File size: 116,511 Bytes
5070096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 |
standard library package ISQElectromagnetism {
doc
/*
* International System of Quantities and Units
* Generated on 2022-08-07T14:44:27Z from standard IEC-80000-6:2008 "Electromagnetism"
* see also https://www.iso.org/obp/ui/#iso:std:iec:80000:-6:ed-1:v1:en,fr
*
* Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts,
* with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks.
* Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is
* defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system)
* or TensorMeasurementReference.
*/
private import ScalarValues::Real;
private import Quantities::*;
private import MeasurementReferences::*;
private import ISQBase::*;
/* Quantity definitions referenced from other ISQ packages */
private import ISQMechanics::PowerValue;
private import ISQSpaceTime::AngularMeasureValue;
private import ISQThermodynamics::EnergyValue;
/* IEC-80000-6 item 6-1 electric current */
/* See package ISQBase for the declarations of ElectricCurrentValue and ElectricCurrentUnit */
/* IEC-80000-6 item 6-2 electric charge */
attribute def ElectricChargeValue :> ScalarQuantityValue {
doc
/*
* source: item 6-2 electric charge
* symbol(s): `Q`, `q`
* application domain: generic
* name: ElectricCharge
* quantity dimension: T^1*I^1
* measurement unit(s): C
* tensor order: 0
* definition: `d(Q) = I dt` where `I` is electric current (item 6-1) and `t` is time (ISO 80000-3, item 3-7)
* remarks: Electric charge is carried by discrete particles and can be positive or negative. The sign convention is such that the elementary electric charge `e`, i.e. the charge of the proton, is positive. See IEC 60050-121, item121-11-01. To denote a point charge `q` is often used, and that is done in the present document.
*/
attribute :>> num: Real;
attribute :>> mRef: ElectricChargeUnit[1];
}
attribute electricCharge: ElectricChargeValue[*] nonunique :> scalarQuantities;
attribute def ElectricChargeUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-3 electric charge density, volumic electric charge */
attribute def ElectricChargeDensityValue :> ScalarQuantityValue {
doc
/*
* source: item 6-3 electric charge density, volumic electric charge
* symbol(s): `ρ`, `ρ_V`
* application domain: generic
* name: ElectricChargeDensity
* quantity dimension: L^-3*T^1*I^1
* measurement unit(s): C/m^3
* tensor order: 0
* definition: `ρ = (dQ)/(dV)` where `Q` is electric charge (item 6-2) and `V` is volume (ISO 80000-3, item 3-4)
* remarks: See IEC 60050-121, item 121-11-07.
*/
attribute :>> num: Real;
attribute :>> mRef: ElectricChargeDensityUnit[1];
}
attribute electricChargeDensity: ElectricChargeDensityValue[*] nonunique :> scalarQuantities;
attribute def ElectricChargeDensityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, electricCurrentPF); }
}
alias VolumicElectricChargeUnit for ElectricChargeDensityUnit;
alias VolumicElectricChargeValue for ElectricChargeDensityValue;
alias volumicElectricCharge for electricChargeDensity;
/* IEC-80000-6 item 6-4 surface density of electric charge, areic electric charge */
attribute def SurfaceDensityOfElectricChargeValue :> ScalarQuantityValue {
doc
/*
* source: item 6-4 surface density of electric charge, areic electric charge
* symbol(s): `ρ_A`, `sigma`
* application domain: generic
* name: SurfaceDensityOfElectricCharge
* quantity dimension: L^-2*T^1*I^1
* measurement unit(s): C/m^2
* tensor order: 0
* definition: `ρ_A = (dQ)/(dA)` where `Q` is electric charge (item 6-2) and `A` is area (ISO 80000-3, item 3-3)`
* remarks: See IEC 60050-121, item 121-11-08.
*/
attribute :>> num: Real;
attribute :>> mRef: SurfaceDensityOfElectricChargeUnit[1];
}
attribute surfaceDensityOfElectricCharge: SurfaceDensityOfElectricChargeValue[*] nonunique :> scalarQuantities;
attribute def SurfaceDensityOfElectricChargeUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, electricCurrentPF); }
}
alias AreicElectricChargeUnit for SurfaceDensityOfElectricChargeUnit;
alias AreicElectricChargeValue for SurfaceDensityOfElectricChargeValue;
alias areicElectricCharge for surfaceDensityOfElectricCharge;
/* IEC-80000-6 item 6-5 linear density of electric charge, lineic electric charge */
attribute def LinearDensityOfElectricChargeValue :> ScalarQuantityValue {
doc
/*
* source: item 6-5 linear density of electric charge, lineic electric charge
* symbol(s): `ρ_l`, `tau`
* application domain: generic
* name: LinearDensityOfElectricCharge
* quantity dimension: L^-1*T^1*I^1
* measurement unit(s): C/m
* tensor order: 0
* definition: `ρ_l = (dQ)/(dl)` where `Q` is electric charge (item 6-2) and `l` is length (ISO 80000-3, item 3-1.1)
* remarks: See IEC 60050-121, item121-11-09.
*/
attribute :>> num: Real;
attribute :>> mRef: LinearDensityOfElectricChargeUnit[1];
}
attribute linearDensityOfElectricCharge: LinearDensityOfElectricChargeValue[*] nonunique :> scalarQuantities;
attribute def LinearDensityOfElectricChargeUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, electricCurrentPF); }
}
alias LineicElectricChargeUnit for LinearDensityOfElectricChargeUnit;
alias LineicElectricChargeValue for LinearDensityOfElectricChargeValue;
alias lineicElectricCharge for linearDensityOfElectricCharge;
/* IEC-80000-6 item 6-6 electric dipole moment */
attribute def ElectricDipoleMomentValue :> ScalarQuantityValue {
doc
/*
* source: item 6-6 electric dipole moment (magnitude)
* symbol(s): `p`
* application domain: generic
* name: ElectricDipoleMoment
* quantity dimension: L^1*T^1*I^1
* measurement unit(s): C*m
* tensor order: 0
* definition: `vec(p) = q (vec(r_+) - vec(r_-))` where `vec(r_+)` and `vec(r_-)` are the position vectors (ISO 80000-3, item 3-1.11) to carriers of electric charges `q` and `-q` (item 6-2), respectively
* remarks: The electric dipole moment of a substance within a domain is the vector sum of electric dipole moments of electric dipoles included in the domain. See IEC 60050-121, items 121-11-35 and 121-11-36.
*/
attribute :>> num: Real;
attribute :>> mRef: ElectricDipoleMomentUnit[1];
}
attribute electricDipoleMoment: ElectricDipoleMomentValue[*] nonunique :> scalarQuantities;
attribute def ElectricDipoleMomentUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, electricCurrentPF); }
}
attribute def Cartesian3dElectricDipoleMomentVector :> VectorQuantityValue {
doc
/*
* source: item 6-6 electric dipole moment (vector)
* symbol(s): `vec(p)`
* application domain: generic
* name: ElectricDipoleMoment
* quantity dimension: L^1*T^1*I^1
* measurement unit(s): C*m
* tensor order: 1
* definition: `vec(p) = q (vec(r_+) - vec(r_-))` where `vec(r_+)` and `vec(r_-)` are the position vectors (ISO 80000-3, item 3-1.11) to carriers of electric charges `q` and `-q` (item 6-2), respectively
* remarks: The electric dipole moment of a substance within a domain is the vector sum of electric dipole moments of electric dipoles included in the domain. See IEC 60050-121, items 121-11-35 and 121-11-36.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dElectricDipoleMomentCoordinateFrame[1];
}
attribute electricDipoleMomentVector: Cartesian3dElectricDipoleMomentVector :> vectorQuantities;
attribute def Cartesian3dElectricDipoleMomentCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: ElectricDipoleMomentUnit[3];
}
/* IEC-80000-6 item 6-7 electric polarization */
attribute def ElectricPolarizationValue :> ScalarQuantityValue {
doc
/*
* source: item 6-7 electric polarization (magnitude)
* symbol(s): `P`
* application domain: generic
* name: ElectricPolarization
* quantity dimension: L^-2*T^1*I^1
* measurement unit(s): C/m^2
* tensor order: 0
* definition: `vec(P) = (d vec(p))/(dV)` where `vec(p)` is electric dipole moment (item 6-6) of a substance within a domain with volume `V` (ISO 80000-3, item 3-4)
* remarks: See IEC 60050-121, item 121-11-37.
*/
attribute :>> num: Real;
attribute :>> mRef: ElectricPolarizationUnit[1];
}
attribute electricPolarization: ElectricPolarizationValue[*] nonunique :> scalarQuantities;
attribute def ElectricPolarizationUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, electricCurrentPF); }
}
attribute def Cartesian3dElectricPolarizationVector :> VectorQuantityValue {
doc
/*
* source: item 6-7 electric polarization (vector)
* symbol(s): `vec(P)`
* application domain: generic
* name: ElectricPolarization
* quantity dimension: L^-2*T^1*I^1
* measurement unit(s): C/m^2
* tensor order: 1
* definition: `vec(P) = (d vec(p))/(dV)` where `vec(p)` is electric dipole moment (item 6-6) of a substance within a domain with volume `V` (ISO 80000-3, item 3-4)
* remarks: See IEC 60050-121, item 121-11-37.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dElectricPolarizationCoordinateFrame[1];
}
attribute electricPolarizationVector: Cartesian3dElectricPolarizationVector :> vectorQuantities;
attribute def Cartesian3dElectricPolarizationCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: ElectricPolarizationUnit[3];
}
/* IEC-80000-6 item 6-8 electric current density, areic electric current */
attribute def ElectricCurrentDensityValue :> ScalarQuantityValue {
doc
/*
* source: item 6-8 electric current density, areic electric current (magnitude)
* symbol(s): `J`
* application domain: generic
* name: ElectricCurrentDensity
* quantity dimension: L^-2*I^1
* measurement unit(s): A/m^2
* tensor order: 0
* definition: `vec(J) = ρ vec(v)` where `ρ` is electric charge density (item 6-3) and `vec(v)` is velocity (ISO 80000-3, item 3-8.1)
* remarks: Electric current `I` (item 6-1) through a surface `S` is `I = int_S vec(J) * vec(e_n) dA` where `vec(e_n) dA` is vector surface element. See IEC 60050-121, item 121-11-11.
