File size: 41,979 Bytes
5070096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 |
standard library package ISQInformation {
doc
/*
* International System of Quantities and Units
* Generated on 2022-08-07T14:44:27Z from standard IEC-80000-13:2008 "Information science and technology"
* see also https://www.iso.org/obp/ui/#iso:std:iec:80000:-13:ed-1:v1:en
*
* Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts,
* with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks.
* Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is
* defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system)
* or TensorMeasurementReference.
*/
private import ScalarValues::Real;
private import Quantities::*;
private import MeasurementReferences::*;
private import ISQBase::*;
/* Quantity definitions referenced from other ISQ packages */
private import ISQMechanics::PowerValue;
private import ISQSpaceTime::FrequencyValue;
private import ISQThermodynamics::EnergyValue;
/* IEC-80000-13 item 13-1 traffic intensity */
attribute def TrafficIntensityValue :> ScalarQuantityValue {
doc
/*
* source: item 13-1 traffic intensity
* symbol(s): `A`
* application domain: generic
* name: TrafficIntensity
* quantity dimension: 1
* measurement unit(s): E
* tensor order: 0
* definition: number of simultaneously busy resources in a particular pool of resources
* remarks: See IEC 60050-715, item 715-05-02. The name "erlang" was given to the traffic intensity unit in 1946 by the CCIF, in honour of the Danish mathematician, A. K. Erlang (1878-1929), who was the founder of traffic theory in telephony.
*/
attribute :>> num: Real;
attribute :>> mRef: TrafficIntensityUnit[1];
}
attribute trafficIntensity: TrafficIntensityValue[*] nonunique :> scalarQuantities;
attribute def TrafficIntensityUnit :> DimensionOneUnit {
}
/* IEC-80000-13 item 13-2 traffic offered intensity */
attribute def TrafficOfferedIntensityValue :> ScalarQuantityValue {
doc
/*
* source: item 13-2 traffic offered intensity
* symbol(s): `A_o`
* application domain: generic
* name: TrafficOfferedIntensity
* quantity dimension: 1
* measurement unit(s): E
* tensor order: 0
* definition: traffic intensity (item 13-1) of the traffic that would have been generated by the users of a pool of resources if their use had not been limited by the size of the pool
* remarks: See IEC 60050-715, item 715-05-05. See 13-1 for unit E.
*/
attribute :>> num: Real;
attribute :>> mRef: TrafficOfferedIntensityUnit[1];
}
attribute trafficOfferedIntensity: TrafficOfferedIntensityValue[*] nonunique :> scalarQuantities;
attribute def TrafficOfferedIntensityUnit :> DimensionOneUnit {
}
/* IEC-80000-13 item 13-3 traffic carried intensity, traffic load */
attribute def TrafficCarriedIntensityValue :> ScalarQuantityValue {
doc
/*
* source: item 13-3 traffic carried intensity, traffic load
* symbol(s): `Y`
* application domain: generic
* name: TrafficCarriedIntensity
* quantity dimension: 1
* measurement unit(s): E
* tensor order: 0
* definition: traffic intensity (item 13-1) of the traffic served by a particular pool of resources
* remarks: General practice is to estimate the traffic intensity as an average over a specified time interval, e.g. the busy hour. See IEC 60050-715, item 715-05-04. See 13-1 for unit E.
*/
attribute :>> num: Real;
attribute :>> mRef: TrafficCarriedIntensityUnit[1];
}
attribute trafficCarriedIntensity: TrafficCarriedIntensityValue[*] nonunique :> scalarQuantities;
attribute def TrafficCarriedIntensityUnit :> DimensionOneUnit {
}
alias TrafficLoadUnit for TrafficCarriedIntensityUnit;
alias TrafficLoadValue for TrafficCarriedIntensityValue;
alias trafficLoad for trafficCarriedIntensity;
/* IEC-80000-13 item 13-4 mean queue length */
attribute def MeanQueueLengthValue :> DimensionOneValue {
doc
/*
* source: item 13-4 mean queue length
* symbol(s): `L`, `(Ω)`
* application domain: generic
* name: MeanQueueLength (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: time average of queue length
* remarks: None.
*/
}
attribute meanQueueLength: MeanQueueLengthValue :> scalarQuantities;
/* IEC-80000-13 item 13-5 loss probability */
attribute def LossProbabilityValue :> DimensionOneValue {
doc
/*
* source: item 13-5 loss probability
* symbol(s): `B`
* application domain: generic
* name: LossProbability (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: probability for losing a call attempt
* remarks: None.
