File size: 41,979 Bytes
5070096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
standard library package ISQInformation {
    doc
    /*
     * International System of Quantities and Units
     * Generated on 2022-08-07T14:44:27Z from standard IEC-80000-13:2008 "Information science and technology"
     * see also https://www.iso.org/obp/ui/#iso:std:iec:80000:-13:ed-1:v1:en
     * 
     * Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts,
     * with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks.
     * Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is 
     * defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system) 
     * or TensorMeasurementReference.
     */

    private import ScalarValues::Real;
    private import Quantities::*;
    private import MeasurementReferences::*;
    private import ISQBase::*;

    /* Quantity definitions referenced from other ISQ packages */
    private import ISQMechanics::PowerValue;
    private import ISQSpaceTime::FrequencyValue;
    private import ISQThermodynamics::EnergyValue;

    /* IEC-80000-13 item 13-1 traffic intensity */
    attribute def TrafficIntensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-1 traffic intensity
         * symbol(s): `A`
         * application domain: generic
         * name: TrafficIntensity
         * quantity dimension: 1
         * measurement unit(s): E
         * tensor order: 0
         * definition: number of simultaneously busy resources in a particular pool of resources
         * remarks: See IEC 60050-715, item 715-05-02. The name "erlang" was given to the traffic intensity unit in 1946 by the CCIF, in honour of the Danish mathematician, A. K. Erlang (1878-1929), who was the founder of traffic theory in telephony.
         */
        attribute :>> num: Real;
        attribute :>> mRef: TrafficIntensityUnit[1];
    }

    attribute trafficIntensity: TrafficIntensityValue[*] nonunique :> scalarQuantities;

    attribute def TrafficIntensityUnit :> DimensionOneUnit {
    }

    /* IEC-80000-13 item 13-2 traffic offered intensity */
    attribute def TrafficOfferedIntensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-2 traffic offered intensity
         * symbol(s): `A_o`
         * application domain: generic
         * name: TrafficOfferedIntensity
         * quantity dimension: 1
         * measurement unit(s): E
         * tensor order: 0
         * definition: traffic intensity (item 13-1) of the traffic that would have been generated by the users of a pool of resources if their use had not been limited by the size of the pool
         * remarks: See IEC 60050-715, item 715-05-05. See 13-1 for unit E.
         */
        attribute :>> num: Real;
        attribute :>> mRef: TrafficOfferedIntensityUnit[1];
    }

    attribute trafficOfferedIntensity: TrafficOfferedIntensityValue[*] nonunique :> scalarQuantities;

    attribute def TrafficOfferedIntensityUnit :> DimensionOneUnit {
    }

    /* IEC-80000-13 item 13-3 traffic carried intensity, traffic load */
    attribute def TrafficCarriedIntensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-3 traffic carried intensity, traffic load
         * symbol(s): `Y`
         * application domain: generic
         * name: TrafficCarriedIntensity
         * quantity dimension: 1
         * measurement unit(s): E
         * tensor order: 0
         * definition: traffic intensity (item 13-1) of the traffic served by a particular pool of resources
         * remarks: General practice is to estimate the traffic intensity as an average over a specified time interval, e.g. the busy hour. See IEC 60050-715, item 715-05-04. See 13-1 for unit E.
         */
        attribute :>> num: Real;
        attribute :>> mRef: TrafficCarriedIntensityUnit[1];
    }

    attribute trafficCarriedIntensity: TrafficCarriedIntensityValue[*] nonunique :> scalarQuantities;

    attribute def TrafficCarriedIntensityUnit :> DimensionOneUnit {
    }

    alias TrafficLoadUnit for TrafficCarriedIntensityUnit;
    alias TrafficLoadValue for TrafficCarriedIntensityValue;
    alias trafficLoad for trafficCarriedIntensity;

    /* IEC-80000-13 item 13-4 mean queue length */
    attribute def MeanQueueLengthValue :> DimensionOneValue {
        doc
        /*
         * source: item 13-4 mean queue length
         * symbol(s): `L`, `(Ω)`
         * application domain: generic
         * name: MeanQueueLength (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: time average of queue length
         * remarks: None.
         */
    }
    attribute meanQueueLength: MeanQueueLengthValue :> scalarQuantities;

    /* IEC-80000-13 item 13-5 loss probability */
    attribute def LossProbabilityValue :> DimensionOneValue {
        doc
        /*
         * source: item 13-5 loss probability
         * symbol(s): `B`
         * application domain: generic
         * name: LossProbability (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: probability for losing a call attempt
         * remarks: None.
         */
    }
    attribute lossProbability: LossProbabilityValue :> scalarQuantities;