*/
attribute :>> num: Real;
attribute :>> mRef: ElectricCurrentDensityUnit[1];
}
attribute electricCurrentDensity: ElectricCurrentDensityValue[*] nonunique :> scalarQuantities;
attribute def ElectricCurrentDensityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); }
}
attribute def Cartesian3dElectricCurrentDensityVector :> VectorQuantityValue {
doc
/*
* source: item 6-8 electric current density, areic electric current (vector)
* symbol(s): `vec(J)`
* application domain: generic
* name: ElectricCurrentDensity
* quantity dimension: L^-2*I^1
* measurement unit(s): A/m^2
* tensor order: 1
* definition: `vec(J) = ρ vec(v)` where `ρ` is electric charge density (item 6-3) and `vec(v)` is velocity (ISO 80000-3, item 3-8.1)
* remarks: Electric current `I` (item 6-1) through a surface `S` is `I = int_S vec(J) * vec(e_n) dA` where `vec(e_n) dA` is vector surface element. See IEC 60050-121, item 121-11-11.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dElectricCurrentDensityCoordinateFrame[1];
}
attribute electricCurrentDensityVector: Cartesian3dElectricCurrentDensityVector :> vectorQuantities;
attribute def Cartesian3dElectricCurrentDensityCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: ElectricCurrentDensityUnit[3];
}
alias Cartesian3dAreicElectricCurrentCoordinateFrame for Cartesian3dElectricCurrentDensityCoordinateFrame;
alias areicElectricCurrentVector for electricCurrentDensityVector;
/* IEC-80000-6 item 6-9 linear electric current density, lineic electric current */
attribute def LinearElectricCurrentDensityValue :> ScalarQuantityValue {
doc
/*
* source: item 6-9 linear electric current density, lineic electric current (magnitude)
* symbol(s): `J_S`
* application domain: generic
* name: LinearElectricCurrentDensity
* quantity dimension: L^-1*I^1
* measurement unit(s): A/m
* tensor order: 0
* definition: `vec(J_S) = ρ_A vec(v)` where `ρ_A` is surface density of electric charge (item 6-4) and `vec(v)` is velocity (ISO 80000-3, item 3-8.1)
* remarks: Electric current `I` (item 6-1) through a curve `C` on a surface is `I = int_C vec(J_S) xx vec(e_n) * d vec(r)` where `vec(e_n)` is a unit vector perpendicular to the surface and line vector element and `d vec(r)` is the differential of position vector `vec(r)`. See IEC 60050-121, item 121-11-12.
*/
attribute :>> num: Real;
attribute :>> mRef: LinearElectricCurrentDensityUnit[1];
}
attribute linearElectricCurrentDensity: LinearElectricCurrentDensityValue[*] nonunique :> scalarQuantities;
attribute def LinearElectricCurrentDensityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); }
}
attribute def Cartesian3dLinearElectricCurrentDensityVector :> VectorQuantityValue {
doc
/*
* source: item 6-9 linear electric current density, lineic electric current (vector)
* symbol(s): `vec(J_S)`
* application domain: generic
* name: LinearElectricCurrentDensity
* quantity dimension: L^-1*I^1
* measurement unit(s): A/m
* tensor order: 1
* definition: `vec(J_S) = ρ_A vec(v)` where `ρ_A` is surface density of electric charge (item 6-4) and `vec(v)` is velocity (ISO 80000-3, item 3-8.1)
* remarks: Electric current `I` (item 6-1) through a curve `C` on a surface is `I = int_C vec(J_S) xx vec(e_n) * d vec(r)` where `vec(e_n)` is a unit vector perpendicular to the surface and line vector element and `d vec(r)` is the differential of position vector `vec(r)`. See IEC 60050-121, item 121-11-12.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dLinearElectricCurrentDensityCoordinateFrame[1];
}
attribute linearElectricCurrentDensityVector: Cartesian3dLinearElectricCurrentDensityVector :> vectorQuantities;
attribute def Cartesian3dLinearElectricCurrentDensityCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: LinearElectricCurrentDensityUnit[3];
}
alias Cartesian3dLineicElectricCurrentCoordinateFrame for Cartesian3dLinearElectricCurrentDensityCoordinateFrame;
alias lineicElectricCurrentVector for linearElectricCurrentDensityVector;
/* IEC-80000-6 item 6-10 electric field strength */
attribute def ElectricFieldStrengthValue :> ScalarQuantityValue {
doc
/*
* source: item 6-10 electric field strength (magnitude)
* symbol(s): `E`
* application domain: generic
* name: ElectricFieldStrength
* quantity dimension: L^1*M^1*T^-3*I^-1
* measurement unit(s): V/m
* tensor order: 0
* definition: `vec(E) = vec(F)/q` where `vec(F)` is force (ISO 80000-4, item 4-9.1) and `q` is electric charge (item 6-2)
* remarks: See IEC 60050, item 121-11-18. `q` is the charge of a test particle at rest.
*/
attribute :>> num: Real;
attribute :>> mRef: ElectricFieldStrengthUnit[1];
}
attribute electricFieldStrength: ElectricFieldStrengthValue[*] nonunique :> scalarQuantities;
attribute def ElectricFieldStrengthUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
attribute def Cartesian3dElectricFieldStrengthVector :> VectorQuantityValue {
doc
/*
* source: item 6-10 electric field strength (vector)
* symbol(s): `vec(E)`
* application domain: generic
* name: ElectricFieldStrength
* quantity dimension: L^1*M^1*T^-3*I^-1
* measurement unit(s): V/m
* tensor order: 1
* definition: `vec(E) = vec(F)/q` where `vec(F)` is force (ISO 80000-4, item 4-9.1) and `q` is electric charge (item 6-2)
* remarks: See IEC 60050, item 121-11-18. `q` is the charge of a test particle at rest.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dElectricFieldStrengthCoordinateFrame[1];
}
attribute electricFieldStrengthVector: Cartesian3dElectricFieldStrengthVector :> vectorQuantities;
attribute def Cartesian3dElectricFieldStrengthCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: ElectricFieldStrengthUnit[3];
}
/* IEC-80000-6 item 6-11.1 electric potential */
attribute def ElectricPotentialValue :> ScalarQuantityValue {
doc
/*
* source: item 6-11.1 electric potential
* symbol(s): `V`, `φ`
* application domain: generic
* name: ElectricPotential
* quantity dimension: L^2*M^1*T^-3*I^-1
* measurement unit(s): V
* tensor order: 0
* definition: `-grad(V) = vec(E) + (del A)/(del t)` where `vec(E)` is electric field strength (item 610), `A` is magnetic vector potential (item 6-32) and `t` is time (ISO 80000-3, item 3-7)
* remarks: The electric potential is not unique, since any constant scalar field quantity can be added to it without changing its gradient. See IEC 60050-121, item 121-11-25.
*/
attribute :>> num: Real;
attribute :>> mRef: ElectricPotentialUnit[1];
}
attribute electricPotential: ElectricPotentialValue[*] nonunique :> scalarQuantities;
attribute def ElectricPotentialUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-11.2 electric potential difference */
attribute def ElectricPotentialDifferenceValue :> ScalarQuantityValue {
doc
/*
* source: item 6-11.2 electric potential difference
* symbol(s): `V_(ab)`
* application domain: generic
* name: ElectricPotentialDifference
* quantity dimension: L^2*M^1*T^-3*I^-1
* measurement unit(s): V
* tensor order: 0
* definition: `V_(ab) = int_(vec(r_a))^(vec(r_b)) (vec(E) + (del A)/(del t)) * d vec(r)` where `vec(E)` is electric field strength (item 610), `A` is magnetic vector potential (item 6-32), `t` is time (ISO 80000-3, item 3-7), and `vec(r)` is position vector (ISO 80000-3, item 3-1.11) along a given curve `C` from point `a` to point `b`
* remarks: `V_(ab) = V_a - V_b` where `V_a` and `V_b` are the potentials at points `a` and `b`, respectively. See IEC 60050-121, item 121-11-26.
*/
attribute :>> num: Real;
attribute :>> mRef: ElectricPotentialDifferenceUnit[1];
}
attribute electricPotentialDifference: ElectricPotentialDifferenceValue[*] nonunique :> scalarQuantities;
attribute def ElectricPotentialDifferenceUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-11.3 voltage, electric tension */
attribute voltage: ElectricPotentialDifferenceValue :> scalarQuantities {
doc
/*
* source: item 6-11.3 voltage, electric tension
* symbol(s): `U`, `U_(ab)`
* application domain: generic
* name: Voltage (specializes ElectricPotentialDifference)
* quantity dimension: L^2*M^1*T^-3*I^-1
* measurement unit(s): V
* tensor order: 0
* definition: in electric circuit theory, `U_(ab) = V_a - V_b` where `V_a` and `V_b` are the electric potentials (item 6-11.1) at points `a` and `b`, respectively
* remarks: For an electric field within a medium `U_(ab) = int_(vec(r_a) (C))^(vec(r_b)) vec(E) * d vec(r)` where `vec(E)` is electric field strength (item 6-10) and `vec(r)` is position vector (ISO 80000-3, item 3-1.11) along a given curve `C` from point `a` to point `b`. For an irrotational electric field, the voltage is independent of the path between the two points `a` and `b`. See IEC 60050-121, item 121-11-27.
*/
}
alias electricTension for voltage;
/* IEC-80000-6 item 6-12 electric flux density, electric displacement */
attribute def ElectricFluxDensityValue :> ScalarQuantityValue {
doc
/*
* source: item 6-12 electric flux density, electric displacement (magnitude)
* symbol(s): `D`
* application domain: generic
* name: ElectricFluxDensity
* quantity dimension: L^-2*T^1*I^1
* measurement unit(s): C/m^2
* tensor order: 0
* definition: `vec(D) = ε_0 vec(E) + vec(P)` where `ε_0` is the electric constant (item 6-14.1 ), `vec(E)` is electric field strength (item 6-10), and `vec(P)` is electric polarization (item 6-7)
* remarks: The electric flux density is related to electric charge density via `nabla * vec(D) = ρ` where `nabla * vec(D)` denotes the divergence of `vec(D)`. See IEC 60050-121, item 121-11-40.