*/
}
attribute lossProbability: LossProbabilityValue :> scalarQuantities;
/* IEC-80000-13 item 13-6 waiting probability */
attribute def WaitingProbabilityValue :> DimensionOneValue {
doc
/*
* source: item 13-6 waiting probability
* symbol(s): `W`
* application domain: generic
* name: WaitingProbability (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: probability for waiting for a resource
* remarks: None.
*/
}
attribute waitingProbability: WaitingProbabilityValue :> scalarQuantities;
/* IEC-80000-13 item 13-7 call intensity, calling rate */
attribute def CallIntensityValue :> ScalarQuantityValue {
doc
/*
* source: item 13-7 call intensity, calling rate
* symbol(s): `λ`
* application domain: generic
* name: CallIntensity
* quantity dimension: T^-1
* measurement unit(s): s^-1
* tensor order: 0
* definition: number of call attempts over a specified time interval divided by the duration (ISO 80000-3, item 3-7) of this interval
* remarks: See IEC 60050-715, item 715-03-13.
*/
attribute :>> num: Real;
attribute :>> mRef: CallIntensityUnit[1];
}
attribute callIntensity: CallIntensityValue[*] nonunique :> scalarQuantities;
attribute def CallIntensityUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
alias CallingRateUnit for CallIntensityUnit;
alias CallingRateValue for CallIntensityValue;
alias callingRate for callIntensity;
/* IEC-80000-13 item 13-8 completed call intensity */
attribute def CompletedCallIntensityValue :> ScalarQuantityValue {
doc
/*
* source: item 13-8 completed call intensity
* symbol(s): `μ`
* application domain: generic
* name: CompletedCallIntensity
* quantity dimension: T^-1
* measurement unit(s): s^-1
* tensor order: 0
* definition: call intensity (item 13-7) for the call attempts that result in the transmission of an answer signal
* remarks: For a definition of the complete call attempt, see IEC 60050-715, item 715-03-11.
*/
attribute :>> num: Real;
attribute :>> mRef: CompletedCallIntensityUnit[1];
}
attribute completedCallIntensity: CompletedCallIntensityValue[*] nonunique :> scalarQuantities;
attribute def CompletedCallIntensityUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
/* IEC-80000-13 item 13-9 storage capacity, storage size */
attribute def StorageCapacityValue :> ScalarQuantityValue {
doc
/*
* source: item 13-9 storage capacity, storage size
* symbol(s): `M`
* application domain: generic
* name: StorageCapacity
* quantity dimension: 1
* measurement unit(s): bit, o, B, 1
* tensor order: 0
* definition: amount of data that can be contained in a storage device, expressed as a number of specified data elements
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: StorageCapacityUnit[1];
}
attribute storageCapacity: StorageCapacityValue[*] nonunique :> scalarQuantities;
attribute def StorageCapacityUnit :> DimensionOneUnit {
}
alias StorageSizeUnit for StorageCapacityUnit;
alias StorageSizeValue for StorageCapacityValue;
alias storageSize for storageCapacity;
/* IEC-80000-13 item 13-10 equivalent binary storage capacity */
attribute def EquivalentBinaryStorageCapacityValue :> ScalarQuantityValue {
doc
/*
* source: item 13-10 equivalent binary storage capacity
* symbol(s): `M_e`
* application domain: generic
* name: EquivalentBinaryStorageCapacity
* quantity dimension: 1
* measurement unit(s): bit, 1
* tensor order: 0
* definition: `M_e = log_2 n` where `n` is the number of possible states of the given device
* remarks: The minimum storage capacity of a bit-organized storage device which would contain the amount of data in the given storage device is equal to the smallest integer greater than or equal to the equivalent binary storage capacity.