    /* IEC-80000-13 item 13-6 waiting probability */
    attribute def WaitingProbabilityValue :> DimensionOneValue {
        doc
        /*
         * source: item 13-6 waiting probability
         * symbol(s): `W`
         * application domain: generic
         * name: WaitingProbability (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: probability for waiting for a resource
         * remarks: None.
         */
    }
    attribute waitingProbability: WaitingProbabilityValue :> scalarQuantities;

    /* IEC-80000-13 item 13-7 call intensity, calling rate */
    attribute def CallIntensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-7 call intensity, calling rate
         * symbol(s): `λ`
         * application domain: generic
         * name: CallIntensity
         * quantity dimension: T^-1
         * measurement unit(s): s^-1
         * tensor order: 0
         * definition: number of call attempts over a specified time interval divided by the duration (ISO 80000-3, item 3-7) of this interval
         * remarks: See IEC 60050-715, item 715-03-13.
         */
        attribute :>> num: Real;
        attribute :>> mRef: CallIntensityUnit[1];
    }

    attribute callIntensity: CallIntensityValue[*] nonunique :> scalarQuantities;

    attribute def CallIntensityUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    alias CallingRateUnit for CallIntensityUnit;
    alias CallingRateValue for CallIntensityValue;
    alias callingRate for callIntensity;

    /* IEC-80000-13 item 13-8 completed call intensity */
    attribute def CompletedCallIntensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-8 completed call intensity
         * symbol(s): `μ`
         * application domain: generic
         * name: CompletedCallIntensity
         * quantity dimension: T^-1
         * measurement unit(s): s^-1
         * tensor order: 0
         * definition: call intensity (item 13-7) for the call attempts that result in the transmission of an answer signal
         * remarks: For a definition of the complete call attempt, see IEC 60050-715, item 715-03-11.
         */
        attribute :>> num: Real;
        attribute :>> mRef: CompletedCallIntensityUnit[1];
    }

    attribute completedCallIntensity: CompletedCallIntensityValue[*] nonunique :> scalarQuantities;

    attribute def CompletedCallIntensityUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    /* IEC-80000-13 item 13-9 storage capacity, storage size */
    attribute def StorageCapacityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-9 storage capacity, storage size
         * symbol(s): `M`
         * application domain: generic
         * name: StorageCapacity
         * quantity dimension: 1
         * measurement unit(s): bit, o, B, 1
         * tensor order: 0
         * definition: amount of data that can be contained in a storage device, expressed as a number of specified data elements
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: StorageCapacityUnit[1];
    }

    attribute storageCapacity: StorageCapacityValue[*] nonunique :> scalarQuantities;

    attribute def StorageCapacityUnit :> DimensionOneUnit {
    }

    alias StorageSizeUnit for StorageCapacityUnit;
    alias StorageSizeValue for StorageCapacityValue;
    alias storageSize for storageCapacity;

    /* IEC-80000-13 item 13-10 equivalent binary storage capacity */
    attribute def EquivalentBinaryStorageCapacityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-10 equivalent binary storage capacity
         * symbol(s): `M_e`
         * application domain: generic
         * name: EquivalentBinaryStorageCapacity
         * quantity dimension: 1
         * measurement unit(s): bit, 1
         * tensor order: 0
         * definition: `M_e = log_2 n` where `n` is the number of possible states of the given device
         * remarks: The minimum storage capacity of a bit-organized storage device which would contain the amount of data in the given storage device is equal to the smallest integer greater than or equal to the equivalent binary storage capacity.
         */
        attribute :>> num: Real;
        attribute :>> mRef: EquivalentBinaryStorageCapacityUnit[1];
    }

    attribute equivalentBinaryStorageCapacity: EquivalentBinaryStorageCapacityValue[*] nonunique :> scalarQuantities;

    attribute def EquivalentBinaryStorageCapacityUnit :> DimensionOneUnit {
    }

    /* IEC-80000-13 item 13-11 transfer rate */
    attribute def TransferRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-11 transfer rate
         * symbol(s): `r`, `(ν)`
         * application domain: generic
         * name: TransferRate
         * quantity dimension: T^-1
         * measurement unit(s): o/s, B/s, s^-1
         * tensor order: 0
         * definition: quotient of the number of specified data elements transferred in a time interval by the duration of this interval
         * remarks: The symbol `ν` is the Greek letter nu. A subscript referring to a specified data element can be added to the symbol. EXAMPLES: digit rate, `r_d` or `ν_d` (see IEC 60050-702 and 60050-704, items 702-05-23 and 704-16-06); transfer rate for octets (or bytes), `r_o`, `r_B`, `ν_o`, or `ν_B`; binary digit rate or bit rate (item 13-13).
         */
        attribute :>> num: Real;
        attribute :>> mRef: TransferRateUnit[1];
    }