*/
attribute :>> num: Real;
attribute :>> mRef: ElectricFluxDensityUnit[1];
}
attribute electricFluxDensity: ElectricFluxDensityValue[*] nonunique :> scalarQuantities;
attribute def ElectricFluxDensityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF, electricCurrentPF); }
}
attribute def Cartesian3dElectricFluxDensityVector :> VectorQuantityValue {
doc
/*
* source: item 6-12 electric flux density, electric displacement (vector)
* symbol(s): `vec(D)`
* application domain: generic
* name: ElectricFluxDensity
* quantity dimension: L^-2*T^1*I^1
* measurement unit(s): C/m^2
* tensor order: 1
* definition: `vec(D) = ε_0 vec(E) + vec(P)` where `ε_0` is the electric constant (item 6-14.1 ), `vec(E)` is electric field strength (item 6-10), and `vec(P)` is electric polarization (item 6-7)
* remarks: The electric flux density is related to electric charge density via `nabla * vec(D) = ρ` where `nabla * vec(D)` denotes the divergence of `vec(D)`. See IEC 60050-121, item 121-11-40.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dElectricFluxDensityCoordinateFrame[1];
}
attribute electricFluxDensityVector: Cartesian3dElectricFluxDensityVector :> vectorQuantities;
attribute def Cartesian3dElectricFluxDensityCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: ElectricFluxDensityUnit[3];
}
alias Cartesian3dElectricDisplacementCoordinateFrame for Cartesian3dElectricFluxDensityCoordinateFrame;
alias electricDisplacementVector for electricFluxDensityVector;
/* IEC-80000-6 item 6-13 capacitance */
attribute def CapacitanceValue :> ScalarQuantityValue {
doc
/*
* source: item 6-13 capacitance
* symbol(s): `C`
* application domain: generic
* name: Capacitance
* quantity dimension: L^-2*M^-1*T^4*I^2
* measurement unit(s): F
* tensor order: 0
* definition: `C = Q/U` where `Q` is electric charge (item 6-2) and `U` is voltage (6-11.3)
* remarks: See IEC 60050-131, item 131-12-13.
*/
attribute :>> num: Real;
attribute :>> mRef: CapacitanceUnit[1];
}
attribute capacitance: CapacitanceValue[*] nonunique :> scalarQuantities;
attribute def CapacitanceUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 4; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-14.1 electric constant, permittivity of vacuum */
attribute def ElectricConstantValue :> ScalarQuantityValue {
doc
/*
* source: item 6-14.1 electric constant, permittivity of vacuum
* symbol(s): `ε_0`
* application domain: generic
* name: ElectricConstant
* quantity dimension: L^-3*M^-1*T^4*I^2
* measurement unit(s): F/m
* tensor order: 0
* definition: `ε_0 = 1 / (μ_0 * c_0^2)` where `μ_0` is the magnetic constant (item 6-26.1) and `c_0` is the speed of light (item 6-35.2)
* remarks: `ε_0 = 8.854188 * 10^-12` F/m. See IEC 60050-121, item 121-11-03.
*/
attribute :>> num: Real;
attribute :>> mRef: ElectricConstantUnit[1];
}
attribute electricConstant: ElectricConstantValue[*] nonunique :> scalarQuantities;
attribute def ElectricConstantUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 4; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
alias PermittivityOfVacuumUnit for ElectricConstantUnit;
alias PermittivityOfVacuumValue for ElectricConstantValue;
alias permittivityOfVacuum for electricConstant;
/* IEC-80000-6 item 6-14.2 permittivity */
attribute def PermittivityValue :> ScalarQuantityValue {
doc
/*
* source: item 6-14.2 permittivity
* symbol(s): `ε`
* application domain: generic
* name: Permittivity
* quantity dimension: L^-3*M^-1*T^4*I^2
* measurement unit(s): F/m
* tensor order: 0
* definition: `vec(D) = ε vec(E)` where `vec(D)` is electric flux density (item 6-12) and `vec(E)` is electric field strength (item 6-10)
* remarks: This definition applies to an isotropic medium. For an anisotropic medium, permittivity is a second order tensor. See IEC 60050-121, item 121-12-12.
*/
attribute :>> num: Real;
attribute :>> mRef: PermittivityUnit[1];
}
attribute permittivity: PermittivityValue[*] nonunique :> scalarQuantities;
attribute def PermittivityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 4; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-15 relative permittivity */
attribute def RelativePermittivityValue :> DimensionOneValue {
doc
/*
* source: item 6-15 relative permittivity
* symbol(s): `ε_r`
* application domain: generic
* name: RelativePermittivity (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: `ε_r = ε / ε_0` where `ε` is permittivity (item 6-14.2) and `ε_0` is the electric constant (item 6-14.1)
* remarks: See IEC 60050-121, item 121-12-13.
*/
}
attribute relativePermittivity: RelativePermittivityValue :> scalarQuantities;
/* IEC-80000-6 item 6-16 electric susceptibility */
attribute def ElectricSusceptibilityValue :> DimensionOneValue {
doc
/*
* source: item 6-16 electric susceptibility
* symbol(s): `χ`
* application domain: generic
* name: ElectricSusceptibility (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: `vec(P) = ε_0 χ vec(E)` where `vec(P)` is electric polarization (item 6-7), `ε_0` is the electric constant (item 6-14. 1) and `vec(E)` is electric field strength (item 6-10)
* remarks: `χ = ε_r - 1`. The definition applies to an isotropic medium. For an anisotropic medium, electric susceptibility is a second order tensor. See IEC 60050-121, item 121-12-19.
*/
}
attribute electricSusceptibility: ElectricSusceptibilityValue :> scalarQuantities;
/* IEC-80000-6 item 6-17 electric flux */
attribute def ElectricFluxValue :> ScalarQuantityValue {
doc
/*
* source: item 6-17 electric flux
* symbol(s): `Ψ`
* application domain: generic
* name: ElectricFlux
* quantity dimension: T^1*I^1
* measurement unit(s): C
* tensor order: 0
* definition: `Ψ = int_S vec(D) * vec(e_n) dA` over a surface `S`, where `vec(D)` is electric flux (item 6-12) en `vec(e_n) dA` is the vector surface element (ISO 80000-3 item 3-3)
* remarks: See IEC 60050-121, item 121-11-41.
*/
attribute :>> num: Real;
attribute :>> mRef: ElectricFluxUnit[1];
}
attribute electricFlux: ElectricFluxValue[*] nonunique :> scalarQuantities;
attribute def ElectricFluxUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-18 displacement current density */
attribute def DisplacementCurrentDensityValue :> ScalarQuantityValue {
doc
/*
* source: item 6-18 displacement current density (magnitude)
* symbol(s): `J_D`
* application domain: generic
* name: DisplacementCurrentDensity
* quantity dimension: L^-2*I^1
* measurement unit(s): A/m^2
* tensor order: 0
* definition: `vec(J_D) = (del vec(D))/(del t)` where `vec(D)` is electric flux density (item 6-12) and `t` is time (ISO 80000-3, item 3-7)
* remarks: See IEC 60050-121, item 121-11-42.
*/
attribute :>> num: Real;
attribute :>> mRef: DisplacementCurrentDensityUnit[1];
}
attribute displacementCurrentDensity: DisplacementCurrentDensityValue[*] nonunique :> scalarQuantities;
attribute def DisplacementCurrentDensityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); }
}
attribute def Cartesian3dDisplacementCurrentDensityVector :> VectorQuantityValue {
doc
/*
* source: item 6-18 displacement current density (vector)
* symbol(s): `vec(J_D)`
* application domain: generic
* name: DisplacementCurrentDensity
* quantity dimension: L^-2*I^1
* measurement unit(s): A/m^2
* tensor order: 1
* definition: `vec(J_D) = (del vec(D))/(del t)` where `vec(D)` is electric flux density (item 6-12) and `t` is time (ISO 80000-3, item 3-7)
* remarks: See IEC 60050-121, item 121-11-42.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dDisplacementCurrentDensityCoordinateFrame[1];
}
attribute displacementCurrentDensityVector: Cartesian3dDisplacementCurrentDensityVector :> vectorQuantities;
attribute def Cartesian3dDisplacementCurrentDensityCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: DisplacementCurrentDensityUnit[3];
}
/* IEC-80000-6 item 6-19.1 displacement current */
attribute displacementCurrent: ElectricCurrentValue :> scalarQuantities {
doc
/*
* source: item 6-19.1 displacement current
* symbol(s): `I_D`
* application domain: generic
* name: DisplacementCurrent (specializes ElectricCurrent)
* quantity dimension: I^1
* measurement unit(s): A
* tensor order: 0
* definition: `I = int_S vec(J_D) * vec(e_n) dA` over a surface `S`, where `vec(J_D)` is displacement current density (item 6-18) en `vec(e_n) dA` is the vector surface element (ISO 80000-3 item 3-3)
* remarks: See IEC 60050-121, item 121-11-43.
*/
}
/* IEC-80000-6 item 6-19.2 total current */
attribute totalCurrent: ElectricCurrentValue :> scalarQuantities {
doc
/*
* source: item 6-19.2 total current
* symbol(s): `I_"tot"`, `I_t`
* application domain: generic
* name: TotalCurrent (specializes ElectricCurrent)
* quantity dimension: I^1
* measurement unit(s): A
* tensor order: 0
* definition: `I_(tot) = I + I_D` where `I` is electric current (item 6-1) and `I_D` is displacement current (item 6-19.1)
* remarks: See IEC 60050-121, item 121-11-45.
*/
}
/* IEC-80000-6 item 6-20 total current density */
attribute def TotalCurrentDensityValue :> ScalarQuantityValue {
doc
/*
* source: item 6-20 total current density (magnitude)
* symbol(s): `J_"tot"`, `J_t`
* application domain: generic
* name: TotalCurrentDensity
* quantity dimension: L^-2*I^1
* measurement unit(s): A/m^2
* tensor order: 0
* definition: `vec(J_(tot)) = vec(J) +vec(J_D)` where `vec(J)` is electric current density (item 6-8) and `vec(J_D)` is displacement current density (item 6-18)
* remarks: See IEC 60050-121, item 121-11-44.
*/
attribute :>> num: Real;
attribute :>> mRef: TotalCurrentDensityUnit[1];
}
attribute totalCurrentDensity: TotalCurrentDensityValue[*] nonunique :> scalarQuantities;
attribute def TotalCurrentDensityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); }
}
attribute def Cartesian3dTotalCurrentDensityVector :> VectorQuantityValue {
doc
/*
* source: item 6-20 total current density (vector)
* symbol(s): `vec(J_"tot")`, `vec(J_t)`
* application domain: generic
* name: TotalCurrentDensity
* quantity dimension: L^-2*I^1
* measurement unit(s): A/m^2
* tensor order: 1
* definition: `vec(J_(tot)) = vec(J) +vec(J_D)` where `vec(J)` is electric current density (item 6-8) and `vec(J_D)` is displacement current density (item 6-18)
* remarks: See IEC 60050-121, item 121-11-44.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dTotalCurrentDensityCoordinateFrame[1];
}
attribute totalCurrentDensityVector: Cartesian3dTotalCurrentDensityVector :> vectorQuantities;
attribute def Cartesian3dTotalCurrentDensityCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: TotalCurrentDensityUnit[3];
}
/* IEC-80000-6 item 6-21 magnetic flux density */
attribute def MagneticFluxDensityValue :> ScalarQuantityValue {
doc
/*
* source: item 6-21 magnetic flux density (magnitude)
* symbol(s): `B`
* application domain: generic
* name: MagneticFluxDensity
* quantity dimension: M^1*T^-2*I^-1
* measurement unit(s): T
* tensor order: 0
* definition: `vec(F) = q vec(v) xx vec(B)` where `vec(F)` is force (ISO 80000-4, item 4-9.1) and `vec(v)` is velocity (ISO 80000-3, item 3-8.1) of any test particle with electric charge `q` (item 6-2)
* remarks: The magnetic flux density has zero divergence, `nabla * vec(B) = 0`. See IEC 60050-121, item 121-11-19.
