File size: 59,820 Bytes
5070096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 |
standard library package ISQCondensedMatter {
doc
/*
* International System of Quantities and Units
* Generated on 2022-08-07T14:44:27Z from standard ISO-80000-12:2019 "Condensed matter physics"
* see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-12:ed-2:v1:en
*
* Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts,
* with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks.
* Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is
* defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system)
* or TensorMeasurementReference.
*/
private import ScalarValues::Real;
private import Quantities::*;
private import MeasurementReferences::*;
private import ISQBase::*;
/* Quantity definitions referenced from other ISQ packages */
private import ISQElectromagnetism::ElectricPotentialDifferenceValue;
private import ISQElectromagnetism::MagneticFluxDensityValue;
private import ISQElectromagnetism::ResistivityValue;
private import ISQSpaceTime::CartesianSpatial3dCoordinateFrame;
private import ISQSpaceTime::AngularFrequencyValue;
private import ISQSpaceTime::AngularMeasureValue;
private import ISQSpaceTime::RepetencyValue;
private import ISQThermodynamics::EnergyValue;
/* ISO-80000-12 item 12-1.1 lattice vector */
attribute def Cartesian3dLatticeVector :> VectorQuantityValue {
doc
/*
* source: item 12-1.1 lattice vector
* symbol(s): `vec(R)`
* application domain: generic
* name: LatticeVector (specializes Displacement)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 1
* definition: translation vector that maps the crystal lattice on itself
* remarks: The non-SI unit ångström (Å) is widely used by x-ray crystallographers and structural chemists.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1];
}
attribute latticeVector: Cartesian3dLatticeVector :> vectorQuantities;
/* ISO-80000-12 item 12-1.2 fundamental lattice vector */
attribute def Cartesian3dFundamentalLatticeVector :> VectorQuantityValue {
doc
/*
* source: item 12-1.2 fundamental lattice vector
* symbol(s): `vec(a_1),vec(a_2),vec(a_3)`, `vec(a),vec(b),vec(c)`
* application domain: generic
* name: FundamentalLatticeVector (specializes Displacement)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 1
* definition: fundamental translation vectors for the crystal lattice
* remarks: The lattice vector (item 12-1.1) can be given as `vec(R) = n_1 vec(a_1) + n_2 vec(a_2) + n_3 vec(a_3)` where `n_1`, `n_2` and `n_3` are integers.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1];
}
attribute fundamentalLatticeVector: Cartesian3dFundamentalLatticeVector :> vectorQuantities;
/* ISO-80000-12 item 12-2.1 angular reciprocal lattice vector */
attribute def AngularReciprocalLatticeVectorMagnitudeValue :> ScalarQuantityValue {
doc
/*
* source: item 12-2.1 angular reciprocal lattice vector (magnitude)
* symbol(s): `G`
* application domain: generic
* name: AngularReciprocalLatticeVectorMagnitude
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 0
* definition: vector whose scalar products with all fundamental lattice vectors are integral multiples of `2π`
* remarks: In crystallography, however, the quantity `G/(2π)` is sometimes used.
*/
attribute :>> num: Real;
attribute :>> mRef: AngularReciprocalLatticeVectorMagnitudeUnit[1];
}
attribute angularReciprocalLatticeVectorMagnitude: AngularReciprocalLatticeVectorMagnitudeValue[*] nonunique :> scalarQuantities;
attribute def AngularReciprocalLatticeVectorMagnitudeUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
attribute def Cartesian3dAngularReciprocalLatticeVector :> VectorQuantityValue {
doc
/*
* source: item 12-2.1 angular reciprocal lattice vector
* symbol(s): `vec(G)`
* application domain: generic
* name: AngularReciprocalLatticeVector
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 1
* definition: vector whose scalar products with all fundamental lattice vectors are integral multiples of `2π`
* remarks: In crystallography, however, the quantity `G/(2π)` is sometimes used.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dAngularReciprocalLatticeCoordinateFrame[1];
}
attribute angularReciprocalLatticeVector: Cartesian3dAngularReciprocalLatticeVector :> vectorQuantities;
attribute def Cartesian3dAngularReciprocalLatticeCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: AngularReciprocalLatticeVectorMagnitudeUnit[3];
}
/* ISO-80000-12 item 12-2.2 fundamental reciprocal lattice vector */
attribute def FundamentalReciprocalLatticeVectorMagnitudeValue :> ScalarQuantityValue {
doc
/*
* source: item 12-2.2 fundamental reciprocal lattice vector (magnitude)
* symbol(s): `b_1,b_2,b_3`
* application domain: generic
* name: FundamentalReciprocalLatticeVectorMagnitude
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 0
* definition: fundamental translation vectors for the reciprocal lattice
* remarks: `vec(a_i) * vec(b_i) = 2π δ_(ij)`. In crystallography, however, the quantities `vec(b_j)/(2π)` are also often used.
*/
attribute :>> num: Real;
attribute :>> mRef: FundamentalReciprocalLatticeVectorMagnitudeUnit[1];
}
attribute fundamentalReciprocalLatticeVectorMagnitude: FundamentalReciprocalLatticeVectorMagnitudeValue[*] nonunique :> scalarQuantities;
attribute def FundamentalReciprocalLatticeVectorMagnitudeUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
attribute def Cartesian3dFundamentalReciprocalLatticeVector :> VectorQuantityValue {
doc
/*
* source: item 12-2.2 fundamental reciprocal lattice vector
* symbol(s): `vec(b_1),vec(b_2),vec(b_3)`
* application domain: generic
* name: FundamentalReciprocalLatticeVector
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 1
* definition: fundamental translation vectors for the reciprocal lattice
* remarks: `vec(a_i) * vec(b_i) = 2π δ_(ij)`. In crystallography, however, the quantities `vec(b_j)/(2π)` are also often used.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dFundamentalReciprocalLatticeCoordinateFrame[1];
}
attribute fundamentalReciprocalLatticeVector: Cartesian3dFundamentalReciprocalLatticeVector :> vectorQuantities;
attribute def Cartesian3dFundamentalReciprocalLatticeCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: FundamentalReciprocalLatticeVectorMagnitudeUnit[3];
}
/* ISO-80000-12 item 12-3 lattice plane spacing */
attribute latticePlaneSpacing: LengthValue :> scalarQuantities {
doc
/*
* source: item 12-3 lattice plane spacing
* symbol(s): `d`
* application domain: generic
* name: LatticePlaneSpacing (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: distance (ISO 80000-3) between successive lattice planes
* remarks: The non-SI unit ångström (Å) is widely used by x-ray crystallographers and structural chemists.
