure (ISO 80000-4) required to maintain osmotic equilibrium between a solution and the pure solvent separated by a membrane permeable to the solvent only
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: OsmoticPressureUnit[1];
}
attribute osmoticPressure: OsmoticPressureValue[*] nonunique :> scalarQuantities;
attribute def OsmoticPressureUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
}
/* ISO-80000-9 item 9-29 stoichiometric number of substance */
attribute def StoichiometricNumberOfSubstanceValue :> DimensionOneValue {
doc
/*
* source: item 9-29 stoichiometric number of substance
* symbol(s): `ν_B`
* application domain: generic
* name: StoichiometricNumberOfSubstance (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for substance `B`, an integer number or a simple fraction, being negative for a reactant and positive for a product, occurring in the expression for a chemical reaction: `0 = sum ν_B` where the symbol `B` denotes the reactants and products involved in the reaction
* remarks: EXAMPLE `(1/2)"N"_2 + (3/2)"H"_2 = "N""H"_3` ; `ν("N"_2) = -1/2`, `ν("H"_2) = -3/2`, `ν("N""H"_3) = +1`.
*/
}
attribute stoichiometricNumberOfSubstance: StoichiometricNumberOfSubstanceValue :> scalarQuantities;
/* ISO-80000-9 item 9-30 affinity of a chemical reaction */
attribute def AffinityOfAChemicalReactionValue :> ScalarQuantityValue {
doc
/*
* source: item 9-30 affinity of a chemical reaction
* symbol(s): `A`
* application domain: generic
* name: AffinityOfAChemicalReaction
* quantity dimension: L^2*M^1*T^-2*N^-1
* measurement unit(s): J/mol, kg*m^2*s^-2*mol^-1
* tensor order: 0
* definition: negative of the sum over all substances `B` of products of stoichiometric number `ν_B` of substance `B` (item 9-29) and chemical potential `μ_B` of substance `B` (item 9-17): `A = -sum ν_B μ_B`
* remarks: The affinity of a reaction is a measure of the "driving force" of the reaction. When it is positive, the reaction goes spontaneously from reactants to products, and when it is negative, the reaction goes in the opposite direction. Another way to write the definition is: `A = ((del G)/(del ξ))_(p,T)` where `G` is Gibbs energy (ISO 80000-5) and `ξ` is the extent of the reaction (item 9-31). Note that `ν_B` is negative for reactants and positive for products.
*/
attribute :>> num: Real;
attribute :>> mRef: AffinityOfAChemicalReactionUnit[1];
}
attribute affinityOfAChemicalReaction: AffinityOfAChemicalReactionValue[*] nonunique :> scalarQuantities;
attribute def AffinityOfAChemicalReactionUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-31 extent of reaction */
attribute extentOfReaction: AmountOfSubstanceValue :> scalarQuantities {
doc
/*
* source: item 9-31 extent of reaction
* symbol(s): `ξ`
* application domain: generic
* name: ExtentOfReaction (specializes AmountOfSubstance)
* quantity dimension: N^1
* measurement unit(s): mol
* tensor order: 0
* definition: difference of initial amount `n_(B "in")` of substance `B` (item 9-2) and equilibrium amount `n_(B "eq")` of substance `B` (item 9-2) divided by stoichiometric number `ν_B` of substance `B` (item 9-29): `ξ = (n_(B "eq") - n_(B "in"))/ν_B`
* remarks: See remark to item 9-30.
*/
}
/* ISO-80000-9 item 9-32 standard equilibrium constant, thermodynamic equilibrium constant */
attribute def StandardEquilibriumConstantValue :> DimensionOneValue {
doc
/*
* source: item 9-32 standard equilibrium constant, thermodynamic equilibrium constant
* symbol(s): `K^!`
* application domain: generic
* name: StandardEquilibriumConstant (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for a chemical reaction, product for all substances `B` of standard absolute activity `λ_B^!` of substance `B` (item 9-26) in power of minus stoichiometric number `ν_B` of substance `B` (item 9-29): `K^! = prod_B (tilde(a) λ_B^!)^(-ν_B)`
* remarks: This quantity is a function of temperature only. Others depend on temperature, pressure, and composition. One can define in an analogous way an equilibrium constant in terms of fugacity, `K_f`, molality, `K_m`, etc.