*/
attribute :>> num: Real;
attribute :>> mRef: MagneticFluxDensityUnit[1];
}
attribute magneticFluxDensity: MagneticFluxDensityValue[*] nonunique :> scalarQuantities;
attribute def MagneticFluxDensityUnit :> DerivedUnit {
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, electricCurrentPF); }
}
attribute def Cartesian3dMagneticFluxDensityVector :> VectorQuantityValue {
doc
/*
* source: item 6-21 magnetic flux density (vector)
* symbol(s): `vec(B)`
* application domain: generic
* name: MagneticFluxDensity
* quantity dimension: M^1*T^-2*I^-1
* measurement unit(s): T
* tensor order: 1
* definition: `vec(F) = q vec(v) xx vec(B)` where `vec(F)` is force (ISO 80000-4, item 4-9.1) and `vec(v)` is velocity (ISO 80000-3, item 3-8.1) of any test particle with electric charge `q` (item 6-2)
* remarks: The magnetic flux density has zero divergence, `nabla * vec(B) = 0`. See IEC 60050-121, item 121-11-19.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dMagneticFluxDensityCoordinateFrame[1];
}
attribute magneticFluxDensityVector: Cartesian3dMagneticFluxDensityVector :> vectorQuantities;
attribute def Cartesian3dMagneticFluxDensityCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: MagneticFluxDensityUnit[3];
}
/* IEC-80000-6 item 6-22.1 magnetic flux */
attribute def MagneticFluxValue :> ScalarQuantityValue {
doc
/*
* source: item 6-22.1 magnetic flux
* symbol(s): `Φ`
* application domain: generic
* name: MagneticFlux
* quantity dimension: L^2*M^1*T^-2*I^-1
* measurement unit(s): Wb
* tensor order: 0
* definition: `Φ = int_S vec(B) * vec(e_n) dA` over a surface `S`, where `vec(B)` is magnetic flux density (item 6-21) and `vec(e_n) dA` is vector surface element (ISO 80000-3, item 3-3)
* remarks: See IEC 60050-121, item 121-11-21.
*/
attribute :>> num: Real;
attribute :>> mRef: MagneticFluxUnit[1];
}
attribute magneticFlux: MagneticFluxValue[*] nonunique :> scalarQuantities;
attribute def MagneticFluxUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-22.2 linked flux */
attribute def LinkedFluxValue :> ScalarQuantityValue {
doc
/*
* source: item 6-22.2 linked flux
* symbol(s): `Ψ_m`, `Ψ`
* application domain: generic
* name: LinkedFlux
* quantity dimension: L^2*M^1*T^-2*I^-1
* measurement unit(s): Wb
* tensor order: 0
* definition: `Ψ_m = int_C vec(A) * d vec(r)` where `vec(A)` is magnetic vector potential (item 6-32) and `d vec(r)` is line vector element of the curve `C`
* remarks: Line vector element `d vec(r)` is the differential of position vector `vec(r)` (ISO 80000-3, item 3-1.11). See IEC 60050-121, item 121-11-24.
*/
attribute :>> num: Real;
attribute :>> mRef: LinkedFluxUnit[1];
}
attribute linkedFlux: LinkedFluxValue[*] nonunique :> scalarQuantities;
attribute def LinkedFluxUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-23 magnetic moment, magnetic area moment */
attribute def MagneticMomentValue :> ScalarQuantityValue {
doc
/*
* source: item 6-23 magnetic moment, magnetic area moment (magnitude)
* symbol(s): `m`
* application domain: generic
* name: MagneticMoment
* quantity dimension: L^2*I^1
* measurement unit(s): A*m^2
* tensor order: 0
* definition: `vec(m) = I vec(e_n) A` where `I` is electric current (item 6-1) in a small closed loop, `vec(e_n)` is a unit vector perpendicular to the loop, and `A` is area (ISO 80000-3, item 3-3) of the loop
* remarks: The magnetic moment of a substance within a domain is the vector sum of the magnetic moments of all entities included in the domain. See IEC 60050-121, items 121-11-49 and 121-11-50.
*/
attribute :>> num: Real;
attribute :>> mRef: MagneticMomentUnit[1];
}
attribute magneticMoment: MagneticMomentValue[*] nonunique :> scalarQuantities;
attribute def MagneticMomentUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); }
}
attribute def Cartesian3dMagneticMomentVector :> VectorQuantityValue {
doc
/*
* source: item 6-23 magnetic moment, magnetic area moment (vector)
* symbol(s): `vec(m)`
* application domain: generic
* name: MagneticMoment
* quantity dimension: L^2*I^1
* measurement unit(s): A*m^2
* tensor order: 1
* definition: `vec(m) = I vec(e_n) A` where `I` is electric current (item 6-1) in a small closed loop, `vec(e_n)` is a unit vector perpendicular to the loop, and `A` is area (ISO 80000-3, item 3-3) of the loop
* remarks: The magnetic moment of a substance within a domain is the vector sum of the magnetic moments of all entities included in the domain. See IEC 60050-121, items 121-11-49 and 121-11-50.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dMagneticMomentCoordinateFrame[1];
}
attribute magneticMomentVector: Cartesian3dMagneticMomentVector :> vectorQuantities;
attribute def Cartesian3dMagneticMomentCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: MagneticMomentUnit[3];
}
alias Cartesian3dMagneticAreaMomentCoordinateFrame for Cartesian3dMagneticMomentCoordinateFrame;
alias magneticAreaMomentVector for magneticMomentVector;
/* IEC-80000-6 item 6-24 magnetization */
attribute def MagnetizationValue :> ScalarQuantityValue {
doc
/*
* source: item 6-24 magnetization (magnitude)
* symbol(s): `M`, `H_i`
* application domain: generic
* name: Magnetization
* quantity dimension: L^-1*I^1
* measurement unit(s): A/m
* tensor order: 0
* definition: `vec(M) = (d vec(m)) / (dV)` where `vec(m)` is magnetic moment (item 6-23) of a substance in a domain with volume `V` (ISO 80000-3, item 3-4)
* remarks: See IEC 60050-121, item 121-11-52.
*/
attribute :>> num: Real;
attribute :>> mRef: MagnetizationUnit[1];
}
attribute magnetization: MagnetizationValue[*] nonunique :> scalarQuantities;
attribute def MagnetizationUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); }
}
attribute def Cartesian3dMagnetizationVector :> VectorQuantityValue {
doc
/*
* source: item 6-24 magnetization (vector)
* symbol(s): `vec(M)`, `vec(H_i)`
* application domain: generic
* name: Magnetization
* quantity dimension: L^-1*I^1
* measurement unit(s): A/m
* tensor order: 1
* definition: `vec(M) = (d vec(m)) / (dV)` where `vec(m)` is magnetic moment (item 6-23) of a substance in a domain with volume `V` (ISO 80000-3, item 3-4)
* remarks: See IEC 60050-121, item 121-11-52.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dMagnetizationCoordinateFrame[1];
}
attribute magnetizationVector: Cartesian3dMagnetizationVector :> vectorQuantities;
attribute def Cartesian3dMagnetizationCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: MagnetizationUnit[3];
}
/* IEC-80000-6 item 6-25 magnetic field strength, magnetizing field */
attribute def MagneticFieldStrengthValue :> ScalarQuantityValue {
doc
/*
* source: item 6-25 magnetic field strength, magnetizing field (magnitude)
* symbol(s): `H`
* application domain: generic
* name: MagneticFieldStrength
* quantity dimension: L^-1*I^1
* measurement unit(s): A/m
* tensor order: 0
* definition: `vec(H) = vec(B)/μ_0 - vec(M)` where `vec(B)` is magnetic flux density (item 6-21), `μ_0` is the magnetic constant (item 6-26.1), and `vec(M)` is magnetization (item 6-24)
* remarks: The magnetic field strength is related to the total current density `vec(J_(t ot))` (item 6-20) via `rot vec(H) = vec(J_(t ot))`. See IEC 60050-121, item 121-11-56.
*/
attribute :>> num: Real;
attribute :>> mRef: MagneticFieldStrengthUnit[1];
}
attribute magneticFieldStrength: MagneticFieldStrengthValue[*] nonunique :> scalarQuantities;
attribute def MagneticFieldStrengthUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); }
}
attribute def Cartesian3dMagneticFieldStrengthVector :> VectorQuantityValue {
doc
/*
* source: item 6-25 magnetic field strength, magnetizing field (vector)
* symbol(s): `vec(H)`
* application domain: generic
* name: MagneticFieldStrength
* quantity dimension: L^-1*I^1
* measurement unit(s): A/m
* tensor order: 1
* definition: `vec(H) = vec(B)/μ_0 - vec(M)` where `vec(B)` is magnetic flux density (item 6-21), `μ_0` is the magnetic constant (item 6-26.1), and `vec(M)` is magnetization (item 6-24)
* remarks: The magnetic field strength is related to the total current density `vec(J_(t ot))` (item 6-20) via `rot vec(H) = vec(J_(t ot))`. See IEC 60050-121, item 121-11-56.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dMagneticFieldStrengthCoordinateFrame[1];
}
attribute magneticFieldStrengthVector: Cartesian3dMagneticFieldStrengthVector :> vectorQuantities;
attribute def Cartesian3dMagneticFieldStrengthCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: MagneticFieldStrengthUnit[3];
}
alias Cartesian3dMagnetizingFieldCoordinateFrame for Cartesian3dMagneticFieldStrengthCoordinateFrame;
alias magnetizingFieldVector for magneticFieldStrengthVector;
/* IEC-80000-6 item 6-26.1 magnetic constant, permeability of vacuum */
attribute def MagneticConstantValue :> ScalarQuantityValue {
doc
/*
* source: item 6-26.1 magnetic constant, permeability of vacuum
* symbol(s): `μ_0`
* application domain: generic
* name: MagneticConstant
* quantity dimension: L^1*M^1*T^-2*I^-2
* measurement unit(s): H/m
* tensor order: 0
* definition: `μ_0 = 4 π * 10^-7` H/m
* remarks: For this definition of `μ_0` see item 6-1.a. `μ_0 ~~ 1.256637 * 10^-6` H/m. See IEC 60050-121, item 121-11-14.