*/
}
/* ISO-80000-12 item 12-4 Bragg angle */
attribute braggAngle: AngularMeasureValue :> scalarQuantities {
doc
/*
* source: item 12-4 Bragg angle
* symbol(s): `ϑ`
* application domain: generic
* name: BraggAngle (specializes AngularMeasure)
* quantity dimension: 1
* measurement unit(s): °, 1
* tensor order: 0
* definition: angle between the scattered ray and the lattice plane
* remarks: Bragg angle `ϑ` is given by `2d sin ϑ = nλ`, where `d` is the lattice plane spacing (item 12-3), `λ` is the wavelength (ISO 80000-7) of the radiation, and `n` is the order of reflexion which is an integer.
*/
}
/* ISO-80000-12 item 12-5.1 short-range order parameter */
attribute def ShortRangeOrderParameterValue :> DimensionOneValue {
doc
/*
* source: item 12-5.1 short-range order parameter
* symbol(s): `r`, `σ`
* application domain: generic
* name: ShortRangeOrderParameter (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction
* remarks: Similar definitions apply to other order-disorder phenomena. Other symbols are frequently used.
*/
}
attribute shortRangeOrderParameter: ShortRangeOrderParameterValue :> scalarQuantities;
/* ISO-80000-12 item 12-5.2 long-range order parameter */
attribute def LongRangeOrderParameterValue :> DimensionOneValue {
doc
/*
* source: item 12-5.2 long-range order parameter
* symbol(s): `R`, `s`
* application domain: generic
* name: LongRangeOrderParameter (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction
* remarks: Similar definitions apply to other order-disorder phenomena. Other symbols are frequently used.
*/
}
attribute longRangeOrderParameter: LongRangeOrderParameterValue :> scalarQuantities;
/* ISO-80000-12 item 12-5.3 atomic scattering factor */
attribute def AtomicScatteringFactorValue :> DimensionOneValue {
doc
/*
* source: item 12-5.3 atomic scattering factor
* symbol(s): `f`
* application domain: generic
* name: AtomicScatteringFactor (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron
* remarks: The atomic scattering factor can be expressed by: `f = E_a/(E_e`, where `E_a` is the radiation amplitude scattered by the atom and `E_e` is the radiation amplitude scattered by a single electron.
*/
}
attribute atomicScatteringFactor: AtomicScatteringFactorValue :> scalarQuantities;
/* ISO-80000-12 item 12-5.4 structure factor */
attribute def StructureFactorValue :> DimensionOneValue {
doc
/*
* source: item 12-5.4 structure factor
* symbol(s): `F(h,k,l)`
* application domain: generic
* name: StructureFactor (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quantity given by: `F(h,k,l) = sum_(n=1)^N f_n exp[2π i (h x_n + k y_n + l z_n)]`, where `f_n` is the atomic scattering factor (item 12-5.3) for atom `n`, `x_n`, `y_n`, `z_n` are fractional coordinates of its position, `N` is the total number of atoms in the unit cell and `h`, `k`, `l` are the Miller indices
* remarks: For the Miller indices `h`, `k`, `l`, see Annex A.
*/
}
attribute structureFactor: StructureFactorValue :> scalarQuantities;
/* ISO-80000-12 item 12-6 Burgers vector */
attribute def Cartesian3dBurgersVector :> VectorQuantityValue {
doc
/*
* source: item 12-6 Burgers vector
* symbol(s): `vec(b)`
* application domain: generic
* name: BurgersVector (specializes Displacement)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 1
* definition: closing vector in a sequence of vectors encircling a dislocation
* remarks: None.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1];
}
attribute burgersVector: Cartesian3dBurgersVector :> vectorQuantities;
/* ISO-80000-12 item 12-7.1 particle position vector */
attribute def Cartesian3dParticlePositionVector :> VectorQuantityValue {
doc
/*
* source: item 12-7.1 particle position vector
* symbol(s): `vec(r)`, `vec(R)`
* application domain: generic
* name: ParticlePositionVector (specializes PositionVector)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 1
* definition: position vector (ISO 80000-3) of a particle
* remarks: Often, `r` is used for electrons and `R` is used for atoms and other heavier particles.
*/
attribute :>> isBound = true;
attribute :>> num: Real[3];
attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1];
}
attribute particlePositionVector: Cartesian3dParticlePositionVector :> vectorQuantities;
/* ISO-80000-12 item 12-7.2 equilibrium position vector */
attribute def Cartesian3dEquilibriumPositionVector :> VectorQuantityValue {
doc
/*
* source: item 12-7.2 equilibrium position vector
* symbol(s): `vec(R_0)`
* application domain: condensed matter physics
* name: EquilibriumPositionVector (specializes PositionVector)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 1
* definition: position vector (ISO 80000-3) of an ion or atom in equilibrium
* remarks: None.