    attribute transferRate: TransferRateValue[*] nonunique :> scalarQuantities;

    attribute def TransferRateUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    /* IEC-80000-13 item 13-12 period of data elements */
    attribute periodOfDataElements: DurationValue :> scalarQuantities {
        doc
        /*
         * source: item 13-12 period of data elements
         * symbol(s): `T`
         * application domain: generic
         * name: PeriodOfDataElements (specializes Duration)
         * quantity dimension: T^1
         * measurement unit(s): s
         * tensor order: 0
         * definition: `T = 1/r`, where `r` is transfer rate (item 13-11) when the data elements are transmitted in series
         * remarks: A subscript referring to a specified data element can be added to the symbol. EXAMPLES: period of digits, `T_d`; period of octets (or bytes), `T_o` or `T_B`.
         */
    }

    /* IEC-80000-13 item 13-13 binary digit rate, bit rate */
    attribute def BinaryDigitRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-13 binary digit rate, bit rate
         * symbol(s): `r_b`, `r_"bit"`, `(ν_b)`, `(ν_"bit")`
         * application domain: generic
         * name: BinaryDigitRate
         * quantity dimension: T^-1
         * measurement unit(s): bit/s, s^-1
         * tensor order: 0
         * definition: transfer rate (item 13-11) where the data elements are binary digits
         * remarks: In English, the systematic name would be "transfer rate for binary digits". See IEC 60050-704, item 704-16-07. The bit per second may be combined with prefixes, for example megabit per second, symbol Mbit/s.
         */
        attribute :>> num: Real;
        attribute :>> mRef: BinaryDigitRateUnit[1];
    }

    attribute binaryDigitRate: BinaryDigitRateValue[*] nonunique :> scalarQuantities;

    attribute def BinaryDigitRateUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    alias BitRateUnit for BinaryDigitRateUnit;
    alias BitRateValue for BinaryDigitRateValue;
    alias bitRate for binaryDigitRate;

    /* IEC-80000-13 item 13-14 period of binary digits, bit period */
    attribute periodOfBinaryDigits: DurationValue :> scalarQuantities {
        doc
        /*
         * source: item 13-14 period of binary digits, bit period
         * symbol(s): `T_b`, `T_"bit"`
         * application domain: generic
         * name: PeriodOfBinaryDigits (specializes Duration)
         * quantity dimension: T^1
         * measurement unit(s): s
         * tensor order: 0
         * definition: `T_b = 1/r_b`, where `r_b` is the binary digit rate (item 13-13) when the binary digits are transmitted in series
         * remarks: None.
         */
    }

    alias bitPeriod for periodOfBinaryDigits;

    /* IEC-80000-13 item 13-15 equivalent binary digit rate, equivalent bit rate */
    attribute def EquivalentBinaryDigitRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-15 equivalent binary digit rate, equivalent bit rate
         * symbol(s): `r_e`, `(ν_e)`
         * application domain: generic
         * name: EquivalentBinaryDigitRate
         * quantity dimension: T^-1
         * measurement unit(s): bit/s, s^-1
         * tensor order: 0
         * definition: binary digit rate (item 13-13) equivalent to a transfer rate (item 13-11) for specified data elements
         * remarks: In English, the systematic name would be "equivalent binary transfer rate". See IEC 60050-704, item 704-17-05.
         */
        attribute :>> num: Real;
        attribute :>> mRef: EquivalentBinaryDigitRateUnit[1];
    }

    attribute equivalentBinaryDigitRate: EquivalentBinaryDigitRateValue[*] nonunique :> scalarQuantities;

    attribute def EquivalentBinaryDigitRateUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    alias EquivalentBitRateUnit for EquivalentBinaryDigitRateUnit;
    alias EquivalentBitRateValue for EquivalentBinaryDigitRateValue;
    alias equivalentBitRate for equivalentBinaryDigitRate;

