File size: 59,820 Bytes
5070096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
standard library package ISQCondensedMatter {
    doc
    /*
     * International System of Quantities and Units
     * Generated on 2022-08-07T14:44:27Z from standard ISO-80000-12:2019 "Condensed matter physics"
     * see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-12:ed-2:v1:en
     * 
     * Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts,
     * with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks.
     * Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is 
     * defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system) 
     * or TensorMeasurementReference.
     */

    private import ScalarValues::Real;
    private import Quantities::*;
    private import MeasurementReferences::*;
    private import ISQBase::*;

    /* Quantity definitions referenced from other ISQ packages */
    private import ISQElectromagnetism::ElectricPotentialDifferenceValue;
    private import ISQElectromagnetism::MagneticFluxDensityValue;
    private import ISQElectromagnetism::ResistivityValue;
    private import ISQSpaceTime::CartesianSpatial3dCoordinateFrame;
    private import ISQSpaceTime::AngularFrequencyValue;
    private import ISQSpaceTime::AngularMeasureValue;
    private import ISQSpaceTime::RepetencyValue;
    private import ISQThermodynamics::EnergyValue;

    /* ISO-80000-12 item 12-1.1 lattice vector */
    attribute def Cartesian3dLatticeVector :> VectorQuantityValue {
        doc
        /*
         * source: item 12-1.1 lattice vector
         * symbol(s): `vec(R)`
         * application domain: generic
         * name: LatticeVector (specializes Displacement)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 1
         * definition: translation vector that maps the crystal lattice on itself
         * remarks: The non-SI unit ångström (Å) is widely used by x-ray crystallographers and structural chemists.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1];
    }

    attribute latticeVector: Cartesian3dLatticeVector :> vectorQuantities;

    /* ISO-80000-12 item 12-1.2 fundamental lattice vector */
    attribute def Cartesian3dFundamentalLatticeVector :> VectorQuantityValue {
        doc
        /*
         * source: item 12-1.2 fundamental lattice vector
         * symbol(s): `vec(a_1),vec(a_2),vec(a_3)`, `vec(a),vec(b),vec(c)`
         * application domain: generic
         * name: FundamentalLatticeVector (specializes Displacement)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 1
         * definition: fundamental translation vectors for the crystal lattice
         * remarks: The lattice vector (item 12-1.1) can be given as `vec(R) = n_1 vec(a_1) + n_2 vec(a_2) + n_3 vec(a_3)` where `n_1`, `n_2` and `n_3` are integers.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1];
    }

    attribute fundamentalLatticeVector: Cartesian3dFundamentalLatticeVector :> vectorQuantities;

    /* ISO-80000-12 item 12-2.1 angular reciprocal lattice vector */
    attribute def AngularReciprocalLatticeVectorMagnitudeValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 12-2.1 angular reciprocal lattice vector (magnitude)
         * symbol(s): `G`
         * application domain: generic
         * name: AngularReciprocalLatticeVectorMagnitude
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 0
         * definition: vector whose scalar products with all fundamental lattice vectors are integral multiples of  `2π`
         * remarks: In crystallography, however, the quantity `G/(2π)` is sometimes used.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AngularReciprocalLatticeVectorMagnitudeUnit[1];
    }

    attribute angularReciprocalLatticeVectorMagnitude: AngularReciprocalLatticeVectorMagnitudeValue[*] nonunique :> scalarQuantities;

    attribute def AngularReciprocalLatticeVectorMagnitudeUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    attribute def Cartesian3dAngularReciprocalLatticeVector :> VectorQuantityValue {
        doc
        /*
         * source: item 12-2.1 angular reciprocal lattice vector
         * symbol(s): `vec(G)`
         * application domain: generic
         * name: AngularReciprocalLatticeVector
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 1
         * definition: vector whose scalar products with all fundamental lattice vectors are integral multiples of  `2π`
         * remarks: In crystallography, however, the quantity `G/(2π)` is sometimes used.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dAngularReciprocalLatticeCoordinateFrame[1];
    }

    attribute angularReciprocalLatticeVector: Cartesian3dAngularReciprocalLatticeVector :> vectorQuantities;

    attribute def Cartesian3dAngularReciprocalLatticeCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: AngularReciprocalLatticeVectorMagnitudeUnit[3];
    }

    /* ISO-80000-12 item 12-2.2 fundamental reciprocal lattice vector */
    attribute def FundamentalReciprocalLatticeVectorMagnitudeValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 12-2.2 fundamental reciprocal lattice vector (magnitude)
         * symbol(s): `b_1,b_2,b_3`
         * application domain: generic
         * name: FundamentalReciprocalLatticeVectorMagnitude
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 0
         * definition: fundamental translation vectors for the reciprocal lattice
         * remarks: `vec(a_i) * vec(b_i) = 2π δ_(ij)`. In crystallography, however, the quantities `vec(b_j)/(2π)` are also often used.
         */
        attribute :>> num: Real;
        attribute :>> mRef: FundamentalReciprocalLatticeVectorMagnitudeUnit[1];
    }

    attribute fundamentalReciprocalLatticeVectorMagnitude: FundamentalReciprocalLatticeVectorMagnitudeValue[*] nonunique :> scalarQuantities;

    attribute def FundamentalReciprocalLatticeVectorMagnitudeUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    attribute def Cartesian3dFundamentalReciprocalLatticeVector :> VectorQuantityValue {
        doc
        /*
         * source: item 12-2.2 fundamental reciprocal lattice vector
         * symbol(s): `vec(b_1),vec(b_2),vec(b_3)`
         * application domain: generic
         * name: FundamentalReciprocalLatticeVector
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 1
         * definition: fundamental translation vectors for the reciprocal lattice
         * remarks: `vec(a_i) * vec(b_i) = 2π δ_(ij)`. In crystallography, however, the quantities `vec(b_j)/(2π)` are also often used.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dFundamentalReciprocalLatticeCoordinateFrame[1];
    }

    attribute fundamentalReciprocalLatticeVector: Cartesian3dFundamentalReciprocalLatticeVector :> vectorQuantities;

    attribute def Cartesian3dFundamentalReciprocalLatticeCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: FundamentalReciprocalLatticeVectorMagnitudeUnit[3];
    }