*/
attribute :>> isBound = true;
attribute :>> num: Real[3];
attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1];
}
attribute equilibriumPositionVector: Cartesian3dEquilibriumPositionVector :> vectorQuantities;
/* ISO-80000-12 item 12-7.3 displacement vector */
attribute def Cartesian3dDisplacementVector :> VectorQuantityValue {
doc
/*
* source: item 12-7.3 displacement vector
* symbol(s): `vec(u)`
* application domain: condensed matter physics
* name: DisplacementVector (specializes Displacement)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 1
* definition: difference between the position vector (ISO 80000-3) of an ion or atom and its position vector in equilibrium
* remarks: The displacement vector can be expressed by: `vec(u) = vec(R) − vec(R_0)`, where `vec(R)` is particle position vector (item 12-7.1) and `vec(R_0)` is position vector of an ion or atom in equilibrium (item 12-7.2).
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1];
}
attribute displacementVector: Cartesian3dDisplacementVector :> vectorQuantities;
/* ISO-80000-12 item 12-8 Debye-Waller factor */
attribute def DebyeWallerFactorValue :> DimensionOneValue {
doc
/*
* source: item 12-8 Debye-Waller factor
* symbol(s): `D`, `B`
* application domain: generic
* name: DebyeWallerFactor (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: factor by which the intensity of a diffraction line is reduced because of the lattice vibrations
* remarks: `D` is sometimes expressed as `D = exp(−2W)`; in Mössbauer spectroscopy, it is also called the `f` factor and denoted by `f`.
*/
}
attribute debyeWallerFactor: DebyeWallerFactorValue :> scalarQuantities;
/* ISO-80000-12 item 12-9.1 angular wavenumber, angular repetency */
attribute angularWavenumber: RepetencyValue :> scalarQuantities {
doc
/*
* source: item 12-9.1 angular wavenumber, angular repetency
* symbol(s): `k`, `q`
* application domain: condensed matter physics
* name: AngularWavenumber (specializes Repetency)
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 0
* definition: quotient of momentum (ISO 80000-4) and the reduced Planck constant (ISO 80000-1)
* remarks: The corresponding vector (ISO 80000-2) quantity is called wave vector (ISO 80000-3), expressed by: `vec(k) = vec(p)/ħ`, where `vec(p)` is the momentum (ISO 80000-4) of quasi free electrons in an electron gas, and `ħ` is the reduced Planck constant (ISO 80000-1); for phonons, its magnitude is `k = 2π/λ`, where `λ` is the wavelength (ISO 80000-3) of the lattice vibrations. When a distinction is needed between `k` and the symbol for the Boltzmann constant (ISO 80000-1), `k_B` can be used for the latter. When a distinction is needed, `q` should be used for phonons, and `k` for particles such as electrons and neutrons. The method of cut-off must be specified. In condensed matter physics, angular wavenumber is often called wavenumber.
*/
}
alias angularRepetency for angularWavenumber;
/* ISO-80000-12 item 12-9.2 Fermi angular wavenumber, Fermi angular repetency */
attribute fermiAngularWavenumber: RepetencyValue :> scalarQuantities {
doc
/*
* source: item 12-9.2 Fermi angular wavenumber, Fermi angular repetency
* symbol(s): `k_F`
* application domain: generic
* name: FermiAngularWavenumber (specializes Repetency)
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 0
* definition: angular wavenumber (item 12-9.1) of electrons in states on the Fermi sphere
* remarks: In condensed matter physics, angular wavenumber is often called wavenumber.
*/
}
alias fermiAngularRepetency for fermiAngularWavenumber;
/* ISO-80000-12 item 12-9.3 Debye angular wavenumber, Debye angular repetency */
attribute debyeAngularWavenumber: RepetencyValue :> scalarQuantities {
doc
/*
* source: item 12-9.3 Debye angular wavenumber, Debye angular repetency
* symbol(s): `q_D`
* application domain: generic
* name: DebyeAngularWavenumber (specializes Repetency)
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 0
* definition: cut-off angular wavenumber (item 12-9.1) in the Debye model of the vibrational spectrum of a solid
* remarks: The method of cut-off must be specified. In condensed matter physics, angular wavenumber is often called wavenumber.
*/
}
alias debyeAngularRepetency for debyeAngularWavenumber;
/* ISO-80000-12 item 12-10 Debye angular frequency */
attribute debyeAngularFrequency: AngularFrequencyValue :> scalarQuantities {
doc
/*
* source: item 12-10 Debye angular frequency
* symbol(s): `ω_D`
* application domain: generic
* name: DebyeAngularFrequency (specializes AngularFrequency)
* quantity dimension: T^-1
* measurement unit(s): s^-1
* tensor order: 0
* definition: cut-off angular frequency (ISO 80000-3) in the Debye model of the vibrational spectrum of a solid
* remarks: The method of cut-off must be specified.
*/
}
/* ISO-80000-12 item 12-11 Debye temperature */
attribute debyeTemperature: ThermodynamicTemperatureValue :> scalarQuantities {
doc
/*
* source: item 12-11 Debye temperature
* symbol(s): `Θ_D`
* application domain: generic
* name: DebyeTemperature (specializes ThermodynamicTemperature)
* quantity dimension: Θ^1
* measurement unit(s): K
* tensor order: 0
* definition: in the Debye model, quantity given by: `Θ_D = ħ*ω_D/k`, where `k` is the Boltzmann constant, (ISO 80000-1), `ħ` is the reduced Planck constant (ISO 80000-1), and `ω_D` is Debye angular frequency (item 12-10)
* remarks: A Debye temperature can also be defined by fitting a Debye model result to a certain quantity, for instance, the heat capacity at a certain temperature.
*/
}
/* ISO-80000-12 item 12-12 density of vibrational states */
attribute def DensityOfVibrationalStatesValue :> ScalarQuantityValue {
doc
/*
* source: item 12-12 density of vibrational states
* symbol(s): `g`
* application domain: angular frequency
* name: DensityOfVibrationalStates
* quantity dimension: L^-3*T^1
* measurement unit(s): m^-3*s
* tensor order: 0
* definition: quotient of the number of vibrational modes in an infinitesimal interval of angular frequency (ISO 80000-3), and the product of the width of that interval and volume (ISO 80000-3)
* remarks: `g(ω) = n_ω = (dn(ω))/(dω)`, where `n(ω)` is the total number of vibrational modes per volume with angular frequency less than `ω`. The density of states may also be normalized in other ways instead of with respect to volume. See also item 12-16.