*/
attribute :>> num: Real;
attribute :>> mRef: EquivalentBinaryStorageCapacityUnit[1];
}
attribute equivalentBinaryStorageCapacity: EquivalentBinaryStorageCapacityValue[*] nonunique :> scalarQuantities;
attribute def EquivalentBinaryStorageCapacityUnit :> DimensionOneUnit {
}
/* IEC-80000-13 item 13-11 transfer rate */
attribute def TransferRateValue :> ScalarQuantityValue {
doc
/*
* source: item 13-11 transfer rate
* symbol(s): `r`, `(ν)`
* application domain: generic
* name: TransferRate
* quantity dimension: T^-1
* measurement unit(s): o/s, B/s, s^-1
* tensor order: 0
* definition: quotient of the number of specified data elements transferred in a time interval by the duration of this interval
* remarks: The symbol `ν` is the Greek letter nu. A subscript referring to a specified data element can be added to the symbol. EXAMPLES: digit rate, `r_d` or `ν_d` (see IEC 60050-702 and 60050-704, items 702-05-23 and 704-16-06); transfer rate for octets (or bytes), `r_o`, `r_B`, `ν_o`, or `ν_B`; binary digit rate or bit rate (item 13-13).
*/
attribute :>> num: Real;
attribute :>> mRef: TransferRateUnit[1];
}
attribute transferRate: TransferRateValue[*] nonunique :> scalarQuantities;
attribute def TransferRateUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
/* IEC-80000-13 item 13-12 period of data elements */
attribute periodOfDataElements: DurationValue :> scalarQuantities {
doc
/*
* source: item 13-12 period of data elements
* symbol(s): `T`
* application domain: generic
* name: PeriodOfDataElements (specializes Duration)
* quantity dimension: T^1
* measurement unit(s): s
* tensor order: 0
* definition: `T = 1/r`, where `r` is transfer rate (item 13-11) when the data elements are transmitted in series
* remarks: A subscript referring to a specified data element can be added to the symbol. EXAMPLES: period of digits, `T_d`; period of octets (or bytes), `T_o` or `T_B`.
*/
}
/* IEC-80000-13 item 13-13 binary digit rate, bit rate */
attribute def BinaryDigitRateValue :> ScalarQuantityValue {
doc
/*
* source: item 13-13 binary digit rate, bit rate
* symbol(s): `r_b`, `r_"bit"`, `(ν_b)`, `(ν_"bit")`
* application domain: generic
* name: BinaryDigitRate
* quantity dimension: T^-1
* measurement unit(s): bit/s, s^-1
* tensor order: 0
* definition: transfer rate (item 13-11) where the data elements are binary digits
* remarks: In English, the systematic name would be "transfer rate for binary digits". See IEC 60050-704, item 704-16-07. The bit per second may be combined with prefixes, for example megabit per second, symbol Mbit/s.
*/
attribute :>> num: Real;
attribute :>> mRef: BinaryDigitRateUnit[1];
}
attribute binaryDigitRate: BinaryDigitRateValue[*] nonunique :> scalarQuantities;
attribute def BinaryDigitRateUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
alias BitRateUnit for BinaryDigitRateUnit;
alias BitRateValue for BinaryDigitRateValue;
alias bitRate for binaryDigitRate;
/* IEC-80000-13 item 13-14 period of binary digits, bit period */
attribute periodOfBinaryDigits: DurationValue :> scalarQuantities {
doc
/*
* source: item 13-14 period of binary digits, bit period
* symbol(s): `T_b`, `T_"bit"`
* application domain: generic
* name: PeriodOfBinaryDigits (specializes Duration)
* quantity dimension: T^1
* measurement unit(s): s
* tensor order: 0
* definition: `T_b = 1/r_b`, where `r_b` is the binary digit rate (item 13-13) when the binary digits are transmitted in series
* remarks: None.
*/
}
alias bitPeriod for periodOfBinaryDigits;
/* IEC-80000-13 item 13-15 equivalent binary digit rate, equivalent bit rate */
attribute def EquivalentBinaryDigitRateValue :> ScalarQuantityValue {
doc
/*
* source: item 13-15 equivalent binary digit rate, equivalent bit rate
* symbol(s): `r_e`, `(ν_e)`
* application domain: generic
* name: EquivalentBinaryDigitRate
* quantity dimension: T^-1
* measurement unit(s): bit/s, s^-1
* tensor order: 0
* definition: binary digit rate (item 13-13) equivalent to a transfer rate (item 13-11) for specified data elements
* remarks: In English, the systematic name would be "equivalent binary transfer rate". See IEC 60050-704, item 704-17-05.