    /* ISO-80000-12 item 12-3 lattice plane spacing */
    attribute latticePlaneSpacing: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 12-3 lattice plane spacing
         * symbol(s): `d`
         * application domain: generic
         * name: LatticePlaneSpacing (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: distance (ISO 80000-3) between successive lattice planes
         * remarks: The non-SI unit ångström (Å) is widely used by x-ray crystallographers and structural chemists.
         */
    }

    /* ISO-80000-12 item 12-4 Bragg angle */
    attribute braggAngle: AngularMeasureValue :> scalarQuantities {
        doc
        /*
         * source: item 12-4 Bragg angle
         * symbol(s): `ϑ`
         * application domain: generic
         * name: BraggAngle (specializes AngularMeasure)
         * quantity dimension: 1
         * measurement unit(s): °, 1
         * tensor order: 0
         * definition: angle between the scattered ray and the lattice plane
         * remarks: Bragg angle `ϑ` is given by `2d sin ϑ = nλ`, where `d` is the lattice plane spacing (item 12-3), `λ` is the wavelength (ISO 80000-7) of the radiation, and `n` is the order of reflexion which is an integer.
         */
    }

    /* ISO-80000-12 item 12-5.1 short-range order parameter */
    attribute def ShortRangeOrderParameterValue :> DimensionOneValue {
        doc
        /*
         * source: item 12-5.1 short-range order parameter
         * symbol(s): `r`, `σ`
         * application domain: generic
         * name: ShortRangeOrderParameter (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction
         * remarks: Similar definitions apply to other order-disorder phenomena. Other symbols are frequently used.
         */
    }
    attribute shortRangeOrderParameter: ShortRangeOrderParameterValue :> scalarQuantities;

    /* ISO-80000-12 item 12-5.2 long-range order parameter */
    attribute def LongRangeOrderParameterValue :> DimensionOneValue {
        doc
        /*
         * source: item 12-5.2 long-range order parameter
         * symbol(s): `R`, `s`
         * application domain: generic
         * name: LongRangeOrderParameter (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction
         * remarks: Similar definitions apply to other order-disorder phenomena. Other symbols are frequently used.
         */
    }
    attribute longRangeOrderParameter: LongRangeOrderParameterValue :> scalarQuantities;

    /* ISO-80000-12 item 12-5.3 atomic scattering factor */
    attribute def AtomicScatteringFactorValue :> DimensionOneValue {
        doc
        /*
         * source: item 12-5.3 atomic scattering factor
         * symbol(s): `f`
         * application domain: generic
         * name: AtomicScatteringFactor (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron
         * remarks: The atomic scattering factor can be expressed by: `f = E_a/(E_e`, where `E_a` is the radiation amplitude scattered by the atom and `E_e` is the radiation amplitude scattered by a single electron.
         */
    }
    attribute atomicScatteringFactor: AtomicScatteringFactorValue :> scalarQuantities;

    /* ISO-80000-12 item 12-5.4 structure factor */
    attribute def StructureFactorValue :> DimensionOneValue {
        doc
        /*
         * source: item 12-5.4 structure factor
         * symbol(s): `F(h,k,l)`
         * application domain: generic
         * name: StructureFactor (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quantity given by: `F(h,k,l) = sum_(n=1)^N f_n exp[2π i (h x_n + k y_n + l z_n)]`, where `f_n` is the atomic scattering factor (item 12-5.3) for atom `n`, `x_n`, `y_n`, `z_n` are fractional coordinates of its position, `N` is the total number of atoms in the unit cell and `h`, `k`, `l` are the Miller indices
         * remarks: For the Miller indices `h`, `k`, `l`, see Annex A.
         */
    }
    attribute structureFactor: StructureFactorValue :> scalarQuantities;

    /* ISO-80000-12 item 12-6 Burgers vector */
    attribute def Cartesian3dBurgersVector :> VectorQuantityValue {
        doc
        /*
         * source: item 12-6 Burgers vector
         * symbol(s): `vec(b)`
         * application domain: generic
         * name: BurgersVector (specializes Displacement)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 1
         * definition: closing vector in a sequence of vectors encircling a dislocation
         * remarks: None.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1];
    }

    attribute burgersVector: Cartesian3dBurgersVector :> vectorQuantities;

    /* ISO-80000-12 item 12-7.1 particle position vector */
    attribute def Cartesian3dParticlePositionVector :> VectorQuantityValue {
        doc
        /*
         * source: item 12-7.1 particle position vector
         * symbol(s): `vec(r)`, `vec(R)`
         * application domain: generic
         * name: ParticlePositionVector (specializes PositionVector)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 1
         * definition: position vector (ISO 80000-3) of a particle
         * remarks: Often, `r` is used for electrons and `R` is used for atoms and other heavier particles.
         */
        attribute :>> isBound = true;
        attribute :>> num: Real[3];
        attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1];
    }

    attribute particlePositionVector: Cartesian3dParticlePositionVector :> vectorQuantities;

    /* ISO-80000-12 item 12-7.2 equilibrium position vector */
    attribute def Cartesian3dEquilibriumPositionVector :> VectorQuantityValue {
        doc
        /*
         * source: item 12-7.2 equilibrium position vector
         * symbol(s): `vec(R_0)`
         * application domain: condensed matter physics
         * name: EquilibriumPositionVector (specializes PositionVector)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 1
         * definition: position vector (ISO 80000-3) of an ion or atom in equilibrium
         * remarks: None.
         */
        attribute :>> isBound = true;
        attribute :>> num: Real[3];
        attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1];
    }

    attribute equilibriumPositionVector: Cartesian3dEquilibriumPositionVector :> vectorQuantities;