*/
}
attribute standardEquilibriumConstant: StandardEquilibriumConstantValue :> scalarQuantities;
alias thermodynamicEquilibriumConstant for standardEquilibriumConstant;
/* ISO-80000-9 item 9-33 equilibrium constant on pressure basis */
attribute def EquilibriumConstantOnPressureBasisValue :> ScalarQuantityValue {
doc
/*
* source: item 9-33 equilibrium constant on pressure basis
* symbol(s): `K_p`
* application domain: pressure basis
* name: EquilibriumConstantOnPressureBasis
* quantity dimension: L^-1*M^1*T^-2
* measurement unit(s): Pa, kg*m^-1*s^-2
* tensor order: 0
* definition: for gases, product for all substances `B` of partial pressure `p_B` of substance `B` (item 9-19) in power of its stoichiometric number `ν_B` (item 9-29): `K_p = prod_B (p_B)^(ν_B)`
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: EquilibriumConstantOnPressureBasisUnit[1];
}
attribute equilibriumConstantOnPressureBasis: EquilibriumConstantOnPressureBasisValue[*] nonunique :> scalarQuantities;
attribute def EquilibriumConstantOnPressureBasisUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
}
/* ISO-80000-9 item 9-34 equilibrium constant on concentration basis */
attribute def EquilibriumConstantOnConcentrationBasisValue :> ScalarQuantityValue {
doc
/*
* source: item 9-34 equilibrium constant on concentration basis
* symbol(s): `K_c`
* application domain: concentration basis
* name: EquilibriumConstantOnConcentrationBasis
* quantity dimension: L^-3*N^1
* measurement unit(s): mol/m^3
* tensor order: 0
* definition: for solutions, product for all substances `B` of concentration `c_B` of substance `B` (item 9-9.1) in power of its stoichiometric number `ν_B` (item 9-29): `K_c = prod_B (c_B)^(ν_B)`
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: EquilibriumConstantOnConcentrationBasisUnit[1];
}
attribute equilibriumConstantOnConcentrationBasis: EquilibriumConstantOnConcentrationBasisValue[*] nonunique :> scalarQuantities;
attribute def EquilibriumConstantOnConcentrationBasisUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-35.1 microcanonical partition function */
attribute microcanonicalPartitionFunction: CountValue :> scalarQuantities {
doc
/*
* source: item 9-35.1 microcanonical partition function
* symbol(s): `Ω`
* application domain: generic
* name: MicrocanonicalPartitionFunction (specializes Count)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: number of all quantum states `r` consistent with given energy `E` (ISO 80000-4), volume (ISO 80000-3), and external fields: `Ω = sum_r 1`
* remarks: `S = k ln(Ω)` where `S` is entropy (ISO 80000-5) and `k` is the Boltzmann constant (ISO 80000-1).
*/
}
/* ISO-80000-9 item 9-35.2 canonical partition function */
attribute def CanonicalPartitionFunctionValue :> DimensionOneValue {
doc
/*
* source: item 9-35.2 canonical partition function
* symbol(s): `Z`
* application domain: generic
* name: CanonicalPartitionFunction (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: sum over quantum states of energy `E_r` (ISO 80000-4), expressed by: `Z = sum_r exp(-E_r/(kT))` where `k` is the Boltzmann constant (ISO 80000-1), and `T` is thermodynamic temperature (ISO 80000-5)
* remarks: `A = -kT ln(Z)` where `A` is Helmholtz energy (ISO 80000-5).
*/
}
attribute canonicalPartitionFunction: CanonicalPartitionFunctionValue :> scalarQuantities;
/* ISO-80000-9 item 9-35.3 grand-canonical partition function, grand partition function */
attribute def GrandCanonicalPartitionFunctionValue :> DimensionOneValue {
doc
/*
* source: item 9-35.3 grand-canonical partition function, grand partition function
* symbol(s): `Ξ`
* application domain: generic
* name: GrandCanonicalPartitionFunction (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: sum of canonical partition function `Z(N_A,N_B,…)` for the given number of particles `A,B` multiplied by absolute activities (item 9-18) `λ_A, λ_B, ...` of particles `A, B`: `Ξ = sum_(N_A, N_B, ...) Z(N_A, N_B, …) * λ_A^(N_A) * λ_B^(N_B) * ...`
* remarks: `A - sum μ_B n_B = -kT ln(Ξ)` where `A` is Helmholtz energy (ISO 80000-5), `μ_B` is the chemical potential of substance `B`, and `n_B` is the amount of substance `B`.