*/
attribute :>> num: Real;
attribute :>> mRef: EquivalentBinaryDigitRateUnit[1];
}
attribute equivalentBinaryDigitRate: EquivalentBinaryDigitRateValue[*] nonunique :> scalarQuantities;
attribute def EquivalentBinaryDigitRateUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
alias EquivalentBitRateUnit for EquivalentBinaryDigitRateUnit;
alias EquivalentBitRateValue for EquivalentBinaryDigitRateValue;
alias equivalentBitRate for equivalentBinaryDigitRate;
/* IEC-80000-13 item 13-16 modulation rate, line digit rate */
attribute def ModulationRateValue :> ScalarQuantityValue {
doc
/*
* source: item 13-16 modulation rate, line digit rate
* symbol(s): `r_m`, `u`
* application domain: generic
* name: ModulationRate
* quantity dimension: T^-1
* measurement unit(s): Bd, s^-1
* tensor order: 0
* definition: inverse of the shortest duration of a signal element
* remarks: The term “modulation rate” is used in conventional telegraphy and data transmission. In isochronous digital transmission, the term "line digit rate" is generally used. See IEC 60050-704, item 704-17-03. Baud is a special name for the second to the power minus one for this quantity. The baud may be combined with prefixes, for example kilobaud, symbol kBd, megabaud, symbol MBd.
*/
attribute :>> num: Real;
attribute :>> mRef: ModulationRateUnit[1];
}
attribute modulationRate: ModulationRateValue[*] nonunique :> scalarQuantities;
attribute def ModulationRateUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
alias LineDigitRateUnit for ModulationRateUnit;
alias LineDigitRateValue for ModulationRateValue;
alias lineDigitRate for modulationRate;
/* IEC-80000-13 item 13-17 quantizing distortion rate */
attribute quantizingDistortionRate: PowerValue :> scalarQuantities {
doc
/*
* source: item 13-17 quantizing distortion rate
* symbol(s): `T_Q`
* application domain: generic
* name: QuantizingDistortionRate (specializes Power)
* quantity dimension: L^2*M^1*T^-3
* measurement unit(s): W
* tensor order: 0
* definition: distortion of a signal resulting from the process of quantizing an original signal when the values to be quantized are within the working range of the quantizer
* remarks: See IEC 60050-704, item 704-24-13.
*/
}
/* IEC-80000-13 item 13-18 carrier power */
attribute carrierPower: PowerValue :> scalarQuantities {
doc
/*
* source: item 13-18 carrier power
* symbol(s): `P_c`, `C`
* application domain: generic
* name: CarrierPower (specializes Power)
* quantity dimension: L^2*M^1*T^-3
* measurement unit(s): W
* tensor order: 0
* definition: power supplied to the antenna feed line by a radio transmitter taken under the condition of no modulation
* remarks: See IEC 60050-713, item 713-09-20.
*/
}
/* IEC-80000-13 item 13-19 signal energy per binary digit */
attribute signalEnergyPerBinaryDigit: EnergyValue :> scalarQuantities {
doc
/*
* source: item 13-19 signal energy per binary digit
* symbol(s): `E_b`, `E_"bit"`
* application domain: generic
* name: SignalEnergyPerBinaryDigit (specializes Energy)
* quantity dimension: L^2*M^1*T^-2
* measurement unit(s): J
* tensor order: 0
* definition: `E_b = P_c*T_b`, where `P_c` is carrier power (item 13-18) and `T_b` is period of binary digits (item 13-14)
* remarks: None.
*/
}
/* IEC-80000-13 item 13-20 error probability */
attribute def ErrorProbabilityValue :> DimensionOneValue {
doc
/*
* source: item 13-20 error probability
* symbol(s): `P`
* application domain: generic
* name: ErrorProbability (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: probability that a data element be incorrectly received
* remarks: A subscript referring to a specified data element can be added to the symbol. EXAMPLES: error probability for binary digits or bit error probability, `P_b` or `P_bit`; block error probability, `P_bl`. The measured value is designated as "error ratio", whereas "error rate" is deprecated, for example, bit error ratio (BER), block error ratio. See IEC 60050-704 and IEC 60050-721.
*/
}
attribute errorProbability: ErrorProbabilityValue :> scalarQuantities;
/* IEC-80000-13 item 13-21 Hamming distance */
attribute hammingDistance: CountValue :> scalarQuantities {
doc
/*
* source: item 13-21 Hamming distance
* symbol(s): `d_n`
* application domain: generic
* name: HammingDistance (specializes Count)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: number of digit positions in which the corresponding digits of two words of the same length are different
* remarks: See IEC 60050-721, item 721-08-25.