    /* ISO-80000-12 item 12-7.3 displacement vector */
    attribute def Cartesian3dDisplacementVector :> VectorQuantityValue {
        doc
        /*
         * source: item 12-7.3 displacement vector
         * symbol(s): `vec(u)`
         * application domain: condensed matter physics
         * name: DisplacementVector (specializes Displacement)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 1
         * definition: difference between the position vector (ISO 80000-3) of an ion or atom and its position vector in equilibrium
         * remarks: The displacement vector can be expressed by: `vec(u) = vec(R) − vec(R_0)`, where `vec(R)` is particle position vector (item 12-7.1) and `vec(R_0)` is position vector of an ion or atom in equilibrium (item 12-7.2).
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1];
    }

    attribute displacementVector: Cartesian3dDisplacementVector :> vectorQuantities;

    /* ISO-80000-12 item 12-8 Debye-Waller factor */
    attribute def DebyeWallerFactorValue :> DimensionOneValue {
        doc
        /*
         * source: item 12-8 Debye-Waller factor
         * symbol(s): `D`, `B`
         * application domain: generic
         * name: DebyeWallerFactor (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: factor by which the intensity of a diffraction line is reduced because of the lattice vibrations
         * remarks: `D` is sometimes expressed as `D = exp(−2W)`; in Mössbauer spectroscopy, it is also called the `f` factor and denoted by `f`.
         */
    }
    attribute debyeWallerFactor: DebyeWallerFactorValue :> scalarQuantities;

    /* ISO-80000-12 item 12-9.1 angular wavenumber, angular repetency */
    attribute angularWavenumber: RepetencyValue :> scalarQuantities {
        doc
        /*
         * source: item 12-9.1 angular wavenumber, angular repetency
         * symbol(s): `k`, `q`
         * application domain: condensed matter physics
         * name: AngularWavenumber (specializes Repetency)
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 0
         * definition: quotient of momentum (ISO 80000-4) and the reduced Planck constant (ISO 80000-1)
         * remarks: The corresponding vector (ISO 80000-2) quantity is called wave vector (ISO 80000-3), expressed by: `vec(k) = vec(p)/ħ`, where `vec(p)` is the momentum (ISO 80000-4) of quasi free electrons in an electron gas, and `ħ` is the reduced Planck constant (ISO 80000-1); for phonons, its magnitude is `k = 2π/λ`, where `λ` is the wavelength (ISO 80000-3) of the lattice vibrations. When a distinction is needed between `k` and the symbol for the Boltzmann constant (ISO 80000-1), `k_B` can be used for the latter. When a distinction is needed, `q` should be used for phonons, and `k` for particles such as electrons and neutrons. The method of cut-off must be specified. In condensed matter physics, angular wavenumber is often called wavenumber.
         */
    }

    alias angularRepetency for angularWavenumber;

    /* ISO-80000-12 item 12-9.2 Fermi angular wavenumber, Fermi angular repetency */
    attribute fermiAngularWavenumber: RepetencyValue :> scalarQuantities {
        doc
        /*
         * source: item 12-9.2 Fermi angular wavenumber, Fermi angular repetency
         * symbol(s): `k_F`
         * application domain: generic
         * name: FermiAngularWavenumber (specializes Repetency)
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 0
         * definition: angular wavenumber (item 12-9.1) of electrons in states on the Fermi sphere
         * remarks: In condensed matter physics, angular wavenumber is often called wavenumber.
         */
    }

    alias fermiAngularRepetency for fermiAngularWavenumber;

    /* ISO-80000-12 item 12-9.3 Debye angular wavenumber, Debye angular repetency */
    attribute debyeAngularWavenumber: RepetencyValue :> scalarQuantities {
        doc
        /*
         * source: item 12-9.3 Debye angular wavenumber, Debye angular repetency
         * symbol(s): `q_D`
         * application domain: generic
         * name: DebyeAngularWavenumber (specializes Repetency)
         * quantity dimension: L^-1
         * measurement unit(s): m^-1
         * tensor order: 0
         * definition: cut-off angular wavenumber (item 12-9.1) in the Debye model of the vibrational spectrum of a solid
         * remarks: The method of cut-off must be specified. In condensed matter physics, angular wavenumber is often called wavenumber.
         */
    }

    alias debyeAngularRepetency for debyeAngularWavenumber;

    /* ISO-80000-12 item 12-10 Debye angular frequency */
    attribute debyeAngularFrequency: AngularFrequencyValue :> scalarQuantities {
        doc
        /*
         * source: item 12-10 Debye angular frequency
         * symbol(s): `ω_D`
         * application domain: generic
         * name: DebyeAngularFrequency (specializes AngularFrequency)
         * quantity dimension: T^-1
         * measurement unit(s): s^-1
         * tensor order: 0
         * definition: cut-off angular frequency (ISO 80000-3) in the Debye model of the vibrational spectrum of a solid
         * remarks: The method of cut-off must be specified.
         */
    }

    /* ISO-80000-12 item 12-11 Debye temperature */
    attribute debyeTemperature: ThermodynamicTemperatureValue :> scalarQuantities {
        doc
        /*
         * source: item 12-11 Debye temperature
         * symbol(s): `Θ_D`
         * application domain: generic
         * name: DebyeTemperature (specializes ThermodynamicTemperature)
         * quantity dimension: Θ^1
         * measurement unit(s): K
         * tensor order: 0
         * definition: in the Debye model, quantity given by: `Θ_D = ħ*ω_D/k`, where `k` is the Boltzmann constant, (ISO 80000-1), `ħ` is the reduced Planck constant (ISO 80000-1), and `ω_D` is Debye angular frequency (item 12-10)
         * remarks: A Debye temperature can also be defined by fitting a Debye model result to a certain quantity, for instance, the heat capacity at a certain temperature.
         */
    }