*/
attribute :>> num: Real;
attribute :>> mRef: MagneticConstantUnit[1];
}
attribute magneticConstant: MagneticConstantValue[*] nonunique :> scalarQuantities;
attribute def MagneticConstantUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
alias PermeabilityOfVacuumUnit for MagneticConstantUnit;
alias PermeabilityOfVacuumValue for MagneticConstantValue;
alias permeabilityOfVacuum for magneticConstant;
/* IEC-80000-6 item 6-26.2 permeability */
attribute def PermeabilityValue :> ScalarQuantityValue {
doc
/*
* source: item 6-26.2 permeability
* symbol(s): `μ`
* application domain: generic
* name: Permeability
* quantity dimension: L^1*M^1*T^-2*I^-2
* measurement unit(s): H/m
* tensor order: 0
* definition: `vec(B) = μ vec(H)` where `vec(B)` is magnetic flux density (item 6-21) and `vec(H)` is magnetic field strength (item 6-25)
* remarks: This definition applies to an isotropic medium. For an anisotropic medium permeability is a second order tensor. See IEC 60050-121, item 121-12-28.
*/
attribute :>> num: Real;
attribute :>> mRef: PermeabilityUnit[1];
}
attribute permeability: PermeabilityValue[*] nonunique :> scalarQuantities;
attribute def PermeabilityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-27 relative permeability */
attribute def RelativePermeabilityValue :> DimensionOneValue {
doc
/*
* source: item 6-27 relative permeability
* symbol(s): `μ_r`
* application domain: generic
* name: RelativePermeability (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: `μ_r = μ / μ_0` where `μ` is permeability (item 6-24) and `μ_0` is the magnetic constant (item 6-26.1)
* remarks: See IEC 60050-121, item 121-12-29.
*/
}
attribute relativePermeability: RelativePermeabilityValue :> scalarQuantities;
/* IEC-80000-6 item 6-28 magnetic susceptibility */
attribute def MagneticSusceptibilityValue :> DimensionOneValue {
doc
/*
* source: item 6-28 magnetic susceptibility
* symbol(s): `κ`, `χ_m`
* application domain: generic
* name: MagneticSusceptibility (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: `vec(M) = κ vec(H)` where `vec(M)` is magnetization (item 6-24) and `vec(H)` is magnetic field strength (item 6-25)
* remarks: `κ = μ_r - 1` This definition applies to an isotropic medium. For an anisotropic medium magnetic susceptibility is a second order tensor. See IEC 60050-121, item 121-12-37.
*/
}
attribute magneticSusceptibility: MagneticSusceptibilityValue :> scalarQuantities;
/* IEC-80000-6 item 6-29 magnetic polarization */
attribute def MagneticPolarizationValue :> ScalarQuantityValue {
doc
/*
* source: item 6-29 magnetic polarization (magnitude)
* symbol(s): `J_m`
* application domain: generic
* name: MagneticPolarization
* quantity dimension: M^1*T^-2*I^-1
* measurement unit(s): T
* tensor order: 0
* definition: `vec(J_m) = μ_0 vec(M)` where `μ_0` is the magnetic constant (item 6-26.1), and `vec(M)` is magnetization (item 6-24)
* remarks: See IEC 60050-121, item 121-11-54.
*/
attribute :>> num: Real;
attribute :>> mRef: MagneticPolarizationUnit[1];
}
attribute magneticPolarization: MagneticPolarizationValue[*] nonunique :> scalarQuantities;
attribute def MagneticPolarizationUnit :> DerivedUnit {
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF, electricCurrentPF); }
}
attribute def Cartesian3dMagneticPolarizationVector :> VectorQuantityValue {
doc
/*
* source: item 6-29 magnetic polarization (vector)
* symbol(s): `vec(J_m)`
* application domain: generic
* name: MagneticPolarization
* quantity dimension: M^1*T^-2*I^-1
* measurement unit(s): T
* tensor order: 1
* definition: `vec(J_m) = μ_0 vec(M)` where `μ_0` is the magnetic constant (item 6-26.1), and `vec(M)` is magnetization (item 6-24)
* remarks: See IEC 60050-121, item 121-11-54.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dMagneticPolarizationCoordinateFrame[1];
}
attribute magneticPolarizationVector: Cartesian3dMagneticPolarizationVector :> vectorQuantities;
attribute def Cartesian3dMagneticPolarizationCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: MagneticPolarizationUnit[3];
}
/* IEC-80000-6 item 6-30 magnetic dipole moment */
attribute def MagneticDipoleMomentValue :> ScalarQuantityValue {
doc
/*
* source: item 6-30 magnetic dipole moment (magnitude)
* symbol(s): `j_m`, `j`
* application domain: generic
* name: MagneticDipoleMoment
* quantity dimension: L^3*M^1*T^-2*I^-1
* measurement unit(s): Wb*m
* tensor order: 0
* definition: `vec(j_m) = μ_0 vec(m)` where `μ_0` is the magnetic constant (item 6-26.1), and `vec(m)` is magnetic moment (item 6-23)
* remarks: See IEC 60050-121, item 121-11-55.
*/
attribute :>> num: Real;
attribute :>> mRef: MagneticDipoleMomentUnit[1];
}
attribute magneticDipoleMoment: MagneticDipoleMomentValue[*] nonunique :> scalarQuantities;
attribute def MagneticDipoleMomentUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
attribute def Cartesian3dMagneticDipoleMomentVector :> VectorQuantityValue {
doc
/*
* source: item 6-30 magnetic dipole moment (vector)
* symbol(s): `vec(j_m)`, `vec(j)`
* application domain: generic
* name: MagneticDipoleMoment
* quantity dimension: L^3*M^1*T^-2*I^-1
* measurement unit(s): Wb*m
* tensor order: 1
* definition: `vec(j_m) = μ_0 vec(m)` where `μ_0` is the magnetic constant (item 6-26.1), and `vec(m)` is magnetic moment (item 6-23)
* remarks: See IEC 60050-121, item 121-11-55.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dMagneticDipoleMomentCoordinateFrame[1];
}
attribute magneticDipoleMomentVector: Cartesian3dMagneticDipoleMomentVector :> vectorQuantities;
attribute def Cartesian3dMagneticDipoleMomentCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: MagneticDipoleMomentUnit[3];
}
/* IEC-80000-6 item 6-31 coercivity */
attribute def CoercivityValue :> ScalarQuantityValue {
doc
/*
* source: item 6-31 coercivity
* symbol(s): `H_(c,B)`
* application domain: generic
* name: Coercivity
* quantity dimension: L^-1*I^1
* measurement unit(s): A/m
* tensor order: 0
* definition: magnetic field strength (item 6-25) to be applied to bring the magnetic flux density (item 6-21) in a substance from its remaining magnetic flux density to zero
* remarks: See IEC 60050-121, item 121-12-69. Also called coercive field strength.
*/
attribute :>> num: Real;
attribute :>> mRef: CoercivityUnit[1];
}
attribute coercivity: CoercivityValue[*] nonunique :> scalarQuantities;
attribute def CoercivityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-32 magnetic vector potential */
attribute def MagneticVectorPotentialValue :> ScalarQuantityValue {
doc
/*
* source: item 6-32 magnetic vector potential (magnitude)
* symbol(s): `A`
* application domain: generic
* name: MagneticVectorPotential
* quantity dimension: L^1*M^1*T^-2*I^-1
* measurement unit(s): Wb/m
* tensor order: 0
* definition: `vec(B) = rot vec(A)` where `vec(B)` is magnetic flux density (item 6-21)
* remarks: The magnetic vector potential is not unique since any irrotational vector field can be added to it without changing its rotation. See IEC 60050-121, item 121-11-23.
*/
attribute :>> num: Real;
attribute :>> mRef: MagneticVectorPotentialUnit[1];
}
attribute magneticVectorPotential: MagneticVectorPotentialValue[*] nonunique :> scalarQuantities;
attribute def MagneticVectorPotentialUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
attribute def Cartesian3dMagneticVectorPotentialVector :> VectorQuantityValue {
doc
/*
* source: item 6-32 magnetic vector potential (vector)
* symbol(s): `vec(A)`
* application domain: generic
* name: MagneticVectorPotential
* quantity dimension: L^1*M^1*T^-2*I^-1
* measurement unit(s): Wb/m
* tensor order: 1
* definition: `vec(B) = rot vec(A)` where `vec(B)` is magnetic flux density (item 6-21)
* remarks: The magnetic vector potential is not unique since any irrotational vector field can be added to it without changing its rotation. See IEC 60050-121, item 121-11-23.
*/
attribute :>> isBound = true;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dMagneticVectorPotentialCoordinateFrame[1];
}
attribute magneticVectorPotentialVector: Cartesian3dMagneticVectorPotentialVector :> vectorQuantities;
attribute def Cartesian3dMagneticVectorPotentialCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = true;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: MagneticVectorPotentialUnit[3];
}
/* IEC-80000-6 item 6-33 electromagnetic energy density, volumic electromagnetic energy */
attribute def ElectromagneticEnergyDensityValue :> ScalarQuantityValue {
doc
/*
* source: item 6-33 electromagnetic energy density, volumic electromagnetic energy
* symbol(s): `w`
* application domain: generic
* name: ElectromagneticEnergyDensity
* quantity dimension: L^-1*M^1*T^-2
* measurement unit(s): J/m^3
* tensor order: 0
* definition: `ω = 1/2*(vec(E)*vec(D) + vec(B) * vec(H))` where `vec(E)` is electric field strength (item 6-10), `vec(D)` is electric flux density (item 6-12), `vec(B)` is magnetic flux density (item 6-21), and `vec(H)` is magnetic field strength (item 6-25)
* remarks: See IEC 60050-121, item 121-11-65.
*/
attribute :>> num: Real;
attribute :>> mRef: ElectromagneticEnergyDensityUnit[1];
}
attribute electromagneticEnergyDensity: ElectromagneticEnergyDensityValue[*] nonunique :> scalarQuantities;
attribute def ElectromagneticEnergyDensityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
}
alias VolumicElectromagneticEnergyUnit for ElectromagneticEnergyDensityUnit;
alias VolumicElectromagneticEnergyValue for ElectromagneticEnergyDensityValue;
alias volumicElectromagneticEnergy for electromagneticEnergyDensity;
/* IEC-80000-6 item 6-34 Poynting vector */
attribute def PoyntingVectorMagnitudeValue :> ScalarQuantityValue {
doc
/*
* source: item 6-34 Poynting vector (magnitude)
* symbol(s): `S`
* application domain: generic
* name: PoyntingVectorMagnitude
* quantity dimension: M^1*T^-3
* measurement unit(s): W/m^2
* tensor order: 0
* definition: `vec(S) = vec(E) xx vec(H)` where `vec(E)` is electric field strength (item 6-10) and `vec(H)` is magnetic field strength (item 6-25)
* remarks: See IEC 60050-121, item 121-11-66.