*/
}
/* IEC-80000-13 item 13-22 clock frequency, clock rate */
attribute clockFrequency: FrequencyValue :> scalarQuantities {
doc
/*
* source: item 13-22 clock frequency, clock rate
* symbol(s): `f_"cl"`
* application domain: generic
* name: ClockFrequency (specializes Frequency)
* quantity dimension: T^-1
* measurement unit(s): Hz
* tensor order: 0
* definition: frequency at which a clock oscillates
* remarks: None.
*/
}
alias clockRate for clockFrequency;
/* IEC-80000-13 item 13-23 decision content */
attribute def DecisionContentValue :> DimensionOneValue {
doc
/*
* source: item 13-23 decision content
* symbol(s): `D_a`
* application domain: generic
* name: DecisionContent (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: `D_a` = `log_a n`, where `a` is the number of possibilities at each decision and `n` the number of events
* remarks: See ISO/IEC 2382-16, item 16.03.01. See also IEC 60027-3. When the same base is used for the same number of events then `D_a = H_0` , where `H_0` is maximum entropy (item 13-28).
*/
}
attribute decisionContent: DecisionContentValue :> scalarQuantities;
/* IEC-80000-13 item 13-24 information content */
attribute def InformationContentValue :> ScalarQuantityValue {
doc
/*
* source: item 13-24 information content
* symbol(s): `I(x)`
* application domain: generic
* name: InformationContent
* quantity dimension: 1
* measurement unit(s): Sh, Hart, nat
* tensor order: 0
* definition: `I(x) = log_2(1/(p(x)))` Sh `= log(1/(p(x)))` Hart `= ln(1/(p(x)))` nat, where `p(x)` is the probability of event `x`
* remarks: See ISO/IEC 2382-16, item 16.03.02. See also IEC 60027-3.
*/
attribute :>> num: Real;
attribute :>> mRef: InformationContentUnit[1];
}
attribute informationContent: InformationContentValue[*] nonunique :> scalarQuantities;
attribute def InformationContentUnit :> DimensionOneUnit {
}
/* IEC-80000-13 item 13-25 entropy */
attribute def EntropyForInformationScienceValue :> ScalarQuantityValue {
doc
/*
* source: item 13-25 entropy
* symbol(s): `H`
* application domain: information science
* name: Entropy
* quantity dimension: 1
* measurement unit(s): Sh, Hart, nat
* tensor order: 0
* definition: `H(X) = sum_(i=1)^n p(x_i) I(x_i)` for the set `X = {x_1, ..., x_n}`, where `p(x_i)` is the probability and `I(x_i)` is the information content of event `x_i`
* remarks: See ISO/IEC 2382-16, item 16.03.02. See also IEC 60027-3.
*/
attribute :>> num: Real;
attribute :>> mRef: EntropyForInformationScienceUnit[1];
}
attribute entropyForInformationScience: EntropyForInformationScienceValue[*] nonunique :> scalarQuantities;
attribute def EntropyForInformationScienceUnit :> DimensionOneUnit {
}
/* IEC-80000-13 item 13-26 maximum entropy */
attribute def MaximumEntropyValue :> ScalarQuantityValue {
doc
/*
* source: item 13-26 maximum entropy
* symbol(s): `H_0`, `H_"max"`
* application domain: information science
* name: MaximumEntropy
* quantity dimension: 1
* measurement unit(s): Sh, Hart, nat
* tensor order: 0
* definition: maximum entropy occurs when `p(x_i) = 1/n` for `i = 1, ..., n`
* remarks: The maximum entropy is sometimes called "decision content" because the value is the same when the base is an integer, for the same number of events. See item 13-23.
*/
attribute :>> num: Real;
attribute :>> mRef: MaximumEntropyUnit[1];
}
attribute maximumEntropy: MaximumEntropyValue[*] nonunique :> scalarQuantities;
attribute def MaximumEntropyUnit :> DimensionOneUnit {
}
/* IEC-80000-13 item 13-27 relative entropy */
attribute def RelativeEntropyValue :> DimensionOneValue {
doc
/*
* source: item 13-27 relative entropy
* symbol(s): `H_r`
* application domain: information science
* name: RelativeEntropy (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: `H_r = H / H_0`, where `H` is entropy (item 13-25) and `H_0` is maximum entropy (item 13-26)
* remarks: See ISO/IEC 2382-16, item 16.03.04.