    /* IEC-80000-13 item 13-16 modulation rate, line digit rate */
    attribute def ModulationRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-16 modulation rate, line digit rate
         * symbol(s): `r_m`, `u`
         * application domain: generic
         * name: ModulationRate
         * quantity dimension: T^-1
         * measurement unit(s): Bd, s^-1
         * tensor order: 0
         * definition: inverse of the shortest duration of a signal element
         * remarks: The term “modulation rate” is used in conventional telegraphy and data transmission. In isochronous digital transmission, the term "line digit rate" is generally used. See IEC 60050-704, item 704-17-03. Baud is a special name for the second to the power minus one for this quantity. The baud may be combined with prefixes, for example kilobaud, symbol kBd, megabaud, symbol MBd.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ModulationRateUnit[1];
    }

    attribute modulationRate: ModulationRateValue[*] nonunique :> scalarQuantities;

    attribute def ModulationRateUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    alias LineDigitRateUnit for ModulationRateUnit;
    alias LineDigitRateValue for ModulationRateValue;
    alias lineDigitRate for modulationRate;

    /* IEC-80000-13 item 13-17 quantizing distortion rate */
    attribute quantizingDistortionRate: PowerValue :> scalarQuantities {
        doc
        /*
         * source: item 13-17 quantizing distortion rate
         * symbol(s): `T_Q`
         * application domain: generic
         * name: QuantizingDistortionRate (specializes Power)
         * quantity dimension: L^2*M^1*T^-3
         * measurement unit(s): W
         * tensor order: 0
         * definition: distortion of a signal resulting from the process of quantizing an original signal when the values to be quantized are within the working range of the quantizer
         * remarks: See IEC 60050-704, item 704-24-13.
         */
    }

    /* IEC-80000-13 item 13-18 carrier power */
    attribute carrierPower: PowerValue :> scalarQuantities {
        doc
        /*
         * source: item 13-18 carrier power
         * symbol(s): `P_c`, `C`
         * application domain: generic
         * name: CarrierPower (specializes Power)
         * quantity dimension: L^2*M^1*T^-3
         * measurement unit(s): W
         * tensor order: 0
         * definition: power supplied to the antenna feed line by a radio transmitter taken under the condition of no modulation
         * remarks: See IEC 60050-713, item 713-09-20.
         */
    }

    /* IEC-80000-13 item 13-19 signal energy per binary digit */
    attribute signalEnergyPerBinaryDigit: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 13-19 signal energy per binary digit
         * symbol(s): `E_b`, `E_"bit"`
         * application domain: generic
         * name: SignalEnergyPerBinaryDigit (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J
         * tensor order: 0
         * definition: `E_b = P_c*T_b`, where `P_c` is carrier power (item 13-18) and `T_b` is period of binary digits (item 13-14)
         * remarks: None.
         */
    }

    /* IEC-80000-13 item 13-20 error probability */
    attribute def ErrorProbabilityValue :> DimensionOneValue {
        doc
        /*
         * source: item 13-20 error probability
         * symbol(s): `P`
         * application domain: generic
         * name: ErrorProbability (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: probability that a data element be incorrectly received
         * remarks: A subscript referring to a specified data element can be added to the symbol. EXAMPLES: error probability for binary digits or bit error probability, `P_b` or `P_bit`; block error probability, `P_bl`. The measured value is designated as "error ratio", whereas "error rate" is deprecated, for example, bit error ratio (BER), block error ratio. See IEC 60050-704 and IEC 60050-721.
         */
    }
    attribute errorProbability: ErrorProbabilityValue :> scalarQuantities;

    /* IEC-80000-13 item 13-21 Hamming distance */
    attribute hammingDistance: CountValue :> scalarQuantities {
        doc
        /*
         * source: item 13-21 Hamming distance
         * symbol(s): `d_n`
         * application domain: generic
         * name: HammingDistance (specializes Count)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: number of digit positions in which the corresponding digits of two words of the same length are different
         * remarks: See IEC 60050-721, item 721-08-25.
         */
    }

    /* IEC-80000-13 item 13-22 clock frequency, clock rate */
    attribute clockFrequency: FrequencyValue :> scalarQuantities {
        doc
        /*
         * source: item 13-22 clock frequency, clock rate
         * symbol(s): `f_"cl"`
         * application domain: generic
         * name: ClockFrequency (specializes Frequency)
         * quantity dimension: T^-1
         * measurement unit(s): Hz
         * tensor order: 0
         * definition: frequency at which a clock oscillates
         * remarks: None.
         */
    }

    alias clockRate for clockFrequency;