*/
attribute :>> num: Real;
attribute :>> mRef: DensityOfVibrationalStatesUnit[1];
}
attribute densityOfVibrationalStates: DensityOfVibrationalStatesValue[*] nonunique :> scalarQuantities;
attribute def DensityOfVibrationalStatesUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
}
/* ISO-80000-12 item 12-13 thermodynamic Grüneisen parameter */
attribute def 'ThermodynamicGrüneisenParameterValue' :> DimensionOneValue {
doc
/*
* source: item 12-13 thermodynamic Grüneisen parameter
* symbol(s): `γ_G`, `Γ_G`
* application domain: generic
* name: ThermodynamicGrüneisenParameter (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quantity given by: `γ_G = (α_V)/(κ_T c_V ρ)`, where `α_V` is cubic expansion coefficient (ISO 80000-5), `κ_T` is isothermal compressibility (ISO 80000-5), `c_V` is specific heat capacity at constant volume (ISO 80000-5), and `ρ` is mass density (ISO 80000-4)
* remarks: None.
*/
}
attribute 'thermodynamicGrüneisenParameter': 'ThermodynamicGrüneisenParameterValue' :> scalarQuantities;
/* ISO-80000-12 item 12-14 Grüneisen parameter */
attribute def 'GrüneisenParameterValue' :> DimensionOneValue {
doc
/*
* source: item 12-14 Grüneisen parameter
* symbol(s): `γ`
* application domain: generic
* name: GrüneisenParameter (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quantity given by minus the partial differential quotient: `γ = -(del ln ω)/(del ln V)`, where `ω` is a lattice vibration frequency (ISO 80000-3), and `V` is volume (ISO 80000-3)
* remarks: `ω` can also refer to an average of the vibrational spectrum, for instance as represented by a Debye angular frequency (item 12-10).
*/
}
attribute 'grüneisenParameter': 'GrüneisenParameterValue' :> scalarQuantities;
/* ISO-80000-12 item 12-15.1 mean free path of phonons */
attribute meanFreePathOfPhonons: LengthValue :> scalarQuantities {
doc
/*
* source: item 12-15.1 mean free path of phonons
* symbol(s): `l_p`
* application domain: generic
* name: MeanFreePathOfPhonons (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: average distance (ISO 80000-3) that phonons travel between two successive interactions
* remarks: None.
*/
}
/* ISO-80000-12 item 12-15.2 mean free path of electrons */
attribute meanFreePathOfElectrons: LengthValue :> scalarQuantities {
doc
/*
* source: item 12-15.2 mean free path of electrons
* symbol(s): `l_e`
* application domain: generic
* name: MeanFreePathOfElectrons (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: average distance (ISO 80000-3) that electrons travel between two successive interactions
* remarks: None.
*/
}
/* ISO-80000-12 item 12-16 energy density of states */
attribute def EnergyDensityOfStatesValue :> ScalarQuantityValue {
doc
/*
* source: item 12-16 energy density of states
* symbol(s): `n_E(E)`, `ρ(E)`
* application domain: generic
* name: EnergyDensityOfStates
* quantity dimension: L^-5*M^-1*T^2
* measurement unit(s): J^-1*m^-3*eV^-1*m^-3, kg^-1*m^-5*s^2
* tensor order: 0
* definition: quantity given by the differential quotient with respect to energy: `n_E(E) = (dn(E))/(dE)`, where `n_E(E)` is the total number of one-electron states per volume (ISO 80000-3) with energy less than `E` (ISO 80000-5)
* remarks: Density of states refers to electrons or other entities, e.g. phonons. It may be normalized in other ways instead of with respect to volume, e.g. with respect to amount of substance. See also item 12-12.
*/
attribute :>> num: Real;
attribute :>> mRef: EnergyDensityOfStatesUnit[1];
}
attribute energyDensityOfStates: EnergyDensityOfStatesValue[*] nonunique :> scalarQuantities;
attribute def EnergyDensityOfStatesUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -5; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
}
/* ISO-80000-12 item 12-17 residual resistivity */
attribute residualResistivity: ResistivityValue :> scalarQuantities {
doc
/*
* source: item 12-17 residual resistivity
* symbol(s): `ρ_0`
* application domain: generic
* name: ResidualResistivity (specializes Resistivity)
* quantity dimension: L^3*M^1*T^-3*I^-2
* measurement unit(s): Ω*m, kg*m^3*s^-3*A^-2
* tensor order: 0
* definition: for metals, the resistivity (IEC 80000-6) extrapolated to zero thermodynamic temperature (ISO 80000-5)
* remarks: None.
*/
}
/* ISO-80000-12 item 12-18 Lorenz coefficient */
attribute def LorenzCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 12-18 Lorenz coefficient
* symbol(s): `L`
* application domain: generic
* name: LorenzCoefficient
* quantity dimension: L^4*M^2*T^-6*I^-2*Θ^-2
* measurement unit(s): V^2/K^2, kg^2*m^4*s^-6*A^-2*K^-2
* tensor order: 0
* definition: quotient of thermal conductivity (ISO 80000-5), and the product of electric conductivity (IEC 80000-6) and thermodynamic temperature (ISO 80000-3)
* remarks: The Lorenz coefficient can be expressed by `L = λ/(σT)`, where `λ` is thermal conductivity (ISO 80000-5), `σ` is electric conductivity (IEC 80000-6), and `T` is thermodynamic temperature (ISO 80000-5).