*/
}
attribute relativeEntropy: RelativeEntropyValue :> scalarQuantities;
/* IEC-80000-13 item 13-28 redundancy */
attribute def RedundancyValue :> ScalarQuantityValue {
doc
/*
* source: item 13-28 redundancy
* symbol(s): `R`
* application domain: information science
* name: Redundancy
* quantity dimension: 1
* measurement unit(s): Sh, Hart, nat
* tensor order: 0
* definition: `R = H_0 − H`, where `H` is entropy (item 13-25) and `H_0` is maximum entropy (item 13-26)
* remarks: See ISO/IEC 2382-16, item 16.03.05.
*/
attribute :>> num: Real;
attribute :>> mRef: RedundancyUnit[1];
}
attribute redundancy: RedundancyValue[*] nonunique :> scalarQuantities;
attribute def RedundancyUnit :> DimensionOneUnit {
}
/* IEC-80000-13 item 13-29 relative redundancy */
attribute def RelativeRedundancyValue :> DimensionOneValue {
doc
/*
* source: item 13-29 relative redundancy
* symbol(s): `r`
* application domain: information science
* name: RelativeRedundancy (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: `r = R / H_0`, where `R` is redundancy (item 13-28) and `H_0` is maximum entropy (item 13-26)
* remarks: See ISO/IEC 2382-16, item 16.04.01.
*/
}
attribute relativeRedundancy: RelativeRedundancyValue :> scalarQuantities;
/* IEC-80000-13 item 13-30 joint information content */
attribute def JointInformationContentValue :> ScalarQuantityValue {
doc
/*
* source: item 13-30 joint information content
* symbol(s): `I(x,y)`
* application domain: generic
* name: JointInformationContent
* quantity dimension: 1
* measurement unit(s): Sh, Hart, nat
* tensor order: 0
* definition: `I(x,y) = log_2(1/(p(x,y)))` Sh `= log(1/(p(x,y)))` Hart `= ln(1/(p(x,y)))` nat, where `p(x,y)` is the joint probability of events `x` and `y`
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: JointInformationContentUnit[1];
}
attribute jointInformationContent: JointInformationContentValue[*] nonunique :> scalarQuantities;
attribute def JointInformationContentUnit :> DimensionOneUnit {
}
/* IEC-80000-13 item 13-31 conditional information content */
attribute def ConditionalInformationContentValue :> ScalarQuantityValue {
doc
/*
* source: item 13-31 conditional information content
* symbol(s): `I(x|y)`
* application domain: generic
* name: ConditionalInformationContent
* quantity dimension: 1
* measurement unit(s): Sh, Hart, nat
* tensor order: 0
* definition: information content (item 13-2) of event `x` under the condition that `y` has occurred: `I(x|y) = I(x,y) − I( y)`
* remarks: See ISO/IEC 2382-16, item 16.04.02.
*/
attribute :>> num: Real;
attribute :>> mRef: ConditionalInformationContentUnit[1];
}
attribute conditionalInformationContent: ConditionalInformationContentValue[*] nonunique :> scalarQuantities;
attribute def ConditionalInformationContentUnit :> DimensionOneUnit {
}
/* IEC-80000-13 item 13-32 conditional entropy, mean conditional information content, average conditional information content */
attribute def ConditionalEntropyValue :> ScalarQuantityValue {
doc
/*
* source: item 13-32 conditional entropy, mean conditional information content, average conditional information content
* symbol(s): `H(X|Y)`
* application domain: generic
* name: ConditionalEntropy
* quantity dimension: 1
* measurement unit(s): Sh, Hart, nat
* tensor order: 0
* definition: `H(X|Y) = sum_(i=1)^n sum_(j=1)^m p(x_i,y_j) I(x_i,y_j)` where `p(x_i,y_j)` is the joint probability of events `x_i` and `y_j`, and `I(x_i,y_j)` is conditional information content (item 13-31)
* remarks: See ISO/IEC 2382-16, item 16.04.04.