    /* IEC-80000-13 item 13-23 decision content */
    attribute def DecisionContentValue :> DimensionOneValue {
        doc
        /*
         * source: item 13-23 decision content
         * symbol(s): `D_a`
         * application domain: generic
         * name: DecisionContent (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: `D_a` = `log_a n`, where `a` is the number of possibilities at each decision and `n` the number of events
         * remarks: See ISO/IEC 2382-16, item 16.03.01. See also IEC 60027-3. When the same base is used for the same number of events then `D_a = H_0` , where `H_0` is maximum entropy (item 13-28).
         */
    }
    attribute decisionContent: DecisionContentValue :> scalarQuantities;

    /* IEC-80000-13 item 13-24 information content */
    attribute def InformationContentValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-24 information content
         * symbol(s): `I(x)`
         * application domain: generic
         * name: InformationContent
         * quantity dimension: 1
         * measurement unit(s): Sh, Hart, nat
         * tensor order: 0
         * definition: `I(x) = log_2(1/(p(x)))` Sh `= log(1/(p(x)))` Hart `= ln(1/(p(x)))` nat, where `p(x)` is the probability of event `x`
         * remarks: See ISO/IEC 2382-16, item 16.03.02. See also IEC 60027-3.
         */
        attribute :>> num: Real;
        attribute :>> mRef: InformationContentUnit[1];
    }

    attribute informationContent: InformationContentValue[*] nonunique :> scalarQuantities;

    attribute def InformationContentUnit :> DimensionOneUnit {
    }

    /* IEC-80000-13 item 13-25 entropy */
    attribute def EntropyForInformationScienceValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-25 entropy
         * symbol(s): `H`
         * application domain: information science
         * name: Entropy
         * quantity dimension: 1
         * measurement unit(s): Sh, Hart, nat
         * tensor order: 0
         * definition: `H(X) = sum_(i=1)^n p(x_i) I(x_i)` for the set `X = {x_1, ..., x_n}`, where `p(x_i)` is the probability and `I(x_i)` is the information content of event `x_i`
         * remarks: See ISO/IEC 2382-16, item 16.03.02. See also IEC 60027-3.
         */
        attribute :>> num: Real;
        attribute :>> mRef: EntropyForInformationScienceUnit[1];
    }

    attribute entropyForInformationScience: EntropyForInformationScienceValue[*] nonunique :> scalarQuantities;

    attribute def EntropyForInformationScienceUnit :> DimensionOneUnit {
    }

    /* IEC-80000-13 item 13-26 maximum entropy */
    attribute def MaximumEntropyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-26 maximum entropy
         * symbol(s): `H_0`, `H_"max"`
         * application domain: information science
         * name: MaximumEntropy
         * quantity dimension: 1
         * measurement unit(s): Sh, Hart, nat
         * tensor order: 0
         * definition: maximum entropy occurs when `p(x_i) = 1/n` for `i = 1, ..., n`
         * remarks: The maximum entropy is sometimes called "decision content" because the value is the same when the base is an integer, for the same number of events. See item 13-23.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MaximumEntropyUnit[1];
    }

    attribute maximumEntropy: MaximumEntropyValue[*] nonunique :> scalarQuantities;

    attribute def MaximumEntropyUnit :> DimensionOneUnit {
    }

    /* IEC-80000-13 item 13-27 relative entropy */
    attribute def RelativeEntropyValue :> DimensionOneValue {
        doc
        /*
         * source: item 13-27 relative entropy
         * symbol(s): `H_r`
         * application domain: information science
         * name: RelativeEntropy (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: `H_r = H / H_0`, where `H` is entropy (item 13-25) and `H_0` is maximum entropy (item 13-26)
         * remarks: See ISO/IEC 2382-16, item 16.03.04.
         */
    }
    attribute relativeEntropy: RelativeEntropyValue :> scalarQuantities;

    /* IEC-80000-13 item 13-28 redundancy */
    attribute def RedundancyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-28 redundancy
         * symbol(s): `R`
         * application domain: information science
         * name: Redundancy
         * quantity dimension: 1
         * measurement unit(s): Sh, Hart, nat
         * tensor order: 0
         * definition: `R = H_0 − H`, where `H` is entropy (item 13-25) and `H_0` is maximum entropy (item 13-26)
         * remarks: See ISO/IEC 2382-16, item 16.03.05.
         */
        attribute :>> num: Real;
        attribute :>> mRef: RedundancyUnit[1];
    }

    attribute redundancy: RedundancyValue[*] nonunique :> scalarQuantities;

    attribute def RedundancyUnit :> DimensionOneUnit {
    }

    /* IEC-80000-13 item 13-29 relative redundancy */
    attribute def RelativeRedundancyValue :> DimensionOneValue {
        doc
        /*
         * source: item 13-29 relative redundancy
         * symbol(s): `r`
         * application domain: information science
         * name: RelativeRedundancy (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: `r = R / H_0`, where `R` is redundancy (item 13-28) and `H_0` is maximum entropy (item 13-26)
         * remarks: See ISO/IEC 2382-16, item 16.04.01.
         */
    }
    attribute relativeRedundancy: RelativeRedundancyValue :> scalarQuantities;