*/
attribute :>> num: Real;
attribute :>> mRef: LorenzCoefficientUnit[1];
}
attribute lorenzCoefficient: LorenzCoefficientValue[*] nonunique :> scalarQuantities;
attribute def LorenzCoefficientUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 4; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 2; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -6; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-12 item 12-19 Hall coefficient */
attribute def HallCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 12-19 Hall coefficient
* symbol(s): `R_H`, `A_H`
* application domain: generic
* name: HallCoefficient
* quantity dimension: 1
* measurement unit(s): m^3/C*m^3*s^-1*A^-1
* tensor order: 0
* definition: in an isotropic conductor, relation between electric field strength, `vec(E)`, (IEC 80000-6) and electric current density, `vec(J)`, (IEC 80000-6) expressed as: `vec(E) = ρ vec(J) + R_H (vec(B) xx vec(J))`, where `ρ` is resistivity (IEC 80000-6), and `vec(B)` is magnetic flux density (IEC 80000-6)
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: HallCoefficientUnit[1];
}
attribute hallCoefficient: HallCoefficientValue[*] nonunique :> scalarQuantities;
attribute def HallCoefficientUnit :> DimensionOneUnit {
}
/* ISO-80000-12 item 12-20 thermoelectric voltage (between substances a and b) */
attribute thermoelectricVoltageBetweenSubstancesAAndB: ElectricPotentialDifferenceValue :> scalarQuantities {
doc
/*
* source: item 12-20 thermoelectric voltage (between substances a and b)
* symbol(s): `E_(ab)`
* application domain: generic
* name: ThermoelectricVoltageBetweenSubstancesAAndB (specializes ElectricPotentialDifference)
* quantity dimension: L^2*M^1*T^-3*I^-1
* measurement unit(s): V, kg*m^2*s^-3*A^-1
* tensor order: 0
* definition: voltage (IEC 80000-6) between substances `a` and `b` caused by the thermoelectric effect
* remarks: None.
*/
}
/* ISO-80000-12 item 12-21 Seebeck coefficient (for substances a and b) */
attribute def SeebeckCoefficientForSubstancesAAndBValue :> ScalarQuantityValue {
doc
/*
* source: item 12-21 Seebeck coefficient (for substances a and b)
* symbol(s): `S_(ab)`
* application domain: generic
* name: SeebeckCoefficientForSubstancesAAndB
* quantity dimension: L^2*M^1*T^-3*I^-1*Θ^-1
* measurement unit(s): V/K, kg*m^2*s^-3*A^-1*K^-1
* tensor order: 0
* definition: differential quotient of thermoelectric voltage with respect to thermodynamic temperature: `S_(ab) = (dE_(ab))/(dT)`, where `E_(ab)` is the thermoelectric voltage between substances `a` and `b` (item 12-20) and `T` is thermodynamic temperature (ISO 80000-5)
* remarks: This term is also called "thermoelectric power".
*/
attribute :>> num: Real;
attribute :>> mRef: SeebeckCoefficientForSubstancesAAndBUnit[1];
}
attribute seebeckCoefficientForSubstancesAAndB: SeebeckCoefficientForSubstancesAAndBValue[*] nonunique :> scalarQuantities;
attribute def SeebeckCoefficientForSubstancesAAndBUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-12 item 12-22 Peltier coefficient (for substances a and b) */
attribute peltierCoefficientForSubstancesAAndB: ElectricPotentialDifferenceValue :> scalarQuantities {
doc
/*
* source: item 12-22 Peltier coefficient (for substances a and b)
* symbol(s): `Π_(ab)`
* application domain: generic
* name: PeltierCoefficientForSubstancesAAndB (specializes ElectricPotentialDifference)
* quantity dimension: L^2*M^1*T^-3*I^-1
* measurement unit(s): V, kg*m^2*s^-3*A^-1
* tensor order: 0
* definition: quotient of Peltier heat power (ISO 80000-5) developed at a junction, and the electric current (IEC 80000-6) flowing from substance `a` to substance `b`
* remarks: `Π_(ab) = Π_a - Π_b`, where `Π_a` and `Π_b` are the Peltier coefficients of substances `a` and `b`, respectively.
*/
}
/* ISO-80000-12 item 12-23 Thomson coefficient */
attribute def ThomsonCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 12-23 Thomson coefficient
* symbol(s): `μ`
* application domain: generic
* name: ThomsonCoefficient
* quantity dimension: L^2*M^1*T^-3*I^-1*Θ^-1
* measurement unit(s): V/K, kg*m^2*s^-3*A^-1*K^-1
* tensor order: 0
* definition: quotient of Thomson heat power (ISO 80000-5) developed, and the electric current (IEC 80000-6) and temperature (ISO 80000-5) difference
* remarks: `μ` is positive if heat is developed when the temperature decreases in the direction of the electric current.
*/
attribute :>> num: Real;
attribute :>> mRef: ThomsonCoefficientUnit[1];
}
attribute thomsonCoefficient: ThomsonCoefficientValue[*] nonunique :> scalarQuantities;
attribute def ThomsonCoefficientUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-12 item 12-24.1 work function */
attribute workFunction: EnergyValue :> scalarQuantities {
doc
/*
* source: item 12-24.1 work function
* symbol(s): `ϕ`
* application domain: generic
* name: WorkFunction (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, eV, kg*m^2*s^-2
* tensor order: 0
* definition: difference between energy (ISO 80000-5) of an electron at rest at infinity and the Fermi energy (item 12-27.1)
* remarks: The term "energy level" is often used for the state of the electron, not only for its energy. The contact potential difference between substances `a` and `b` is given by `V_a - V_b = (ϕ_a - ϕ_b)/e`, where `e` is the elementary charge (ISO 80000-1). A set of energy levels, the energies of which occupy an interval practically continuously, is called an energy band. In semi-conductors `E_d` and `E_a` are used for donors and acceptors, respectively.