*/
}
attribute grandCanonicalPartitionFunction: GrandCanonicalPartitionFunctionValue :> scalarQuantities;
alias grandPartitionFunction for grandCanonicalPartitionFunction;
/* ISO-80000-9 item 9-35.4 molecular partition function, partition function of a molecule */
attribute def MolecularPartitionFunctionValue :> DimensionOneValue {
doc
/*
* source: item 9-35.4 molecular partition function, partition function of a molecule
* symbol(s): `q`
* application domain: generic
* name: MolecularPartitionFunction (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quantity given by: `q = sum_r exp(-ε_r/(kT))` where `ε_r` is the energy (ISO 80000-5) of the `r`-th level of the molecule consistent with given volume (ISO 80000-3) and external fields, `k` is the Boltzmann constant (ISO 80000-1), and `T` is thermodynamic temperature (ISO 80000-5)
* remarks: None.
*/
}
attribute molecularPartitionFunction: MolecularPartitionFunctionValue :> scalarQuantities;
alias partitionFunctionOfAMolecule for molecularPartitionFunction;
/* ISO-80000-9 item 9-36.1 statistical weight of subsystem */
attribute statisticalWeightOfSubsystem: CountValue :> scalarQuantities {
doc
/*
* source: item 9-36.1 statistical weight of subsystem
* symbol(s): `g`
* application domain: generic
* name: StatisticalWeightOfSubsystem (specializes Count)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: number of different microstates in a subsystem
* remarks: None.
*/
}
/* ISO-80000-9 item 9-36.2 degeneracy, multiplicity */
attribute def DegeneracyValue :> DimensionOneValue {
doc
/*
* source: item 9-36.2 degeneracy, multiplicity
* symbol(s): `g`
* application domain: generic
* name: Degeneracy (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for quantum level, statistical weight of that level
* remarks: If `g = 1`, the level is called non-degenerate.
*/
}
attribute degeneracy: DegeneracyValue :> scalarQuantities;
alias multiplicity for degeneracy;
/* ISO-80000-9 item 9-37.1 molar gas constant */
attribute def MolarGasConstantValue :> ScalarQuantityValue {
doc
/*
* source: item 9-37.1 molar gas constant
* symbol(s): `R`
* application domain: generic
* name: MolarGasConstant
* quantity dimension: L^2*M^1*T^-2*Θ^-1*N^-1
* measurement unit(s): J/(mol*K), kg*m^2*s^-2*K^-1*mol^-1
* tensor order: 0
* definition: product of the Boltzmann constant (ISO 80000-1) and the Avogadro constant (ISO 80000-1)
* remarks: For an ideal gas, `pV_m = RT`
*/
attribute :>> num: Real;
attribute :>> mRef: MolarGasConstantUnit[1];
}
attribute molarGasConstant: MolarGasConstantValue[*] nonunique :> scalarQuantities;
attribute def MolarGasConstantUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, thermodynamicTemperaturePF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-37.2 specific gas constant */
/* Refer to declaration for SpecificGasConstant in ISQThermodynamics item 5-26 specific gas constant */
/* ISO-80000-9 item 9-38 mean free path */
attribute meanFreePath: LengthValue :> scalarQuantities {
doc
/*
* source: item 9-38 mean free path
* symbol(s): `l`, `λ`
* application domain: chemistry
* name: MeanFreePath (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: for a particle, the average distance `d` (ISO 80000-3) between two successive collisions with other particles
* remarks: None.
*/
}
/* ISO-80000-9 item 9-39 diffusion coefficient */
attribute def DiffusionCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 9-39 diffusion coefficient
* symbol(s): `D`
* application domain: chemistry
* name: DiffusionCoefficient
* quantity dimension: L^2*T^-1
* measurement unit(s): m^2*s^-1
* tensor order: 0
* definition: proportionality coefficient of local molecular concentration `C_B` (item 9-9.2) of substance `B` in the mixture multiplied by the local average velocity (ISO 80000-3) `v_B` of the molecules of `B`, and minus the gradient of the local molecular concentration `C_B` (item 9-9.2) of substance `B` in the mixture, expressed by: `C_B(v_B) = -D grad C_B`
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: DiffusionCoefficientUnit[1];
}
attribute diffusionCoefficient: DiffusionCoefficientValue[*] nonunique :> scalarQuantities;
attribute def DiffusionCoefficientUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
}
/* ISO-80000-9 item 9-40.1 thermal diffusion ratio */
attribute def ThermalDiffusionRatioValue :> DimensionOneValue {
doc
/*
* source: item 9-40.1 thermal diffusion ratio
* symbol(s): `k_T`
* application domain: generic
* name: ThermalDiffusionRatio (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: in a steady-state of a binary mixture in which thermal diffusion occurs, proportionality factor between gradient of the amount-of-subsstance fraction `x_B` (item 9-13) of the heavier substance `B`, and negative gradient of the local thermodynamic temperature `T` (ISO 80000-5) divided by that temperature (ISO 80000-5): `grad x_B = -(k_T/T) grad T`
* remarks: None.