    /* ISO-80000-12 item 12-12 density of vibrational states */
    attribute def DensityOfVibrationalStatesValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 12-12 density of vibrational states
         * symbol(s): `g`
         * application domain: angular frequency
         * name: DensityOfVibrationalStates
         * quantity dimension: L^-3*T^1
         * measurement unit(s): m^-3*s
         * tensor order: 0
         * definition: quotient of the number of vibrational modes in an infinitesimal interval of angular frequency (ISO 80000-3), and the product of the width of that interval and volume (ISO 80000-3)
         * remarks: `g(ω) = n_ω = (dn(ω))/(dω)`, where `n(ω)` is the total number of vibrational modes per volume with angular frequency less than `ω`. The density of states may also be normalized in other ways instead of with respect to volume. See also item 12-16.
         */
        attribute :>> num: Real;
        attribute :>> mRef: DensityOfVibrationalStatesUnit[1];
    }

    attribute densityOfVibrationalStates: DensityOfVibrationalStatesValue[*] nonunique :> scalarQuantities;

    attribute def DensityOfVibrationalStatesUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-12 item 12-13 thermodynamic Grüneisen parameter */
    attribute def 'ThermodynamicGrüneisenParameterValue' :> DimensionOneValue {
        doc
        /*
         * source: item 12-13 thermodynamic Grüneisen parameter
         * symbol(s): `γ_G`, `Γ_G`
         * application domain: generic
         * name: ThermodynamicGrüneisenParameter (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quantity given by: `γ_G = (α_V)/(κ_T c_V ρ)`, where `α_V` is cubic expansion coefficient (ISO 80000-5), `κ_T` is isothermal compressibility (ISO 80000-5), `c_V` is specific heat capacity at constant volume (ISO 80000-5), and `ρ` is mass density (ISO 80000-4)
         * remarks: None.
         */
    }
    attribute 'thermodynamicGrüneisenParameter': 'ThermodynamicGrüneisenParameterValue' :> scalarQuantities;

    /* ISO-80000-12 item 12-14 Grüneisen parameter */
    attribute def 'GrüneisenParameterValue' :> DimensionOneValue {
        doc
        /*
         * source: item 12-14 Grüneisen parameter
         * symbol(s): `γ`
         * application domain: generic
         * name: GrüneisenParameter (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quantity given by minus the partial differential quotient: `γ = -(del ln ω)/(del ln V)`, where `ω` is a lattice vibration frequency (ISO 80000-3), and `V` is volume (ISO 80000-3)
         * remarks: `ω` can also refer to an average of the vibrational spectrum, for instance as represented by a Debye angular frequency (item 12-10).
         */
    }
    attribute 'grüneisenParameter': 'GrüneisenParameterValue' :> scalarQuantities;

    /* ISO-80000-12 item 12-15.1 mean free path of phonons */
    attribute meanFreePathOfPhonons: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 12-15.1 mean free path of phonons
         * symbol(s): `l_p`
         * application domain: generic
         * name: MeanFreePathOfPhonons (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: average distance (ISO 80000-3) that phonons travel between two successive interactions
         * remarks: None.
         */
    }

    /* ISO-80000-12 item 12-15.2 mean free path of electrons */
    attribute meanFreePathOfElectrons: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 12-15.2 mean free path of electrons
         * symbol(s): `l_e`
         * application domain: generic
         * name: MeanFreePathOfElectrons (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: average distance (ISO 80000-3) that electrons travel between two successive interactions
         * remarks: None.
         */
    }

    /* ISO-80000-12 item 12-16 energy density of states */
    attribute def EnergyDensityOfStatesValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 12-16 energy density of states
         * symbol(s): `n_E(E)`, `ρ(E)`
         * application domain: generic
         * name: EnergyDensityOfStates
         * quantity dimension: L^-5*M^-1*T^2
         * measurement unit(s): J^-1*m^-3*eV^-1*m^-3, kg^-1*m^-5*s^2
         * tensor order: 0
         * definition: quantity given by the differential quotient with respect to energy: `n_E(E) = (dn(E))/(dE)`, where `n_E(E)` is the total number of one-electron states per volume (ISO 80000-3) with energy less than `E` (ISO 80000-5)
         * remarks: Density of states refers to electrons or other entities, e.g. phonons. It may be normalized in other ways instead of with respect to volume, e.g. with respect to amount of substance. See also item 12-12.
         */
        attribute :>> num: Real;
        attribute :>> mRef: EnergyDensityOfStatesUnit[1];
    }

    attribute energyDensityOfStates: EnergyDensityOfStatesValue[*] nonunique :> scalarQuantities;

    attribute def EnergyDensityOfStatesUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -5; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-12 item 12-17 residual resistivity */
    attribute residualResistivity: ResistivityValue :> scalarQuantities {
        doc
        /*
         * source: item 12-17 residual resistivity
         * symbol(s): `ρ_0`
         * application domain: generic
         * name: ResidualResistivity (specializes Resistivity)
         * quantity dimension: L^3*M^1*T^-3*I^-2
         * measurement unit(s): Ω*m, kg*m^3*s^-3*A^-2
         * tensor order: 0
         * definition: for metals, the resistivity (IEC 80000-6) extrapolated to zero thermodynamic temperature (ISO 80000-5)
         * remarks: None.
         */
    }