    /* IEC-80000-13 item 13-30 joint information content */
    attribute def JointInformationContentValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-30 joint information content
         * symbol(s): `I(x,y)`
         * application domain: generic
         * name: JointInformationContent
         * quantity dimension: 1
         * measurement unit(s): Sh, Hart, nat
         * tensor order: 0
         * definition: `I(x,y) = log_2(1/(p(x,y)))` Sh `= log(1/(p(x,y)))` Hart `= ln(1/(p(x,y)))` nat, where `p(x,y)` is the joint probability of events `x` and `y`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: JointInformationContentUnit[1];
    }

    attribute jointInformationContent: JointInformationContentValue[*] nonunique :> scalarQuantities;

    attribute def JointInformationContentUnit :> DimensionOneUnit {
    }

    /* IEC-80000-13 item 13-31 conditional information content */
    attribute def ConditionalInformationContentValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-31 conditional information content
         * symbol(s): `I(x|y)`
         * application domain: generic
         * name: ConditionalInformationContent
         * quantity dimension: 1
         * measurement unit(s): Sh, Hart, nat
         * tensor order: 0
         * definition: information content (item 13-2) of event `x` under the condition that `y` has occurred: `I(x|y) = I(x,y) − I( y)`
         * remarks: See ISO/IEC 2382-16, item 16.04.02.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ConditionalInformationContentUnit[1];
    }

    attribute conditionalInformationContent: ConditionalInformationContentValue[*] nonunique :> scalarQuantities;

    attribute def ConditionalInformationContentUnit :> DimensionOneUnit {
    }

    /* IEC-80000-13 item 13-32 conditional entropy, mean conditional information content, average conditional information content */
    attribute def ConditionalEntropyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-32 conditional entropy, mean conditional information content, average conditional information content
         * symbol(s): `H(X|Y)`
         * application domain: generic
         * name: ConditionalEntropy
         * quantity dimension: 1
         * measurement unit(s): Sh, Hart, nat
         * tensor order: 0
         * definition: `H(X|Y) = sum_(i=1)^n sum_(j=1)^m p(x_i,y_j) I(x_i,y_j)` where `p(x_i,y_j)` is the joint probability of events `x_i` and `y_j`, and `I(x_i,y_j)` is conditional information content (item 13-31)
         * remarks: See ISO/IEC 2382-16, item 16.04.04.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ConditionalEntropyUnit[1];
    }

    attribute conditionalEntropy: ConditionalEntropyValue[*] nonunique :> scalarQuantities;

    attribute def ConditionalEntropyUnit :> DimensionOneUnit {
    }

    alias MeanConditionalInformationContentUnit for ConditionalEntropyUnit;
    alias MeanConditionalInformationContentValue for ConditionalEntropyValue;
    alias meanConditionalInformationContent for conditionalEntropy;

    alias AverageConditionalInformationContentUnit for ConditionalEntropyUnit;
    alias AverageConditionalInformationContentValue for ConditionalEntropyValue;
    alias averageConditionalInformationContent for conditionalEntropy;

    /* IEC-80000-13 item 13-33 equivocation */
    attribute def EquivocationValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-33 equivocation
         * symbol(s): `H(X|Y)`
         * application domain: generic
         * name: Equivocation
         * quantity dimension: 1
         * measurement unit(s): Sh, Hart, nat
         * tensor order: 0
         * definition: conditional entropy (item 13-32) of a set X of emitted characters given the set Y of received characters
         * remarks: Equivocation is a quantitative measure of the loss of information due to noise. See ISO/IEC 2382-16, item 16.04.05.
         */
        attribute :>> num: Real;
        attribute :>> mRef: EquivocationUnit[1];
    }

    attribute equivocation: EquivocationValue[*] nonunique :> scalarQuantities;