*/
}
attribute thermalDiffusionRatio: ThermalDiffusionRatioValue :> scalarQuantities;
/* ISO-80000-9 item 9-40.2 thermal diffusion factor */
attribute def ThermalDiffusionFactorValue :> DimensionOneValue {
doc
/*
* source: item 9-40.2 thermal diffusion factor
* symbol(s): `α_T`
* application domain: generic
* name: ThermalDiffusionFactor (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quotient of the thermal diffusion ratio `k_T` (item 9-40.1), and the product of the local amount-of-substance fractions `x_A`, `x_B` (item 9-13) of two substances `A` and `B`: `α_T = k_T//(x_A x_B)`
* remarks: None.
*/
}
attribute thermalDiffusionFactor: ThermalDiffusionFactorValue :> scalarQuantities;
/* ISO-80000-9 item 9-41 thermal diffusion coefficient */
attribute def ThermalDiffusionCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 9-41 thermal diffusion coefficient
* symbol(s): `D_T`
* application domain: generic
* name: ThermalDiffusionCoefficient
* quantity dimension: L^2*T^-1
* measurement unit(s): m^2*s^-1
* tensor order: 0
* definition: product of the thermal diffusion ratio `k_T` (item 9-40.1) and the diffusion coefficient `D` (item 9-39): `D_T = k_T*D`
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: ThermalDiffusionCoefficientUnit[1];
}
attribute thermalDiffusionCoefficient: ThermalDiffusionCoefficientValue[*] nonunique :> scalarQuantities;
attribute def ThermalDiffusionCoefficientUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
}
/* ISO-80000-9 item 9-42 ionic strength */
attribute def IonicStrengthValue :> ScalarQuantityValue {
doc
/*
* source: item 9-42 ionic strength
* symbol(s): `I`
* application domain: generic
* name: IonicStrength
* quantity dimension: M^-1*N^1
* measurement unit(s): mol*kg^-1
* tensor order: 0
* definition: in a sample, one half of the sum of square of the charge number `z_i` (ISO 80000-10) of `i`-th ion multiplied by its molality `b_i` (item 9-15) over any involved ion: `I = 1/2 sum z_i^2 b_i`
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: IonicStrengthUnit[1];
}
attribute ionicStrength: IonicStrengthValue[*] nonunique :> scalarQuantities;
attribute def IonicStrengthUnit :> DerivedUnit {
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-43 degree of dissociation, dissociation fraction */
attribute def DegreeOfDissociationValue :> DimensionOneValue {
doc
/*
* source: item 9-43 degree of dissociation, dissociation fraction
* symbol(s): `α`
* application domain: generic
* name: DegreeOfDissociation (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: in a sample, quotient of the number `n_d` of dissociated molecules and the total number `n` of molecules: `α = n_D / n`
* remarks: None.
*/
}
attribute degreeOfDissociation: DegreeOfDissociationValue :> scalarQuantities;
alias dissociationFraction for degreeOfDissociation;
/* ISO-80000-9 item 9-44 electrolytic conductivity */
attribute def ElectrolyticConductivityValue :> ScalarQuantityValue {
doc
/*
* source: item 9-44 electrolytic conductivity
* symbol(s): `κ`
* application domain: generic
* name: ElectrolyticConductivity
* quantity dimension: L^-3*M^-1*T^3*I^2
* measurement unit(s): S/m, kg^-1*m^-3*s^3*A^2
* tensor order: 0
* definition: quotient of the magnitude of electric current density `J` (IEC 80000-6) and the magnitude electric field strength `E` (IEC 80000-6) in an electrolyte: `κ = J/E`
* remarks: For anisotropic media, `κ` is a tensor. In IEC 80000-6 the symbols `σ`, `γ` are used.