    /* ISO-80000-12 item 12-18 Lorenz coefficient */
    attribute def LorenzCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 12-18 Lorenz coefficient
         * symbol(s): `L`
         * application domain: generic
         * name: LorenzCoefficient
         * quantity dimension: L^4*M^2*T^-6*I^-2*Θ^-2
         * measurement unit(s): V^2/K^2, kg^2*m^4*s^-6*A^-2*K^-2
         * tensor order: 0
         * definition: quotient of thermal conductivity (ISO 80000-5), and the product of electric conductivity (IEC 80000-6) and thermodynamic temperature (ISO 80000-3)
         * remarks: The Lorenz coefficient can be expressed by `L = λ/(σT)`, where `λ` is thermal conductivity (ISO 80000-5), `σ` is electric conductivity (IEC 80000-6), and `T` is thermodynamic temperature (ISO 80000-5).
         */
        attribute :>> num: Real;
        attribute :>> mRef: LorenzCoefficientUnit[1];
    }

    attribute lorenzCoefficient: LorenzCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def LorenzCoefficientUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 4; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -6; }
        private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-12 item 12-19 Hall coefficient */
    attribute def HallCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 12-19 Hall coefficient
         * symbol(s): `R_H`, `A_H`
         * application domain: generic
         * name: HallCoefficient
         * quantity dimension: 1
         * measurement unit(s): m^3/C*m^3*s^-1*A^-1
         * tensor order: 0
         * definition: in an isotropic conductor, relation between electric field strength, `vec(E)`, (IEC 80000-6) and electric current density, `vec(J)`, (IEC 80000-6) expressed as: `vec(E) = ρ vec(J) + R_H (vec(B) xx vec(J))`, where `ρ` is resistivity (IEC 80000-6), and `vec(B)` is magnetic flux density (IEC 80000-6)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: HallCoefficientUnit[1];
    }

    attribute hallCoefficient: HallCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def HallCoefficientUnit :> DimensionOneUnit {
    }

    /* ISO-80000-12 item 12-20 thermoelectric voltage (between substances a and b) */
    attribute thermoelectricVoltageBetweenSubstancesAAndB: ElectricPotentialDifferenceValue :> scalarQuantities {
        doc
        /*
         * source: item 12-20 thermoelectric voltage (between substances a and b)
         * symbol(s): `E_(ab)`
         * application domain: generic
         * name: ThermoelectricVoltageBetweenSubstancesAAndB (specializes ElectricPotentialDifference)
         * quantity dimension: L^2*M^1*T^-3*I^-1
         * measurement unit(s): V, kg*m^2*s^-3*A^-1
         * tensor order: 0
         * definition: voltage (IEC 80000-6) between substances `a` and `b` caused by the thermoelectric effect
         * remarks: None.
         */
    }

    /* ISO-80000-12 item 12-21 Seebeck coefficient (for substances a and b) */
    attribute def SeebeckCoefficientForSubstancesAAndBValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 12-21 Seebeck coefficient (for substances a and b)
         * symbol(s): `S_(ab)`
         * application domain: generic
         * name: SeebeckCoefficientForSubstancesAAndB
         * quantity dimension: L^2*M^1*T^-3*I^-1*Θ^-1
         * measurement unit(s): V/K, kg*m^2*s^-3*A^-1*K^-1
         * tensor order: 0
         * definition: differential quotient of thermoelectric voltage with respect to thermodynamic temperature: `S_(ab) =      (dE_(ab))/(dT)`, where `E_(ab)` is the thermoelectric voltage between substances `a` and `b` (item 12-20) and `T` is thermodynamic temperature (ISO 80000-5)
         * remarks: This term is also called "thermoelectric power".
         */
        attribute :>> num: Real;
        attribute :>> mRef: SeebeckCoefficientForSubstancesAAndBUnit[1];
    }

    attribute seebeckCoefficientForSubstancesAAndB: SeebeckCoefficientForSubstancesAAndBValue[*] nonunique :> scalarQuantities;

    attribute def SeebeckCoefficientForSubstancesAAndBUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
        private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-12 item 12-22 Peltier coefficient (for substances a and b) */
    attribute peltierCoefficientForSubstancesAAndB: ElectricPotentialDifferenceValue :> scalarQuantities {
        doc
        /*
         * source: item 12-22 Peltier coefficient (for substances a and b)
         * symbol(s): `Π_(ab)`
         * application domain: generic
         * name: PeltierCoefficientForSubstancesAAndB (specializes ElectricPotentialDifference)
         * quantity dimension: L^2*M^1*T^-3*I^-1
         * measurement unit(s): V, kg*m^2*s^-3*A^-1
         * tensor order: 0
         * definition: quotient of Peltier heat power (ISO 80000-5) developed at a junction, and the electric current (IEC 80000-6) flowing from substance `a` to substance `b`
         * remarks: `Π_(ab) = Π_a - Π_b`, where `Π_a` and `Π_b` are the Peltier coefficients of substances `a` and `b`, respectively.
         */
    }

    /* ISO-80000-12 item 12-23 Thomson coefficient */
    attribute def ThomsonCoefficientValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 12-23 Thomson coefficient
         * symbol(s): `μ`
         * application domain: generic
         * name: ThomsonCoefficient
         * quantity dimension: L^2*M^1*T^-3*I^-1*Θ^-1
         * measurement unit(s): V/K, kg*m^2*s^-3*A^-1*K^-1
         * tensor order: 0
         * definition: quotient of Thomson heat power (ISO 80000-5) developed, and the electric current (IEC 80000-6) and temperature (ISO 80000-5) difference
         * remarks: `μ` is positive if heat is developed when the temperature decreases in the direction of the electric current.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ThomsonCoefficientUnit[1];
    }

    attribute thomsonCoefficient: ThomsonCoefficientValue[*] nonunique :> scalarQuantities;

    attribute def ThomsonCoefficientUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
        private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-12 item 12-24.1 work function */
    attribute workFunction: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 12-24.1 work function
         * symbol(s): `ϕ`
         * application domain: generic
         * name: WorkFunction (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, eV, kg*m^2*s^-2
         * tensor order: 0
         * definition: difference between energy (ISO 80000-5) of an electron at rest at infinity and the Fermi energy (item 12-27.1)
         * remarks: The term "energy level" is often used for the state of the electron, not only for its energy. The contact potential difference between substances `a` and `b` is given by `V_a - V_b = (ϕ_a - ϕ_b)/e`, where `e` is the elementary charge (ISO 80000-1). A set of energy levels, the energies of which occupy an interval practically continuously, is called an energy band. In semi-conductors `E_d` and `E_a` are used for donors and acceptors, respectively.
         */
    }