    attribute def EquivocationUnit :> DimensionOneUnit {
    }

    /* IEC-80000-13 item 13-34 irrelevance */
    attribute def IrrelevanceValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-34 irrelevance
         * symbol(s): `H(Y|X)`
         * application domain: generic
         * name: Irrelevance
         * quantity dimension: 1
         * measurement unit(s): Sh, Hart, nat
         * tensor order: 0
         * definition: conditional entropy (item 13-32) of a set `Y` of received characters given the set `X` of emitted characters: `H(Y|X) = H(X|Y) + H(Y) − H(X)`, where `H(X|Y)` is equivocation (item 13-33) and `H` is entropy (item 13-25)
         * remarks: Irrelevance is a quantitative measure of the information added to the emitted information due to distortion. See ISO/IEC 2382 16, item 16.04.06.
         */
        attribute :>> num: Real;
        attribute :>> mRef: IrrelevanceUnit[1];
    }

    attribute irrelevance: IrrelevanceValue[*] nonunique :> scalarQuantities;

    attribute def IrrelevanceUnit :> DimensionOneUnit {
    }

    /* IEC-80000-13 item 13-35 transinformation content */
    attribute def TransinformationContentValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-35 transinformation content
         * symbol(s): `T(x,y)`
         * application domain: generic
         * name: TransinformationContent
         * quantity dimension: 1
         * measurement unit(s): Sh, Hart, nat
         * tensor order: 0
         * definition: `T(x,y) = I(x) + I(y) − I(x,y)`, where `I(x)` and `I(y)` are the information contents (13-24) of events `x` and `y`, respectively, and `I(x,y)` is their joint information content (13-30)
         * remarks: See ISO/IEC 2382-16, item 16.04.07.
         */
        attribute :>> num: Real;
        attribute :>> mRef: TransinformationContentUnit[1];
    }

    attribute transinformationContent: TransinformationContentValue[*] nonunique :> scalarQuantities;

    attribute def TransinformationContentUnit :> DimensionOneUnit {
    }

    /* IEC-80000-13 item 13-36 mean transinformation content */
    attribute def MeanTransinformationContentValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-36 mean transinformation content
         * symbol(s): `T`
         * application domain: generic
         * name: MeanTransinformationContent
         * quantity dimension: 1
         * measurement unit(s): Sh, Hart, nat
         * tensor order: 0
         * definition: `T(X,Y) = sum_(i=1)^n sum_(j=1)^m p(x_i,y_j) T(x_i,y_j)` for the sets `X = {x_1, ..., x_n}`, `Y = {y_1, ..., y_m}`, where `p(x_i,y_j)` is the joint probability of events `x_i` and `y_j`, and `T(x_i,y_j)` is their transinformation content (item 13-35)
         * remarks: See ISO/IEC 2382-16, item 16.04.08. In practice, the unit "shannon per character" is generally used, and sometimes the units "hartley per character" and "natural unit per character".
         */
        attribute :>> num: Real;
        attribute :>> mRef: MeanTransinformationContentUnit[1];
    }

    attribute meanTransinformationContent: MeanTransinformationContentValue[*] nonunique :> scalarQuantities;

    attribute def MeanTransinformationContentUnit :> DimensionOneUnit {
    }

    /* IEC-80000-13 item 13-37 character mean entropy */
    attribute def CharacterMeanEntropyValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-37 character mean entropy
         * symbol(s): `H'`
         * application domain: generic
         * name: CharacterMeanEntropy
         * quantity dimension: 1
         * measurement unit(s): Sh, Hart, nat
         * tensor order: 0
         * definition: `H' = lim_(m->∞) H_m/m` where `H_m` is the entropy (item 13-3) of the set of all sequences of `m` characters
         * remarks: See ISO/IEC 2382-16, item 16.04.09.
         */
        attribute :>> num: Real;
        attribute :>> mRef: CharacterMeanEntropyUnit[1];
    }

    attribute characterMeanEntropy: CharacterMeanEntropyValue[*] nonunique :> scalarQuantities;

    attribute def CharacterMeanEntropyUnit :> DimensionOneUnit {
    }

    /* IEC-80000-13 item 13-38 average information rate */
    attribute def AverageInformationRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-38 average information rate
         * symbol(s): `H^"*"`
         * application domain: generic
         * name: AverageInformationRate
         * quantity dimension: T^-1
         * measurement unit(s): Sh/s, Hart/s, nat/s
         * tensor order: 0
         * definition: `H^"*" = (H')/(t(X))`, where `H'` is character mean entropy (item 13-37) and `t(X)` is the mean value of the duration of a character in the set `X`
         * remarks: See ISO/IEC 2382-16, item 16.04.10.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AverageInformationRateUnit[1];
    }