*/
attribute :>> num: Real;
attribute :>> mRef: ElectrolyticConductivityUnit[1];
}
attribute electrolyticConductivity: ElectrolyticConductivityValue[*] nonunique :> scalarQuantities;
attribute def ElectrolyticConductivityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* ISO-80000-9 item 9-45 molar conductivity */
attribute def MolarConductivityValue :> ScalarQuantityValue {
doc
/*
* source: item 9-45 molar conductivity
* symbol(s): `Λ_m`
* application domain: generic
* name: MolarConductivity
* quantity dimension: M^-1*T^3*I^2*N^-1
* measurement unit(s): S*m^2/mol, kg^-1*s^3*A^2*mol^-1
* tensor order: 0
* definition: in an electrolyte, quotient of electrolytic conductivity `κ` (item 9-44) and amount-of-substance concentration `c_B` (item 9-12.1): `Λ_m = κ/c_B`
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: MolarConductivityUnit[1];
}
attribute molarConductivity: MolarConductivityValue[*] nonunique :> scalarQuantities;
attribute def MolarConductivityUnit :> DerivedUnit {
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, electricCurrentPF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-46 transport number of the ion B, current fraction of the ion B */
attribute def TransportNumberOfTheIonBValue :> DimensionOneValue {
doc
/*
* source: item 9-46 transport number of the ion B, current fraction of the ion B
* symbol(s): `t_B`
* application domain: generic
* name: TransportNumberOfTheIonB (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for the ion `B`, quotient of electric current `i_B` (IEC 80000-6) carried by the ion `B` and total electric current `i` (IEC 80000-6) in an electrolyte: `t_B = i_B/i`
* remarks: None.
*/
}
attribute transportNumberOfTheIonB: TransportNumberOfTheIonBValue :> scalarQuantities;
alias currentFractionOfTheIonB for transportNumberOfTheIonB;
/* ISO-80000-9 item 9-47 angle of optical rotation */
attribute angleOfOpticalRotation: AngularMeasureValue :> scalarQuantities {
doc
/*
* source: item 9-47 angle of optical rotation
* symbol(s): `α`
* application domain: generic
* name: AngleOfOpticalRotation (specializes AngularMeasure)
* quantity dimension: 1
* measurement unit(s): rad
* tensor order: 0
* definition: angle through which plane-polarized light is rotated clockwise, as seen when facing the light source, in passing through an optically active medium
* remarks: None.
*/
}
/* ISO-80000-9 item 9-48 molar optical rotatory power */
attribute def MolarOpticalRotatoryPowerValue :> ScalarQuantityValue {
doc
/*
* source: item 9-48 molar optical rotatory power
* symbol(s): `α_n`
* application domain: generic
* name: MolarOpticalRotatoryPower
* quantity dimension: L^2*N^-1
* measurement unit(s): rad*m^2/mol, m^2*mol^-1
* tensor order: 0
* definition: angle `α` of optical rotation (item 9-47), multiplied by the quotient of cross-sectional area `A` (ISO 80000-3) of a linearly polarized light beam and the amount of substance `n` (item 9-2) of the optically active component in the path of the beam: `α_n = (α A)/n`
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: MolarOpticalRotatoryPowerUnit[1];
}
attribute molarOpticalRotatoryPower: MolarOpticalRotatoryPowerValue[*] nonunique :> scalarQuantities;
attribute def MolarOpticalRotatoryPowerUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute amountOfSubstancePF: QuantityPowerFactor[1] { :>> quantity = isq.N; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, amountOfSubstancePF); }
}
/* ISO-80000-9 item 9-49 specific optical rotatory power */
attribute def SpecificOpticalRotatoryPowerValue :> ScalarQuantityValue {
doc
/*
* source: item 9-49 specific optical rotatory power
* symbol(s): `α_m`
* application domain: generic
* name: SpecificOpticalRotatoryPower
* quantity dimension: L^2*M^-1
* measurement unit(s): rad*m^2/kg^1, kg^-1*m^2
* tensor order: 0
* definition: angle `α` of optical rotation (item 9-47), multiplied by the quotient of cross-sectional area `A` (ISO 80000-3) of a linearly polarized light beam and the mass `m` (ISO 80000-4) of the optically active component in the path of the beam: `α_m = (α A)/m`
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: SpecificOpticalRotatoryPowerUnit[1];
}
attribute specificOpticalRotatoryPower: SpecificOpticalRotatoryPowerValue[*] nonunique :> scalarQuantities;
attribute def SpecificOpticalRotatoryPowerUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
}
}
|