*/
}
/* ISO-80000-12 item 12-24.2 ionization energy */
attribute ionizationEnergy: EnergyValue :> scalarQuantities {
doc
/*
* source: item 12-24.2 ionization energy
* symbol(s): `E_i`
* application domain: generic
* name: IonizationEnergy (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, eV, kg*m^2*s^-2
* tensor order: 0
* definition: difference between energy (ISO 80000-5) of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance
* remarks: None.
*/
}
/* ISO-80000-12 item 12-25 electron affinity */
attribute electronAffinity: EnergyValue :> scalarQuantities {
doc
/*
* source: item 12-25 electron affinity
* symbol(s): `χ`
* application domain: condensed matter physics
* name: ElectronAffinity (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, eV, kg*m^2*s^-2
* tensor order: 0
* definition: energy (ISO 80000-5) difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor
* remarks: None.
*/
}
/* ISO-80000-12 item 12-26 Richardson constant */
attribute def RichardsonConstantValue :> ScalarQuantityValue {
doc
/*
* source: item 12-26 Richardson constant
* symbol(s): `A`
* application domain: generic
* name: RichardsonConstant
* quantity dimension: L^-2*I^1*Θ^-2
* measurement unit(s): A*m^-2*K^-2
* tensor order: 0
* definition: parameter in the expression for the thermionic emission current density `J` (IEC 80000-6) for a metal in terms of the thermodynamic temperature `T` (ISO 80000-5) and work function `ϕ`, (item 12-24.1): `J = AT^2 exp(ϕ/(kT))`, where `k` is the Boltzmann constant (ISO 80000-1)
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: RichardsonConstantUnit[1];
}
attribute richardsonConstant: RichardsonConstantValue[*] nonunique :> scalarQuantities;
attribute def RichardsonConstantUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF, thermodynamicTemperaturePF); }
}
/* ISO-80000-12 item 12-27.1 Fermi energy */
attribute fermiEnergy: EnergyValue :> scalarQuantities {
doc
/*
* source: item 12-27.1 Fermi energy
* symbol(s): `E_F`
* application domain: generic
* name: FermiEnergy (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, eV, kg*m^2*s^-2
* tensor order: 0
* definition: in a metal, highest occupied energy level at zero thermodynamic temperature (ISO 80000-5), where energy level means the energy (ISO 80000-5) of an electron in the interior of a substance
* remarks: The term "energy level" is often used for the state of the electron, not only for its energy. At `T = 0 [K]`, `E_F` is equal to the chemical potential per electron. In condensed matter physics, the reference level for the energy is sometimes chosen so that, for instance, `E_F = 0`.
*/
}
/* ISO-80000-12 item 12-27.2 gap energy */
attribute gapEnergy: EnergyValue :> scalarQuantities {
doc
/*
* source: item 12-27.2 gap energy
* symbol(s): `E_g`
* application domain: generic
* name: GapEnergy (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, eV, kg*m^2*s^-2
* tensor order: 0
* definition: difference in energy (ISO 80000-5) between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature (ISO 80000-5)
* remarks: None.
*/
}
/* ISO-80000-12 item 12-28 Fermi temperature */
attribute fermiTemperature: ThermodynamicTemperatureValue :> scalarQuantities {
doc
/*
* source: item 12-28 Fermi temperature
* symbol(s): `T_F`
* application domain: generic
* name: FermiTemperature (specializes ThermodynamicTemperature)
* quantity dimension: Θ^1
* measurement unit(s): K
* tensor order: 0
* definition: in the free electron model, the Fermi energy (item 12-27.1) divided by the Boltzmann constant (ISO 80000-1)
* remarks: The Fermi temperature is expressed by: `T_F = E_F/k`, where `E_F` is Fermi energy (item 12-27.1) and `k` is the Boltzmann constant (ISO 80000-1). `E_F` is relative to the lowest occupied state.
*/
}
/* ISO-80000-12 item 12-29.1 electron density */
attribute def ElectronDensityValue :> ScalarQuantityValue {
doc
/*
* source: item 12-29.1 electron density
* symbol(s): `n`
* application domain: generic
* name: ElectronDensity
* quantity dimension: L^-3
* measurement unit(s): m^-3
* tensor order: 0
* definition: quotient of number of electrons in conduction band and volume (ISO 80000-3)
* remarks: Subscripts `n` and `p` or `-` and `+` are often used to denote electrons and holes, respectively. `n_n` and `n_p` are also used for electron densities, and `p_n` and `p_p` for hole densities, in `n`-type and `p`-type regions, respectively, of a `n`-`p` junction.
*/
attribute :>> num: Real;
attribute :>> mRef: ElectronDensityUnit[1];
}
attribute electronDensity: ElectronDensityValue[*] nonunique :> scalarQuantities;
attribute def ElectronDensityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
/* ISO-80000-12 item 12-29.2 hole density */
attribute def HoleDensityValue :> ScalarQuantityValue {
doc
/*
* source: item 12-29.2 hole density
* symbol(s): `p`
* application domain: generic
* name: HoleDensity
* quantity dimension: L^-3
* measurement unit(s): m^-3
* tensor order: 0
* definition: quotient of number of holes in valence band and volume (ISO 80000-3)
* remarks: Subscripts `n` and `p` or `-` and `+` are often used to denote electrons and holes, respectively. `n_n` and `n_p` are also used for electron densities, and `p_n` and `p_p` for hole densities, in `n`-type and `p`-type regions, respectively, of a `n`-`p` junction.