    attribute averageInformationRate: AverageInformationRateValue[*] nonunique :> scalarQuantities;

    attribute def AverageInformationRateUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    /* IEC-80000-13 item 13-39 character mean transinformation content */
    attribute def CharacterMeanTransinformationContentValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-39 character mean transinformation content
         * symbol(s): `T'`
         * application domain: generic
         * name: CharacterMeanTransinformationContent
         * quantity dimension: 1
         * measurement unit(s): Sh, Hart, nat
         * tensor order: 0
         * definition: `T' = lim_(m->∞) T_m/m` where `T_m` is the mean transinformation content (item 13-36) for all pairs of input and output sequences of `m` characters
         * remarks: See ISO/IEC 2382-16, item 16.04.11. In practice, the unit "shannon per character" is generally used, and sometimes the units "hartley per character" and "natural unit per character".
         */
        attribute :>> num: Real;
        attribute :>> mRef: CharacterMeanTransinformationContentUnit[1];
    }

    attribute characterMeanTransinformationContent: CharacterMeanTransinformationContentValue[*] nonunique :> scalarQuantities;

    attribute def CharacterMeanTransinformationContentUnit :> DimensionOneUnit {
    }

    /* IEC-80000-13 item 13-40 average transinformation rate */
    attribute def AverageTransinformationRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-40 average transinformation rate
         * symbol(s): `T^"*"`
         * application domain: generic
         * name: AverageTransinformationRate
         * quantity dimension: T^-1
         * measurement unit(s): Sh/s, Hart/s, nat/s
         * tensor order: 0
         * definition: `T^"*" =  (T')/(sum_(i=1)^n sum_(j=1)^m p(x_i,y_j) t(x_i,y_j) )`, where `T'` is character mean transinformation content (item 13-39) and `t(x_i,y_j)` is the mean duration of the pair of characters `(x_i,y_j)` with joint probability `p(x_i,y_j)`
         * remarks: See ISO/IEC 2382-16, item 16.04.12.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AverageTransinformationRateUnit[1];
    }

    attribute averageTransinformationRate: AverageTransinformationRateValue[*] nonunique :> scalarQuantities;

    attribute def AverageTransinformationRateUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

    /* IEC-80000-13 item 13-41 channel capacity per character, channel capacity */
    attribute def ChannelCapacityPerCharacterValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-41 channel capacity per character, channel capacity
         * symbol(s): `C'`
         * application domain: generic
         * name: ChannelCapacityPerCharacter
         * quantity dimension: 1
         * measurement unit(s): Sh, Hart, nat
         * tensor order: 0
         * definition: `C' = max T'`, where `T'` is character mean transinformation content (item 13-39)
         * remarks: See ISO/IEC 2382-16, item 16.04.13. In practice, the unit "shannon per character" is generally used, and sometimes the units "hartley per character" and "natural unit per character".
         */
        attribute :>> num: Real;
        attribute :>> mRef: ChannelCapacityPerCharacterUnit[1];
    }

    attribute channelCapacityPerCharacter: ChannelCapacityPerCharacterValue[*] nonunique :> scalarQuantities;

    attribute def ChannelCapacityPerCharacterUnit :> DimensionOneUnit {
    }

    alias ChannelCapacityUnit for ChannelCapacityPerCharacterUnit;
    alias ChannelCapacityValue for ChannelCapacityPerCharacterValue;
    alias channelCapacity for channelCapacityPerCharacter;

    /* IEC-80000-13 item 13-42 channel time capacity */
    attribute def ChannelTimeCapacityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 13-42 channel time capacity
         * symbol(s): `C^"*"`
         * application domain: generic
         * name: ChannelTimeCapacity
         * quantity dimension: T^-1
         * measurement unit(s): Sh/s, Hart/s, nat/s
         * tensor order: 0
         * definition: `C^"*" = max T^"*"`, where `T^"*"` is average transinformation rate (item 13-40)
         * remarks: See ISO/IEC 2382-16, item 16.04.13. Note for SysML ISQ: Alias "channel capacity", that was present in IEC 80000-12:2008, has been removed as it duplicates the alias of channel capacity per character (item 13-41).
         */
        attribute :>> num: Real;
        attribute :>> mRef: ChannelTimeCapacityUnit[1];
    }

    attribute channelTimeCapacity: ChannelTimeCapacityValue[*] nonunique :> scalarQuantities;

    attribute def ChannelTimeCapacityUnit :> DerivedUnit {
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
    }

}