*/
attribute :>> num: Real;
attribute :>> mRef: PoyntingVectorMagnitudeUnit[1];
}
attribute poyntingVectorMagnitude: PoyntingVectorMagnitudeValue[*] nonunique :> scalarQuantities;
attribute def PoyntingVectorMagnitudeUnit :> DerivedUnit {
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); }
}
attribute def Cartesian3dPoyntingVector :> VectorQuantityValue {
doc
/*
* source: item 6-34 Poynting vector
* symbol(s): `vec(S)`
* application domain: generic
* name: PoyntingVector
* quantity dimension: M^1*T^-3
* measurement unit(s): W/m^2
* tensor order: 1
* definition: `vec(S) = vec(E) xx vec(H)` where `vec(E)` is electric field strength (item 6-10) and `vec(H)` is magnetic field strength (item 6-25)
* remarks: See IEC 60050-121, item 121-11-66.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dPoyntingCoordinateFrame[1];
}
attribute poyntingVector: Cartesian3dPoyntingVector :> vectorQuantities;
attribute def Cartesian3dPoyntingCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: PoyntingVectorMagnitudeUnit[3];
}
/* IEC-80000-6 item 6-35.1 phase speed of electromagnetic waves */
attribute def PhaseSpeedOfElectromagneticWavesValue :> ScalarQuantityValue {
doc
/*
* source: item 6-35.1 phase speed of electromagnetic waves
* symbol(s): `c`
* application domain: generic
* name: PhaseSpeedOfElectromagneticWaves
* quantity dimension: L^1*T^-1
* measurement unit(s): m/s
* tensor order: 0
* definition: `c = ω/k` where `ω` is angular frequency (ISO 80000-3, item 3-16) and `k` is angular wavenumber (ISO 80000-3, item 3-19)
* remarks: See ISO 80000-3, item 3-20.1.
*/
attribute :>> num: Real;
attribute :>> mRef: PhaseSpeedOfElectromagneticWavesUnit[1];
}
attribute phaseSpeedOfElectromagneticWaves: PhaseSpeedOfElectromagneticWavesValue[*] nonunique :> scalarQuantities;
attribute def PhaseSpeedOfElectromagneticWavesUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
}
/* IEC-80000-6 item 6-35.2 speed of light, light speed */
attribute def SpeedOfLightValue :> ScalarQuantityValue {
doc
/*
* source: item 6-35.2 speed of light, light speed
* symbol(s): `c_0`
* application domain: generic
* name: SpeedOfLight
* quantity dimension: L^1*T^-1
* measurement unit(s): m/s
* tensor order: 0
* definition: speed of electromagnetic waves in vacuum; `c_0 = 299792458` m/s
* remarks: For this value of `c_0` see ISO 80000-3, item 3-1.a. `c_0 = 1/sqrt(ε_0 μ_0)`. See IEC 60050-111, item 111-13-07.
*/
attribute :>> num: Real;
attribute :>> mRef: SpeedOfLightUnit[1];
}
attribute speedOfLight: SpeedOfLightValue[*] nonunique :> scalarQuantities;
attribute def SpeedOfLightUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
}
alias LightSpeedUnit for SpeedOfLightUnit;
alias LightSpeedValue for SpeedOfLightValue;
alias lightSpeed for speedOfLight;
/* IEC-80000-6 item 6-36 source voltage, source tension */
attribute def SourceVoltageValue :> ScalarQuantityValue {
doc
/*
* source: item 6-36 source voltage, source tension
* symbol(s): `U_s`
* application domain: generic
* name: SourceVoltage
* quantity dimension: L^2*M^1*T^-3*I^-1
* measurement unit(s): V
* tensor order: 0
* definition: voltage (item 6-11.3) between the two terminals of a voltage source when there is no electric current (item 6-1) through the source
* remarks: The name "electromotive force" with the abbreviation EMF and the symbol `E` is deprecated. See IEC 60050-131, item 131-12-22.
*/
attribute :>> num: Real;
attribute :>> mRef: SourceVoltageUnit[1];
}
attribute sourceVoltage: SourceVoltageValue[*] nonunique :> scalarQuantities;
attribute def SourceVoltageUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
alias SourceTensionUnit for SourceVoltageUnit;
alias SourceTensionValue for SourceVoltageValue;
alias sourceTension for sourceVoltage;
/* IEC-80000-6 item 6-37.1 scalar magnetic potential */
attribute scalarMagneticPotential: ElectricCurrentValue :> scalarQuantities {
doc
/*
* source: item 6-37.1 scalar magnetic potential
* symbol(s): `V_m`, `φ`
* application domain: generic
* name: ScalarMagneticPotential (specializes ElectricCurrent)
* quantity dimension: I^1
* measurement unit(s): A
* tensor order: 0
* definition: for an irrotational magnetic field strength `vec(H) = -nabla V_m` where `vec(H)` is magnetic field strength (item 6-25)
* remarks: The magnetic scalar potential is not unique since any constant scalar field can be added to it without changing its gradient. See IEC 60050-121, item 121-11-58.
*/
}
/* IEC-80000-6 item 6-37.2 magnetic tension */
attribute magneticTension: ElectricCurrentValue :> scalarQuantities {
doc
/*
* source: item 6-37.2 magnetic tension
* symbol(s): `U_m`
* application domain: generic
* name: MagneticTension (specializes ElectricCurrent)
* quantity dimension: I^1
* measurement unit(s): A
* tensor order: 0
* definition: `U_m = int_(vec(r_a) (C))^(vec(r_b)) vec(H) * d(vec(r))` where `vec(H)` is magnetic field strength (item 6-25) and `vec(r)` is position vector (ISO 80000-3, item 3-1.11) along a given curve `C` from point `a` to point `b`
* remarks: For an irrotational magnetic field strength this quantity is equal to the magnetic potential difference. See IEC 60050-121, item121-11-57.
*/
}
/* IEC-80000-6 item 6-37.3 magnetomotive force */
attribute def MagnetomotiveForceValue :> ScalarQuantityValue {
doc
/*
* source: item 6-37.3 magnetomotive force
* symbol(s): `F_m`
* application domain: generic
* name: MagnetomotiveForce
* quantity dimension: I^1
* measurement unit(s): A
* tensor order: 0
* definition: `F_m = oint_C vec(H) * d vec(r)` where `vec(H)` is magnetic field strength (item 6-25) and `vec(r)` is position vector (ISO 80000-3, item 3-1 .11) along a closed curve `C`
* remarks: This quantity name is under consideration . Compare remark to item 6-36. See IEC 60050-121, item 121-11-60.
*/
attribute :>> num: Real;
attribute :>> mRef: MagnetomotiveForceUnit[1];
}
attribute magnetomotiveForce: MagnetomotiveForceValue[*] nonunique :> scalarQuantities;
attribute def MagnetomotiveForceUnit :> DerivedUnit {
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = electricCurrentPF; }
}
/* IEC-80000-6 item 6-37.4 current linkage */
attribute currentLinkage: ElectricCurrentValue :> scalarQuantities {
doc
/*
* source: item 6-37.4 current linkage
* symbol(s): `Θ`
* application domain: generic
* name: CurrentLinkage (specializes ElectricCurrent)
* quantity dimension: I^1
* measurement unit(s): A
* tensor order: 0
* definition: net electric current (item 6-1) through a surface delimited by a closed loop
* remarks: When `Θ` results from `N` (item 6-38) equal electric currents `I` (item 6-1 ), then `Θ = N I`. See IEC 60050-121 , item 121 -11-46.
*/
}
/* IEC-80000-6 item 6-38 number of turns in a winding */
attribute numberOfTurnsInAWinding: CountValue :> scalarQuantities {
doc
/*
* source: item 6-38 number of turns in a winding
* symbol(s): `N`
* application domain: generic
* name: NumberOfTurnsInAWinding (specializes Count)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: number of turns in a winding (same as the quantity name)
* remarks: N may be non-integer number, see ISO 80000-3, item 3-14.
*/
}
/* IEC-80000-6 item 6-39 reluctance */
attribute def ReluctanceValue :> ScalarQuantityValue {
doc
/*
* source: item 6-39 reluctance
* symbol(s): `R_m`, `R`
* application domain: generic
* name: Reluctance
* quantity dimension: L^-2*M^-1*T^2*I^2
* measurement unit(s): H^-1
* tensor order: 0
* definition: `R_m = U_m/Φ` where `U_m` is magnetic tension (item 6-37.2) and `Φ` is magnetic flux (item 6-22 .1)
* remarks: See IEC 60050-131 , item 131-12-28.
*/
attribute :>> num: Real;
attribute :>> mRef: ReluctanceUnit[1];
}
attribute reluctance: ReluctanceValue[*] nonunique :> scalarQuantities;
attribute def ReluctanceUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-40 permeance */
attribute def PermeanceValue :> ScalarQuantityValue {
doc
/*
* source: item 6-40 permeance
* symbol(s): `Λ`
* application domain: generic
* name: Permeance
* quantity dimension: L^2*M^1*T^-2*I^-2
* measurement unit(s): H
* tensor order: 0
* definition: `Λ = 1/R_m` where `R_m` is reluctance (item 6-39)
* remarks: See IEC 60050-131 , item 131-12-29.
*/
attribute :>> num: Real;
attribute :>> mRef: PermeanceUnit[1];
}
attribute permeance: PermeanceValue[*] nonunique :> scalarQuantities;
attribute def PermeanceUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-41.1 inductance, self inductance */
attribute def InductanceValue :> ScalarQuantityValue {
doc
/*
* source: item 6-41.1 inductance, self inductance
* symbol(s): `L`, `L_m`
* application domain: generic
* name: Inductance
* quantity dimension: L^2*M^1*T^-2*I^-2
* measurement unit(s): H
* tensor order: 0
* definition: `L = Ψ / I` where `I` is an electric current (item 6-1) in a thin conducting loop and `Ψ` is the linked flux (item 6-22.2) caused by that electric current
* remarks: The name "self inductance" is used for the quantity associated to mutual inductance when `n = m`. See IEC 60050-131 , items 131-12-19 and 131 -12-35.
*/
attribute :>> num: Real;
attribute :>> mRef: InductanceUnit[1];
}
attribute inductance: InductanceValue[*] nonunique :> scalarQuantities;
attribute def InductanceUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
alias SelfInductanceUnit for InductanceUnit;
alias SelfInductanceValue for InductanceValue;
alias selfInductance for inductance;
/* IEC-80000-6 item 6-41.2 mutual inductance */
attribute mutualInductance: InductanceValue :> scalarQuantities {
doc
/*
* source: item 6-41.2 mutual inductance
* symbol(s): `L_(mn)`
* application domain: generic
* name: MutualInductance (specializes Inductance)
* quantity dimension: L^2*M^1*T^-2*I^-2
* measurement unit(s): H
* tensor order: 0
* definition: `L_(mn) = Ψ_m / I_n` where `I_n` is an electric current (item 6-1) in a thin conducting loop `n` and `Ψ_m` is the linked flux (item 6-22.2) caused by that electric current in another loop `m`
* remarks: `L_(mn) = L_(nm)`. For two loops , the symbol `M` is used for `L_(12)`. See IEC 60050-131, items 131-12-36.