    /* ISO-80000-12 item 12-24.2 ionization energy */
    attribute ionizationEnergy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 12-24.2 ionization energy
         * symbol(s): `E_i`
         * application domain: generic
         * name: IonizationEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, eV, kg*m^2*s^-2
         * tensor order: 0
         * definition: difference between energy (ISO 80000-5) of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance
         * remarks: None.
         */
    }

    /* ISO-80000-12 item 12-25 electron affinity */
    attribute electronAffinity: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 12-25 electron affinity
         * symbol(s): `χ`
         * application domain: condensed matter physics
         * name: ElectronAffinity (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, eV, kg*m^2*s^-2
         * tensor order: 0
         * definition: energy (ISO 80000-5) difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor
         * remarks: None.
         */
    }

    /* ISO-80000-12 item 12-26 Richardson constant */
    attribute def RichardsonConstantValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 12-26 Richardson constant
         * symbol(s): `A`
         * application domain: generic
         * name: RichardsonConstant
         * quantity dimension: L^-2*I^1*Θ^-2
         * measurement unit(s): A*m^-2*K^-2
         * tensor order: 0
         * definition: parameter in the expression for the thermionic emission current density `J` (IEC 80000-6) for a metal in terms of the thermodynamic temperature `T` (ISO 80000-5) and work function `ϕ`, (item 12-24.1): `J = AT^2 exp(ϕ/(kT))`, where `k` is the Boltzmann constant (ISO 80000-1)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: RichardsonConstantUnit[1];
    }

    attribute richardsonConstant: RichardsonConstantValue[*] nonunique :> scalarQuantities;

    attribute def RichardsonConstantUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
        private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
        private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF, thermodynamicTemperaturePF); }
    }

    /* ISO-80000-12 item 12-27.1 Fermi energy */
    attribute fermiEnergy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 12-27.1 Fermi energy
         * symbol(s): `E_F`
         * application domain: generic
         * name: FermiEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, eV, kg*m^2*s^-2
         * tensor order: 0
         * definition: in a metal, highest occupied energy level at zero thermodynamic temperature (ISO 80000-5), where energy level means the energy (ISO 80000-5) of an electron in the interior of a substance
         * remarks: The term "energy level" is often used for the state of the electron, not only for its energy. At `T = 0 [K]`, `E_F` is equal to the chemical potential per electron. In condensed matter physics, the reference level for the energy is sometimes chosen so that, for instance, `E_F = 0`.
         */
    }

    /* ISO-80000-12 item 12-27.2 gap energy */
    attribute gapEnergy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 12-27.2 gap energy
         * symbol(s): `E_g`
         * application domain: generic
         * name: GapEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, eV, kg*m^2*s^-2
         * tensor order: 0
         * definition: difference in energy (ISO 80000-5) between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature (ISO 80000-5)
         * remarks: None.
         */
    }

    /* ISO-80000-12 item 12-28 Fermi temperature */
    attribute fermiTemperature: ThermodynamicTemperatureValue :> scalarQuantities {
        doc
        /*
         * source: item 12-28 Fermi temperature
         * symbol(s): `T_F`
         * application domain: generic
         * name: FermiTemperature (specializes ThermodynamicTemperature)
         * quantity dimension: Θ^1
         * measurement unit(s): K
         * tensor order: 0
         * definition: in the free electron model, the Fermi energy (item 12-27.1) divided by the Boltzmann constant (ISO 80000-1)
         * remarks: The Fermi temperature is expressed by: `T_F = E_F/k`, where `E_F` is Fermi energy (item 12-27.1) and `k` is the Boltzmann constant (ISO 80000-1). `E_F` is relative to the lowest occupied state.
         */
    }

    /* ISO-80000-12 item 12-29.1 electron density */
    attribute def ElectronDensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 12-29.1 electron density
         * symbol(s): `n`
         * application domain: generic
         * name: ElectronDensity
         * quantity dimension: L^-3
         * measurement unit(s): m^-3
         * tensor order: 0
         * definition: quotient of number of electrons in conduction band and volume (ISO 80000-3)
         * remarks: Subscripts `n` and `p` or `-` and `+` are often used to denote electrons and holes, respectively. `n_n` and `n_p` are also used for electron densities, and `p_n` and `p_p` for hole densities, in `n`-type and `p`-type regions, respectively, of a `n`-`p` junction.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ElectronDensityUnit[1];
    }

    attribute electronDensity: ElectronDensityValue[*] nonunique :> scalarQuantities;

    attribute def ElectronDensityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-12 item 12-29.2 hole density */
    attribute def HoleDensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 12-29.2 hole density
         * symbol(s): `p`
         * application domain: generic
         * name: HoleDensity
         * quantity dimension: L^-3
         * measurement unit(s): m^-3
         * tensor order: 0
         * definition: quotient of number of holes in valence band and volume (ISO 80000-3)
         * remarks: Subscripts `n` and `p` or `-` and `+` are often used to denote electrons and holes, respectively. `n_n` and `n_p` are also used for electron densities, and `p_n` and `p_p` for hole densities, in `n`-type and `p`-type regions, respectively, of a `n`-`p` junction.
         */
        attribute :>> num: Real;
        attribute :>> mRef: HoleDensityUnit[1];
    }

    attribute holeDensity: HoleDensityValue[*] nonunique :> scalarQuantities;