*/
attribute :>> num: Real;
attribute :>> mRef: HoleDensityUnit[1];
}
attribute holeDensity: HoleDensityValue[*] nonunique :> scalarQuantities;
attribute def HoleDensityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
/* ISO-80000-12 item 12-29.3 intrinsic carrier density */
attribute def IntrinsicCarrierDensityValue :> ScalarQuantityValue {
doc
/*
* source: item 12-29.3 intrinsic carrier density
* symbol(s): `n_i`
* application domain: generic
* name: IntrinsicCarrierDensity
* quantity dimension: L^-3
* measurement unit(s): m^-3
* tensor order: 0
* definition: quantity given by: `n_i = sqrt(n p)`, where `n` is electron density (item 12-29.1), and `p` is hole
* remarks: Subscripts `n` and `p` or `-` and `+` are often used to denote electrons and holes, respectively. `n_n` and `n_p` are also used for electron densities, and `p_n` and `p_p` for hole densities, in `n`-type and `p`-type regions, respectively, of a `n`-`p` junction.
*/
attribute :>> num: Real;
attribute :>> mRef: IntrinsicCarrierDensityUnit[1];
}
attribute intrinsicCarrierDensity: IntrinsicCarrierDensityValue[*] nonunique :> scalarQuantities;
attribute def IntrinsicCarrierDensityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
/* ISO-80000-12 item 12-29.4 donor density */
attribute def DonorDensityValue :> ScalarQuantityValue {
doc
/*
* source: item 12-29.4 donor density
* symbol(s): `n_d`
* application domain: generic
* name: DonorDensity
* quantity dimension: L^-3
* measurement unit(s): m^-3
* tensor order: 0
* definition: quotient of number of donor levels and volume (ISO 80000-3)
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: DonorDensityUnit[1];
}
attribute donorDensity: DonorDensityValue[*] nonunique :> scalarQuantities;
attribute def DonorDensityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
/* ISO-80000-12 item 12-29.5 acceptor density */
attribute def AcceptorDensityValue :> ScalarQuantityValue {
doc
/*
* source: item 12-29.5 acceptor density
* symbol(s): `n_a`
* application domain: generic
* name: AcceptorDensity
* quantity dimension: L^-3
* measurement unit(s): m^-3
* tensor order: 0
* definition: quotient of number of acceptor levels and volume (ISO 80000-3)
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: AcceptorDensityUnit[1];
}
attribute acceptorDensity: AcceptorDensityValue[*] nonunique :> scalarQuantities;
attribute def AcceptorDensityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
/* ISO-80000-12 item 12-30 effective mass */
attribute effectiveMass: MassValue :> scalarQuantities {
doc
/*
* source: item 12-30 effective mass
* symbol(s): `m"*"`
* application domain: generic
* name: EffectiveMass (specializes Mass)
* quantity dimension: M^1
* measurement unit(s): kg
* tensor order: 0
* definition: quantity given by: `m^"*" = (ħ^2 k) / ((dε)/(dk))`, where `k` is wavenumber (ISO 80000-3), `ε` is the energy (ISO 80000-5) of an electron in the interior of a substance, and `ħ` is the reduced Planck constant (ISO 80000-1)
* remarks: When `k` refers to a state where `ε` has an extremum, `m"*" = (ħ^2 k) / ((d^2ε)/(dk^2))`. The effective mass can be generalized to refer to an anisotropic system with `ε = ε(k)`.
*/
}
/* ISO-80000-12 item 12-31 mobility ratio */
attribute def MobilityRatioValue :> DimensionOneValue {
doc
/*
* source: item 12-31 mobility ratio
* symbol(s): `b`
* application domain: generic
* name: MobilityRatio (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: quotient of mobilities (ISO 80000-10) of electrons and holes, respectively
* remarks: The mobility ratio can be expressed by: `b = μ_n/μ_p`, where `μ_n` and `μ_p` are mobilities (ISO 80000-10) for electrons and holes, respectively.
*/
}
attribute mobilityRatio: MobilityRatioValue :> scalarQuantities;
/* ISO-80000-12 item 12-32.1 relaxation time */
attribute relaxationTime: DurationValue :> scalarQuantities {
doc
/*
* source: item 12-32.1 relaxation time
* symbol(s): `τ`
* application domain: condensed matter physics
* name: RelaxationTime (specializes Duration)
* quantity dimension: T^1
* measurement unit(s): s
* tensor order: 0
* definition: time constant (ISO 80000-3) for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles
* remarks: For electrons in metals, `τ = l/v_F`, where `l` is mean free path (item 12-15.2) and `v_F` is speed (ISO 80000-3) of electrons on the Fermi surface.
*/
}
/* ISO-80000-12 item 12-32.2 carrier lifetime */
attribute carrierLifetime: DurationValue :> scalarQuantities {
doc
/*
* source: item 12-32.2 carrier lifetime
* symbol(s): `τ`, `τ_n`, `τ_p`
* application domain: semiconductors
* name: CarrierLifetime (specializes Duration)
* quantity dimension: T^1
* measurement unit(s): s
* tensor order: 0
* definition: time constant (ISO 80000-3) for recombination or trapping of minority charge carriers in semiconductors
* remarks: Indices "n" and "p" denote negative and positive charge carriers, respectively. Positive charge carriers can also be holes.
*/
}
/* ISO-80000-12 item 12-33 diffusion length */
attribute diffusionLengthForCondensedMatterPhysics: LengthValue :> scalarQuantities {
doc
/*
* source: item 12-33 diffusion length
* symbol(s): `L`, `L_n`, `L_p`
* application domain: condensed matter physics
* name: DiffusionLength (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: square root of the product of diffusion coefficient (ISO 80000-10) and lifetime (ISO 80000-10)
* remarks: The diffusion length can be expressed by: `L = sqrt(Dτ)`, where `D` is the diffusion coefficient (ISO 80000-9) and `τ` is lifetime (ISO 80000-3).
*/
}
/* ISO-80000-12 item 12-34 exchange integral */
attribute exchangeIntegral: EnergyValue :> scalarQuantities {
doc
/*
* source: item 12-34 exchange integral
* symbol(s): `K`, `J`
* application domain: generic
* name: ExchangeIntegral (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, eV, kg*m^2*s^-2
* tensor order: 0
* definition: constituent of the interaction energy (ISO 80000-5) between the spins of adjacent electrons in matter arising from the overlap of electron state functions
* remarks: None.