*/
}
/* IEC-80000-6 item 6-42.1 coupling factor */
attribute def CouplingFactorValue :> DimensionOneValue {
doc
/*
* source: item 6-42.1 coupling factor
* symbol(s): `k`
* application domain: generic
* name: CouplingFactor (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for inductive coupling between two inductive elements `k = |L_(mn)| / sqrt(L_m L_n)` where `L_m` and `L_n` are their self inductances (item 6-41 .1 ), and `L_(mn)` is their mutual inductance (item 6-41.2)
* remarks: See IEC 60050-131 , item 131-12-41.
*/
}
attribute couplingFactor: CouplingFactorValue :> scalarQuantities;
/* IEC-80000-6 item 6-42.2 leakage factor */
attribute def LeakageFactorValue :> DimensionOneValue {
doc
/*
* source: item 6-42.2 leakage factor
* symbol(s): `σ`
* application domain: generic
* name: LeakageFactor (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: `σ = 1 - k^2` where `k` is the coupling factor (item 6-42 .1)
* remarks: See IEC 60050-131 , item 131-12-42.
*/
}
attribute leakageFactor: LeakageFactorValue :> scalarQuantities;
/* IEC-80000-6 item 6-43 conductivity */
attribute def ConductivityValue :> ScalarQuantityValue {
doc
/*
* source: item 6-43 conductivity
* symbol(s): `σ`, `γ`
* application domain: generic
* name: Conductivity
* quantity dimension: L^-3*M^-1*T^3*I^2
* measurement unit(s): S/m
* tensor order: 0
* definition: `vec(J) = σ vec(E)` where `vec(J)` is electric current density (item 6-8) and `vec(E)` is electric field strength (item 6-10)
* remarks: This definition applies to an isotropic medium. For an anisotropic medium `σ` is a second order tensor. `κ` is used in electrochemistry. See IEC 60050-121 , item 121-12-03.
*/
attribute :>> num: Real;
attribute :>> mRef: ConductivityUnit[1];
}
attribute conductivity: ConductivityValue[*] nonunique :> scalarQuantities;
attribute def ConductivityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-44 resistivity */
attribute def ResistivityValue :> ScalarQuantityValue {
doc
/*
* source: item 6-44 resistivity
* symbol(s): `ρ`
* application domain: generic
* name: Resistivity
* quantity dimension: L^3*M^1*T^-3*I^-2
* measurement unit(s): Ω*m
* tensor order: 0
* definition: `ρ = 1/σ` if is exists, where `σ` is conductivity (item 6-43)
* remarks: See IEC 60050-121, item 121-12-04.
*/
attribute :>> num: Real;
attribute :>> mRef: ResistivityUnit[1];
}
attribute resistivity: ResistivityValue[*] nonunique :> scalarQuantities;
attribute def ResistivityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-45 electric power, instantaneous power */
attribute electricPower: PowerValue :> scalarQuantities {
doc
/*
* source: item 6-45 electric power, instantaneous power
* symbol(s): `p`
* application domain: generic
* name: ElectricPower (specializes Power)
* quantity dimension: L^2*M^1*T^-3
* measurement unit(s): W
* tensor order: 0
* definition: `p = ui` where `u` is instantaneous voltage (item 6-11 .3) and `i` is instantaneous electric current (item 6-1)
* remarks: See IEC 60050-131 , item 131-11-30.
*/
}
alias instantaneousPower for electricPower;
/* IEC-80000-6 item 6-46 resistance */
attribute def ResistanceValue :> ScalarQuantityValue {
doc
/*
* source: item 6-46 resistance
* symbol(s): `R`
* application domain: generic
* name: Resistance
* quantity dimension: L^2*M^1*T^-3*I^-2
* measurement unit(s): Ω
* tensor order: 0
* definition: for resistive component `R = u i` where `u` is instantaneous voltage (item 6-11.3) and `i` is instantaneous electric current (item 6-1)
* remarks: For alternating current, see item 6-51.2. See IEC 60050-131, item 131-12-04.
*/
attribute :>> num: Real;
attribute :>> mRef: ResistanceUnit[1];
}
attribute resistance: ResistanceValue[*] nonunique :> scalarQuantities;
attribute def ResistanceUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-47 conductance */
attribute def ConductanceValue :> ScalarQuantityValue {
doc
/*
* source: item 6-47 conductance
* symbol(s): `G`
* application domain: generic
* name: Conductance
* quantity dimension: L^-2*M^-1*T^3*I^2
* measurement unit(s): S
* tensor order: 0
* definition: for resistive component `G = 1/R` where `R` is resistance (item 6-46)
* remarks: For alternating current, see item 6-52.2. See IEC 60050-131, item 131-12-06.
*/
attribute :>> num: Real;
attribute :>> mRef: ConductanceUnit[1];
}
attribute conductance: ConductanceValue[*] nonunique :> scalarQuantities;
attribute def ConductanceUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-48 phase difference */
attribute def PhaseDifferenceValue :> ScalarQuantityValue {
doc
/*
* source: item 6-48 phase difference
* symbol(s): `φ`
* application domain: generic
* name: PhaseDifference
* quantity dimension: 1
* measurement unit(s): rad
* tensor order: 0
* definition: `φ = φ_u - φ_i` where `φ_u` is the initial phase of the voltage (item 6-11 .3) and `φ_i` is the initial phase of the electric current (item 6-1)
* remarks: When `u = hat(U) cos(ωt - φ_u)`, `i = hat(I) cos(ωt - φ_i)` where `u` is the voltage (item 6-11 . 3) and `i` is the electric current (item 6-1 ), `ω` is angular frequency (ISO 80000-3, item 3-16) and `t` is time (ISO 80000-3, item 3-7), then `φ` is phase difference. For phase angle, see items 6-49 and 6-50.
*/
attribute :>> num: Real;
attribute :>> mRef: PhaseDifferenceUnit[1];
}
attribute phaseDifference: PhaseDifferenceValue[*] nonunique :> scalarQuantities;
attribute def PhaseDifferenceUnit :> DimensionOneUnit {
}
/* IEC-80000-6 item 6-49 electric current phasor */
attribute electricCurrentPhasor: ElectricCurrentValue :> scalarQuantities {
doc
/*
* source: item 6-49 electric current phasor
* symbol(s): `underline(I)`
* application domain: generic
* name: ElectricCurrentPhasor (specializes ElectricCurrent)
* quantity dimension: I^1
* measurement unit(s): A
* tensor order: 0
* definition: when `i = hat(I) cos(ωt + α)`, where `i` is the electric current (item 6-1 ), `ω` is angular frequency (ISO 80000-3, item 3-16), `t` is time (ISO 80000-3, item 3-7), and `α` is initial phase (ISO 80000-3, item 3-5), then `underline(l) = I e^(jα)`
* remarks: `underline(l)` is the complex representation of the electric current `i = hat(I) cos(ωt + α)`. `j` is the imaginary unit.
*/
}
/* IEC-80000-6 item 6-50 voltage phasor */
attribute voltagePhasor: ElectricPotentialDifferenceValue :> scalarQuantities {
doc
/*
* source: item 6-50 voltage phasor
* symbol(s): `underline(U)`
* application domain: generic
* name: VoltagePhasor (specializes ElectricPotentialDifference)
* quantity dimension: L^2*M^1*T^-3*I^-1
* measurement unit(s): V
* tensor order: 0
* definition: when `u = hat(U) cos(ωt + α)`, where `u` is the voltage (item 6-11.3 ), `ω` is angular frequency (ISO 80000-3, item 3-16), `t` is time (ISO 80000-3, item 3-7), and `α` is initial phase (ISO 80000-3, item 3-5), then `underline(U) = U e^(jα)`
* remarks: `underline(U)` is the complex representation of the voltage `u = hat(U) cos(ωt + α)`. `j` is the imaginary unit.
*/
}
/* IEC-80000-6 item 6-51.1 impedance, complex impedance */
attribute def ImpedanceValue :> ScalarQuantityValue {
doc
/*
* source: item 6-51.1 impedance, complex impedance
* symbol(s): `underline(Z)`
* application domain: generic
* name: Impedance
* quantity dimension: L^2*M^1*T^-3*I^-2
* measurement unit(s): Ω
* tensor order: 0
* definition: `underline(Z) = underline(U)/underline(I)` where `underline(U)` is the voltage phasor (item 6-50), and `underline(I)` is the electric current phasor (item 6-49)
* remarks: `underline(Z) = R + jX`, where `R` is resistance (item 6-51.2) and `X` is reactance (item 6-51 .3). `j` is the imaginary unit. `underline(Z) = |underline(Z)| e^(jφ)`. See IEC 60050-131 , item 131-12-43.
*/
attribute :>> num: Real;
attribute :>> mRef: ImpedanceUnit[1];
}
attribute impedance: ImpedanceValue[*] nonunique :> scalarQuantities;
attribute def ImpedanceUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
alias ComplexImpedanceUnit for ImpedanceUnit;
alias ComplexImpedanceValue for ImpedanceValue;
alias complexImpedance for impedance;
/* IEC-80000-6 item 6-51.2 resistance to alternating current */
attribute def ResistanceToAlternatingCurrentValue :> ScalarQuantityValue {
doc
/*
* source: item 6-51.2 resistance to alternating current
* symbol(s): `R`
* application domain: generic
* name: ResistanceToAlternatingCurrent
* quantity dimension: L^2*M^1*T^-3*I^-2
* measurement unit(s): Ω
* tensor order: 0
* definition: `R = "Re" underline(Z)` where `underline(Z)`, is impedance (item 6-5.1) and `"Re"` denotes the real part
* remarks: See IEC 60050-131, item 131-12-45.
*/
attribute :>> num: Real;
attribute :>> mRef: ResistanceToAlternatingCurrentUnit[1];
}
attribute resistanceToAlternatingCurrent: ResistanceToAlternatingCurrentValue[*] nonunique :> scalarQuantities;
attribute def ResistanceToAlternatingCurrentUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-51.3 reactance */
attribute def ReactanceValue :> ScalarQuantityValue {
doc
/*
* source: item 6-51.3 reactance
* symbol(s): `X`
* application domain: generic
* name: Reactance
* quantity dimension: L^2*M^1*T^-3*I^-2
* measurement unit(s): Ω
* tensor order: 0
* definition: `X = "Im" underline(Z)` where `underline(Z)`, is impedance (item 6-5.1) and `"Im"` denotes the imaginary part
* remarks: `X = ωL - 1/(ωC)`. See IEC 60050-131 , item 131-12-46.