    attribute def HoleDensityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-12 item 12-29.3 intrinsic carrier density */
    attribute def IntrinsicCarrierDensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 12-29.3 intrinsic carrier density
         * symbol(s): `n_i`
         * application domain: generic
         * name: IntrinsicCarrierDensity
         * quantity dimension: L^-3
         * measurement unit(s): m^-3
         * tensor order: 0
         * definition: quantity given by: `n_i = sqrt(n p)`, where `n` is electron density (item 12-29.1), and `p` is hole
         * remarks: Subscripts `n` and `p` or `-` and `+` are often used to denote electrons and holes, respectively. `n_n` and `n_p` are also used for electron densities, and `p_n` and `p_p` for hole densities, in `n`-type and `p`-type regions, respectively, of a `n`-`p` junction.
         */
        attribute :>> num: Real;
        attribute :>> mRef: IntrinsicCarrierDensityUnit[1];
    }

    attribute intrinsicCarrierDensity: IntrinsicCarrierDensityValue[*] nonunique :> scalarQuantities;

    attribute def IntrinsicCarrierDensityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-12 item 12-29.4 donor density */
    attribute def DonorDensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 12-29.4 donor density
         * symbol(s): `n_d`
         * application domain: generic
         * name: DonorDensity
         * quantity dimension: L^-3
         * measurement unit(s): m^-3
         * tensor order: 0
         * definition: quotient of number of donor levels and volume (ISO 80000-3)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: DonorDensityUnit[1];
    }

    attribute donorDensity: DonorDensityValue[*] nonunique :> scalarQuantities;

    attribute def DonorDensityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-12 item 12-29.5 acceptor density */
    attribute def AcceptorDensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 12-29.5 acceptor density
         * symbol(s): `n_a`
         * application domain: generic
         * name: AcceptorDensity
         * quantity dimension: L^-3
         * measurement unit(s): m^-3
         * tensor order: 0
         * definition: quotient of number of acceptor levels and volume (ISO 80000-3)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AcceptorDensityUnit[1];
    }

    attribute acceptorDensity: AcceptorDensityValue[*] nonunique :> scalarQuantities;

    attribute def AcceptorDensityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-12 item 12-30 effective mass */
    attribute effectiveMass: MassValue :> scalarQuantities {
        doc
        /*
         * source: item 12-30 effective mass
         * symbol(s): `m"*"`
         * application domain: generic
         * name: EffectiveMass (specializes Mass)
         * quantity dimension: M^1
         * measurement unit(s): kg
         * tensor order: 0
         * definition: quantity given by: `m^"*" = (ħ^2 k) / ((dε)/(dk))`, where `k` is wavenumber (ISO 80000-3), `ε` is the energy (ISO 80000-5) of an electron in the interior of a substance, and `ħ` is the reduced Planck constant (ISO 80000-1)
         * remarks: When `k` refers to a state where `ε` has an extremum, `m"*" = (ħ^2 k) / ((d^2ε)/(dk^2))`. The effective mass can be generalized to refer to an anisotropic system with `ε = ε(k)`.
         */
    }

    /* ISO-80000-12 item 12-31 mobility ratio */
    attribute def MobilityRatioValue :> DimensionOneValue {
        doc
        /*
         * source: item 12-31 mobility ratio
         * symbol(s): `b`
         * application domain: generic
         * name: MobilityRatio (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of mobilities (ISO 80000-10) of electrons and holes, respectively
         * remarks: The mobility ratio can be expressed by: `b = μ_n/μ_p`, where `μ_n` and `μ_p` are mobilities (ISO 80000-10) for electrons and holes, respectively.
         */
    }
    attribute mobilityRatio: MobilityRatioValue :> scalarQuantities;

    /* ISO-80000-12 item 12-32.1 relaxation time */
    attribute relaxationTime: DurationValue :> scalarQuantities {
        doc
        /*
         * source: item 12-32.1 relaxation time
         * symbol(s): `τ`
         * application domain: condensed matter physics
         * name: RelaxationTime (specializes Duration)
         * quantity dimension: T^1
         * measurement unit(s): s
         * tensor order: 0
         * definition: time constant (ISO 80000-3) for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles
         * remarks: For electrons in metals, `τ = l/v_F`, where `l` is mean free path (item 12-15.2) and `v_F` is speed (ISO 80000-3) of electrons on the Fermi surface.
         */
    }

    /* ISO-80000-12 item 12-32.2 carrier lifetime */
    attribute carrierLifetime: DurationValue :> scalarQuantities {
        doc
        /*
         * source: item 12-32.2 carrier lifetime
         * symbol(s): `τ`, `τ_n`, `τ_p`
         * application domain: semiconductors
         * name: CarrierLifetime (specializes Duration)
         * quantity dimension: T^1
         * measurement unit(s): s
         * tensor order: 0
         * definition: time constant (ISO 80000-3) for recombination or trapping of minority charge carriers in semiconductors
         * remarks: Indices "n" and "p" denote negative and positive charge carriers, respectively. Positive charge carriers can also be holes.
         */
    }

    /* ISO-80000-12 item 12-33 diffusion length */
    attribute diffusionLengthForCondensedMatterPhysics: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 12-33 diffusion length
         * symbol(s): `L`, `L_n`, `L_p`
         * application domain: condensed matter physics
         * name: DiffusionLength (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: square root of the product of diffusion coefficient (ISO 80000-10) and lifetime (ISO 80000-10)
         * remarks: The diffusion length can be expressed by: `L = sqrt(Dτ)`, where `D` is the diffusion coefficient (ISO 80000-9) and `τ` is lifetime (ISO 80000-3).
         */
    }

    /* ISO-80000-12 item 12-34 exchange integral */
    attribute exchangeIntegral: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 12-34 exchange integral
         * symbol(s): `K`, `J`
         * application domain: generic
         * name: ExchangeIntegral (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, eV, kg*m^2*s^-2
         * tensor order: 0
         * definition: constituent of the interaction energy (ISO 80000-5) between the spins of adjacent electrons in matter arising from the overlap of electron state functions
         * remarks: None.
         */
    }