*/
}
/* ISO-80000-12 item 12-35.1 Curie temperature */
attribute curieTemperature: ThermodynamicTemperatureValue :> scalarQuantities {
doc
/*
* source: item 12-35.1 Curie temperature
* symbol(s): `T_C`
* application domain: generic
* name: CurieTemperature (specializes ThermodynamicTemperature)
* quantity dimension: Θ^1
* measurement unit(s): K
* tensor order: 0
* definition: critical thermodynamic temperature (ISO 80000-5) of a ferromagnet
* remarks: `T_(cr)` is used for critical thermodynamic temperature in general.
*/
}
/* ISO-80000-12 item 12-35.2 Néel temperature */
attribute 'néelTemperature': ThermodynamicTemperatureValue :> scalarQuantities {
doc
/*
* source: item 12-35.2 Néel temperature
* symbol(s): `T_N`
* application domain: generic
* name: NéelTemperature (specializes ThermodynamicTemperature)
* quantity dimension: Θ^1
* measurement unit(s): K
* tensor order: 0
* definition: critical thermodynamic temperature (ISO 80000-5) of an antiferromagnet
* remarks: None.
*/
}
/* ISO-80000-12 item 12-35.3 superconduction transition temperature */
attribute superconductionTransitionTemperature: ThermodynamicTemperatureValue :> scalarQuantities {
doc
/*
* source: item 12-35.3 superconduction transition temperature
* symbol(s): `T_c`
* application domain: generic
* name: SuperconductionTransitionTemperature (specializes ThermodynamicTemperature)
* quantity dimension: Θ^1
* measurement unit(s): K
* tensor order: 0
* definition: critical thermodynamic temperature (ISO 80000-5) of a superconductor
* remarks: None.
*/
}
/* ISO-80000-12 item 12-36.1 thermodynamic critical magnetic flux density */
attribute thermodynamicCriticalMagneticFluxDensity: MagneticFluxDensityValue :> scalarQuantities {
doc
/*
* source: item 12-36.1 thermodynamic critical magnetic flux density
* symbol(s): `B_c`
* application domain: generic
* name: ThermodynamicCriticalMagneticFluxDensity (specializes MagneticFluxDensity)
* quantity dimension: M^1*T^-2*I^-1
* measurement unit(s): T, kg*s^-2*A^-1
* tensor order: 0
* definition: quantity given by: `B_c = sqrt((2μ_0 (G_n - G_s))/V)`, where `G_n` and `G_s` are the Gibbs energies (ISO 80000-5) at zero magnetic flux density (IEC 80000-6) in a normal conductor and superconductor, respectively, `μ_0` is the magnetic constant (IEC 80000-6), and `V` is volume (ISO 80000-3)
* remarks: In type I superconductors, `B_c` is the critical magnetic flux density for disappearance of superconductivity. The symbol `B_(c3)` is used for the critical magnetic flux density for disappearance of surface superconductivity.
*/
}
/* ISO-80000-12 item 12-36.2 lower critical magnetic flux density */
attribute lowerCriticalMagneticFluxDensity: MagneticFluxDensityValue :> scalarQuantities {
doc
/*
* source: item 12-36.2 lower critical magnetic flux density
* symbol(s): `B_(c1)`
* application domain: generic
* name: LowerCriticalMagneticFluxDensity (specializes MagneticFluxDensity)
* quantity dimension: M^1*T^-2*I^-1
* measurement unit(s): T, kg*s^-2*A^-1
* tensor order: 0
* definition: for type II superconductors, the threshold magnetic flux density (IEC 80000-6) for magnetic flux (IEC 80000-6) entering the superconductor
* remarks: None.
*/
}
/* ISO-80000-12 item 12-36.3 upper critical magnetic flux density */
attribute upperCriticalMagneticFluxDensity: MagneticFluxDensityValue :> scalarQuantities {
doc
/*
* source: item 12-36.3 upper critical magnetic flux density
* symbol(s): `B_(c2)`
* application domain: generic
* name: UpperCriticalMagneticFluxDensity (specializes MagneticFluxDensity)
* quantity dimension: M^1*T^-2*I^-1
* measurement unit(s): T, kg*s^-2*A^-1
* tensor order: 0
* definition: for type II superconductors, the threshold magnetic flux density (IEC 80000-6) for disappearance of bulk superconductivity
* remarks: None.
*/
}
/* ISO-80000-12 item 12-37 superconductor energy gap */
attribute superconductorEnergyGap: EnergyValue :> scalarQuantities {
doc
/*
* source: item 12-37 superconductor energy gap
* symbol(s): `Δ`
* application domain: generic
* name: SuperconductorEnergyGap (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, eV, kg*m^2*s^-2
* tensor order: 0
* definition: width of the forbidden energy band (item 12-24.2) in a superconductor
* remarks: None.
*/
}
/* ISO-80000-12 item 12-38.1 London penetration depth */
attribute londonPenetrationDepth: LengthValue :> scalarQuantities {
doc
/*
* source: item 12-38.1 London penetration depth
* symbol(s): `λ_L`
* application domain: generic
* name: LondonPenetrationDepth (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: distance (ISO 80000-3) a magnetic field penetrates the plane surface of a semi-finite superconductor according to the expression: `B(x) = B(0) exp(-x/λ_L)`, where `B` is magnetic flux density (IEC 80000-6) and `x` is distance (ISO 80000-3) from the surface
* remarks: None.
*/
}
/* ISO-80000-12 item 12-38.2 coherence length */
attribute coherenceLength: LengthValue :> scalarQuantities {
doc
/*
* source: item 12-38.2 coherence length
* symbol(s): `ξ`
* application domain: generic
* name: CoherenceLength (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: distance (ISO 80000-3) in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature (ISO 80000-5)
* remarks: None.
*/
}
}
|