*/
attribute :>> num: Real;
attribute :>> mRef: ReactanceUnit[1];
}
attribute reactance: ReactanceValue[*] nonunique :> scalarQuantities;
attribute def ReactanceUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-51.4 modulus of impedance */
attribute def ModulusOfImpedanceValue :> ScalarQuantityValue {
doc
/*
* source: item 6-51.4 modulus of impedance
* symbol(s): `Z`
* application domain: generic
* name: ModulusOfImpedance
* quantity dimension: L^2*M^1*T^-3*I^-2
* measurement unit(s): Ω
* tensor order: 0
* definition: `Z = |underline(Z)|` where `underline(Z)` is impedance (item 6-51.1)
* remarks: See IEC 60050-131 , item 131-12-44. Apparent impedance is defined more generally as the quotient of rms voltage and rms electric current; it is often denoted by `Z`.
*/
attribute :>> num: Real;
attribute :>> mRef: ModulusOfImpedanceUnit[1];
}
attribute modulusOfImpedance: ModulusOfImpedanceValue[*] nonunique :> scalarQuantities;
attribute def ModulusOfImpedanceUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-52.1 admittance, complex admittance */
attribute def AdmittanceValue :> ScalarQuantityValue {
doc
/*
* source: item 6-52.1 admittance, complex admittance
* symbol(s): `underline(Y)`
* application domain: generic
* name: Admittance
* quantity dimension: L^-2*M^-1*T^3*I^2
* measurement unit(s): S
* tensor order: 0
* definition: `underline(Y) = 1/underline(Z)` where `underline(Z)` is impedance (item 6-51.1)
* remarks: `underline(Y) = G + jB`, where `G` is conductance (item 6-52 .2) and `B` is susceptance (item 6-52 .3). `j` is the imaginary unit. `underline(Y) = |underline(Y)| e^-(jφ)`. See IEC 60050-131, item 131 -12-51.
*/
attribute :>> num: Real;
attribute :>> mRef: AdmittanceUnit[1];
}
attribute admittance: AdmittanceValue[*] nonunique :> scalarQuantities;
attribute def AdmittanceUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
alias ComplexAdmittanceUnit for AdmittanceUnit;
alias ComplexAdmittanceValue for AdmittanceValue;
alias complexAdmittance for admittance;
/* IEC-80000-6 item 6-52.2 conductance for alternating current */
attribute conductanceForAlternatingCurrent: ConductanceValue :> scalarQuantities {
doc
/*
* source: item 6-52.2 conductance for alternating current
* symbol(s): `G`
* application domain: generic
* name: ConductanceForAlternatingCurrent (specializes Conductance)
* quantity dimension: L^-2*M^-1*T^3*I^2
* measurement unit(s): S
* tensor order: 0
* definition: `G = "Re" underline(Y)` where I is admittance (item 6-52.1)
* remarks: See IEC 60050-131, item 131-12-53.
*/
}
/* IEC-80000-6 item 6-52.3 susceptance */
attribute def SusceptanceValue :> ScalarQuantityValue {
doc
/*
* source: item 6-52.3 susceptance
* symbol(s): `B`
* application domain: generic
* name: Susceptance
* quantity dimension: L^-2*M^-1*T^3*I^2
* measurement unit(s): S
* tensor order: 0
* definition: `B = "Im" underline(Y)` where `underline(Y)` is admittance (item 6-52.1)
* remarks: See IEC 60050-131, item 131-12-54.
*/
attribute :>> num: Real;
attribute :>> mRef: SusceptanceUnit[1];
}
attribute susceptance: SusceptanceValue[*] nonunique :> scalarQuantities;
attribute def SusceptanceUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-52.4 modulus of admittance */
attribute def ModulusOfAdmittanceValue :> ScalarQuantityValue {
doc
/*
* source: item 6-52.4 modulus of admittance
* symbol(s): `Y`
* application domain: generic
* name: ModulusOfAdmittance
* quantity dimension: L^-2*M^-1*T^3*I^2
* measurement unit(s): S
* tensor order: 0
* definition: `Y = |underline(Y)|` where `underline(Y)` is admittance (item 6-52.1)
* remarks: Apparent admittance is defined more generally as the quotient of rms electric current voltage and rms voltage; it is often denoted by `Y`.
*/
attribute :>> num: Real;
attribute :>> mRef: ModulusOfAdmittanceUnit[1];
}
attribute modulusOfAdmittance: ModulusOfAdmittanceValue[*] nonunique :> scalarQuantities;
attribute def ModulusOfAdmittanceUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 3; }
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF); }
}
/* IEC-80000-6 item 6-53 quality factor */
attribute def QualityFactorValue :> DimensionOneValue {
doc
/*
* source: item 6-53 quality factor
* symbol(s): `Q`
* application domain: generic
* name: QualityFactor (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: for non-radiating systems, if `underline(Z) = R + jX`, then `Q = |X|/R` where `underline(Z)` is impedance (item 6-51. 1), `R` is resistance (item 6-51 .2), and `X` is reactance (item 6-51.3)
* remarks: None.
*/
}
attribute qualityFactor: QualityFactorValue :> scalarQuantities;
/* IEC-80000-6 item 6-54 loss factor */
attribute def LossFactorValue :> DimensionOneValue {
doc
/*
* source: item 6-54 loss factor
* symbol(s): `d`
* application domain: generic
* name: LossFactor (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: `d = 1/Q` where `Q` quality factor (item 6-53)
* remarks: It is also named dissipation factor.
*/
}
attribute lossFactor: LossFactorValue :> scalarQuantities;
/* IEC-80000-6 item 6-55 loss angle */
attribute lossAngle: AngularMeasureValue :> scalarQuantities {
doc
/*
* source: item 6-55 loss angle
* symbol(s): `δ`
* application domain: generic
* name: LossAngle (specializes AngularMeasure)
* quantity dimension: 1
* measurement unit(s): rad
* tensor order: 0
* definition: `δ = arctan d` where `d` is loss factor (item 6-54)
* remarks: See IEC 60050-131 , item 131-12-49.
*/
}
/* IEC-80000-6 item 6-56 active power */
attribute activePower: PowerValue :> scalarQuantities {
doc
/*
* source: item 6-56 active power
* symbol(s): `P`
* application domain: generic
* name: ActivePower (specializes Power)
* quantity dimension: L^2*M^1*T^-3
* measurement unit(s): W
* tensor order: 0
* definition: `P = 1/T int_0^T p dt` where `T` is the period (ISO 80000-3, item 3-12) and `p` is instantaneous power (item 6-45)
* remarks: In complex notation, `P = "Re" underline(S)` where `underline(S)` is complex power (item 6-59).
*/
}
/* IEC-80000-6 item 6-57 apparent power */
attribute apparentPower: PowerValue :> scalarQuantities {
doc
/*
* source: item 6-57 apparent power
* symbol(s): ``, `underline(S)`, ``
* application domain: generic
* name: ApparentPower (specializes Power)
* quantity dimension: L^2*M^1*T^-3
* measurement unit(s): V*A
* tensor order: 0
* definition: `|underline(S)| = U I` where `U` is rms value of voltage (item 6-11.3 and `I` is rms value of electric current (item 6-1)
* remarks: `U = sqrt(1/T int_0^T u^2 dt)` and `I = sqrt(1/T int_0^T i^2 dt)`. When `u = sqrt 2 U cos(ωt)` and `i = sqrt 2 I cos(ωt - φ)`, then `P = U I cos(φ)`, `Q = U I sin(φ)` and `λ = cos(φ)` . See IEC 60050-131, item 131-11-41 .
*/
}
/* IEC-80000-6 item 6-58 power factor */
attribute def PowerFactorValue :> DimensionOneValue {
doc
/*
* source: item 6-58 power factor
* symbol(s): `λ`
* application domain: generic
* name: PowerFactor (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: `λ = |P|/|S|` where `P` is active power (item 6-56) and `S` is apparent power (item 6-57)
* remarks: See I EC 60050-131, item 131-11-46.
*/
}
attribute powerFactor: PowerFactorValue :> scalarQuantities;
/* IEC-80000-6 item 6-59 complex power */
attribute complexPower: PowerValue :> scalarQuantities {
doc
/*
* source: item 6-59 complex power
* symbol(s): `underline(S)`
* application domain: generic
* name: ComplexPower (specializes Power)
* quantity dimension: L^2*M^1*T^-3
* measurement unit(s): V*A
* tensor order: 0
* definition: `underline(S) = underline(U) * underline(I)^"*"` where `underline(U)` is voltage phasor (item 6-50) and `underline(I)^"*"` is the complex conjugate of the current phasor (item 6-49)
* remarks: `underline(S) = P + jQ` where `P` is active power (item 6-56) and `Q` is reactive power (item 6-60). See IEC 60050-131, item 131-11-39.
*/
}
/* IEC-80000-6 item 6-60 reactive power */
attribute reactivePower: PowerValue :> scalarQuantities {
doc
/*
* source: item 6-60 reactive power
* symbol(s): `Q`
* application domain: generic
* name: ReactivePower (specializes Power)
* quantity dimension: L^2*M^1*T^-3
* measurement unit(s): V*A, var
* tensor order: 0
* definition: `Q = "Im" underline(S)` where `underline(S)` is complex power (item 6-59)
* remarks: See IEC 60050-131, item 131-11-44.
*/
}
/* IEC-80000-6 item 6-61 non-active power */
attribute nonActivePower: PowerValue :> scalarQuantities {
doc
/*
* source: item 6-61 non-active power
* symbol(s): `Q'`
* application domain: generic
* name: NonActivePower (specializes Power)
* quantity dimension: L^2*M^1*T^-3
* measurement unit(s): V*A
* tensor order: 0
* definition: `Q' = sqrt(|underline(S)|^2 - P^2)` where `|underline(S)|` is apparent power (item 6-57) and `P` is active power (item 6-56)
* remarks: See IEC 60050-131, item 131-11-43.
*/
}
/* IEC-80000-6 item 6-62 active energy */
attribute activeEnergy: EnergyValue :> scalarQuantities {
doc
/*
* source: item 6-62 active energy
* symbol(s): `W`
* application domain: generic
* name: ActiveEnergy (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J, W*h
* tensor order: 0
* definition: `W = int_(t_1)^(t_2) p dt` where `p` is instantaneous power (item 6-45), and the integral interval is the time interval from `t_1` to `t_2`
* remarks: None.
*/
}
}
|