    /* ISO-80000-12 item 12-35.1 Curie temperature */
    attribute curieTemperature: ThermodynamicTemperatureValue :> scalarQuantities {
        doc
        /*
         * source: item 12-35.1 Curie temperature
         * symbol(s): `T_C`
         * application domain: generic
         * name: CurieTemperature (specializes ThermodynamicTemperature)
         * quantity dimension: Θ^1
         * measurement unit(s): K
         * tensor order: 0
         * definition: critical thermodynamic temperature (ISO 80000-5) of a ferromagnet
         * remarks: `T_(cr)` is used for critical thermodynamic temperature in general.
         */
    }

    /* ISO-80000-12 item 12-35.2 Néel temperature */
    attribute 'néelTemperature': ThermodynamicTemperatureValue :> scalarQuantities {
        doc
        /*
         * source: item 12-35.2 Néel temperature
         * symbol(s): `T_N`
         * application domain: generic
         * name: NéelTemperature (specializes ThermodynamicTemperature)
         * quantity dimension: Θ^1
         * measurement unit(s): K
         * tensor order: 0
         * definition: critical thermodynamic temperature (ISO 80000-5) of an antiferromagnet
         * remarks: None.
         */
    }

    /* ISO-80000-12 item 12-35.3 superconduction transition temperature */
    attribute superconductionTransitionTemperature: ThermodynamicTemperatureValue :> scalarQuantities {
        doc
        /*
         * source: item 12-35.3 superconduction transition temperature
         * symbol(s): `T_c`
         * application domain: generic
         * name: SuperconductionTransitionTemperature (specializes ThermodynamicTemperature)
         * quantity dimension: Θ^1
         * measurement unit(s): K
         * tensor order: 0
         * definition: critical thermodynamic temperature (ISO 80000-5) of a superconductor
         * remarks: None.
         */
    }

    /* ISO-80000-12 item 12-36.1 thermodynamic critical magnetic flux density */
    attribute thermodynamicCriticalMagneticFluxDensity: MagneticFluxDensityValue :> scalarQuantities {
        doc
        /*
         * source: item 12-36.1 thermodynamic critical magnetic flux density
         * symbol(s): `B_c`
         * application domain: generic
         * name: ThermodynamicCriticalMagneticFluxDensity (specializes MagneticFluxDensity)
         * quantity dimension: M^1*T^-2*I^-1
         * measurement unit(s): T, kg*s^-2*A^-1
         * tensor order: 0
         * definition: quantity given by: `B_c = sqrt((2μ_0 (G_n - G_s))/V)`, where `G_n` and `G_s` are the Gibbs energies (ISO 80000-5) at zero magnetic flux density (IEC 80000-6) in a normal conductor and superconductor, respectively, `μ_0` is the magnetic constant (IEC 80000-6), and `V` is volume (ISO 80000-3)
         * remarks: In type I superconductors, `B_c` is the critical magnetic flux density for disappearance of superconductivity. The symbol `B_(c3)` is used for the critical magnetic flux density for disappearance of surface superconductivity.
         */
    }

    /* ISO-80000-12 item 12-36.2 lower critical magnetic flux density */
    attribute lowerCriticalMagneticFluxDensity: MagneticFluxDensityValue :> scalarQuantities {
        doc
        /*
         * source: item 12-36.2 lower critical magnetic flux density
         * symbol(s): `B_(c1)`
         * application domain: generic
         * name: LowerCriticalMagneticFluxDensity (specializes MagneticFluxDensity)
         * quantity dimension: M^1*T^-2*I^-1
         * measurement unit(s): T, kg*s^-2*A^-1
         * tensor order: 0
         * definition: for type II superconductors, the threshold magnetic flux density (IEC 80000-6) for magnetic flux (IEC 80000-6) entering the superconductor
         * remarks: None.
         */
    }

    /* ISO-80000-12 item 12-36.3 upper critical magnetic flux density */
    attribute upperCriticalMagneticFluxDensity: MagneticFluxDensityValue :> scalarQuantities {
        doc
        /*
         * source: item 12-36.3 upper critical magnetic flux density
         * symbol(s): `B_(c2)`
         * application domain: generic
         * name: UpperCriticalMagneticFluxDensity (specializes MagneticFluxDensity)
         * quantity dimension: M^1*T^-2*I^-1
         * measurement unit(s): T, kg*s^-2*A^-1
         * tensor order: 0
         * definition: for type II superconductors, the threshold magnetic flux density (IEC 80000-6) for disappearance of bulk superconductivity
         * remarks: None.
         */
    }

    /* ISO-80000-12 item 12-37 superconductor energy gap */
    attribute superconductorEnergyGap: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 12-37 superconductor energy gap
         * symbol(s): `Δ`
         * application domain: generic
         * name: SuperconductorEnergyGap (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, eV, kg*m^2*s^-2
         * tensor order: 0
         * definition: width of the forbidden energy band (item 12-24.2) in a superconductor
         * remarks: None.
         */
    }

    /* ISO-80000-12 item 12-38.1 London penetration depth */
    attribute londonPenetrationDepth: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 12-38.1 London penetration depth
         * symbol(s): `λ_L`
         * application domain: generic
         * name: LondonPenetrationDepth (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: distance (ISO 80000-3) a magnetic field penetrates the plane surface of a semi-finite superconductor according to the expression: `B(x) = B(0) exp(-x/λ_L)`, where `B` is magnetic flux density (IEC 80000-6) and `x` is distance (ISO 80000-3) from the surface
         * remarks: None.
         */
    }

    /* ISO-80000-12 item 12-38.2 coherence length */
    attribute coherenceLength: LengthValue :> scalarQuantities {
        doc
        /*
         * source: item 12-38.2 coherence length
         * symbol(s): `ξ`
         * application domain: generic
         * name: CoherenceLength (specializes Length)
         * quantity dimension: L^1
         * measurement unit(s): m
         * tensor order: 0
         * definition: distance (ISO 80000-3) in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature (ISO 80000-5)
         * remarks: None.
         */
    }

}