*/
attribute :>> num: Real;
attribute :>> mRef: ConditionalEntropyUnit[1];
}
attribute conditionalEntropy: ConditionalEntropyValue[*] nonunique :> scalarQuantities;
attribute def ConditionalEntropyUnit :> DimensionOneUnit {
}
alias MeanConditionalInformationContentUnit for ConditionalEntropyUnit;
alias MeanConditionalInformationContentValue for ConditionalEntropyValue;
alias meanConditionalInformationContent for conditionalEntropy;
alias AverageConditionalInformationContentUnit for ConditionalEntropyUnit;
alias AverageConditionalInformationContentValue for ConditionalEntropyValue;
alias averageConditionalInformationContent for conditionalEntropy;
/* IEC-80000-13 item 13-33 equivocation */
attribute def EquivocationValue :> ScalarQuantityValue {
doc
/*
* source: item 13-33 equivocation
* symbol(s): `H(X|Y)`
* application domain: generic
* name: Equivocation
* quantity dimension: 1
* measurement unit(s): Sh, Hart, nat
* tensor order: 0
* definition: conditional entropy (item 13-32) of a set X of emitted characters given the set Y of received characters
* remarks: Equivocation is a quantitative measure of the loss of information due to noise. See ISO/IEC 2382-16, item 16.04.05.
*/
attribute :>> num: Real;
attribute :>> mRef: EquivocationUnit[1];
}
attribute equivocation: EquivocationValue[*] nonunique :> scalarQuantities;
attribute def EquivocationUnit :> DimensionOneUnit {
}
/* IEC-80000-13 item 13-34 irrelevance */
attribute def IrrelevanceValue :> ScalarQuantityValue {
doc
/*
* source: item 13-34 irrelevance
* symbol(s): `H(Y|X)`
* application domain: generic
* name: Irrelevance
* quantity dimension: 1
* measurement unit(s): Sh, Hart, nat
* tensor order: 0
* definition: conditional entropy (item 13-32) of a set `Y` of received characters given the set `X` of emitted characters: `H(Y|X) = H(X|Y) + H(Y) − H(X)`, where `H(X|Y)` is equivocation (item 13-33) and `H` is entropy (item 13-25)
* remarks: Irrelevance is a quantitative measure of the information added to the emitted information due to distortion. See ISO/IEC 2382 16, item 16.04.06.
*/
attribute :>> num: Real;
attribute :>> mRef: IrrelevanceUnit[1];
}
attribute irrelevance: IrrelevanceValue[*] nonunique :> scalarQuantities;
attribute def IrrelevanceUnit :> DimensionOneUnit {
}
/* IEC-80000-13 item 13-35 transinformation content */
attribute def TransinformationContentValue :> ScalarQuantityValue {
doc
/*
* source: item 13-35 transinformation content
* symbol(s): `T(x,y)`
* application domain: generic
* name: TransinformationContent
* quantity dimension: 1
* measurement unit(s): Sh, Hart, nat
* tensor order: 0
* definition: `T(x,y) = I(x) + I(y) − I(x,y)`, where `I(x)` and `I(y)` are the information contents (13-24) of events `x` and `y`, respectively, and `I(x,y)` is their joint information content (13-30)
* remarks: See ISO/IEC 2382-16, item 16.04.07.
*/
attribute :>> num: Real;
attribute :>> mRef: TransinformationContentUnit[1];
}
attribute transinformationContent: TransinformationContentValue[*] nonunique :> scalarQuantities;
attribute def TransinformationContentUnit :> DimensionOneUnit {
}
/* IEC-80000-13 item 13-36 mean transinformation content */
attribute def MeanTransinformationContentValue :> ScalarQuantityValue {
doc
/*
* source: item 13-36 mean transinformation content
* symbol(s): `T`
* application domain: generic
* name: MeanTransinformationContent
* quantity dimension: 1
* measurement unit(s): Sh, Hart, nat
* tensor order: 0
* definition: `T(X,Y) = sum_(i=1)^n sum_(j=1)^m p(x_i,y_j) T(x_i,y_j)` for the sets `X = {x_1, ..., x_n}`, `Y = {y_1, ..., y_m}`, where `p(x_i,y_j)` is the joint probability of events `x_i` and `y_j`, and `T(x_i,y_j)` is their transinformation content (item 13-35)
* remarks: See ISO/IEC 2382-16, item 16.04.08. In practice, the unit "shannon per character" is generally used, and sometimes the units "hartley per character" and "natural unit per character".
*/
attribute :>> num: Real;
attribute :>> mRef: MeanTransinformationContentUnit[1];
}
attribute meanTransinformationContent: MeanTransinformationContentValue[*] nonunique :> scalarQuantities;
attribute def MeanTransinformationContentUnit :> DimensionOneUnit {
}
/* IEC-80000-13 item 13-37 character mean entropy */
attribute def CharacterMeanEntropyValue :> ScalarQuantityValue {
doc
/*
* source: item 13-37 character mean entropy
* symbol(s): `H'`
* application domain: generic
* name: CharacterMeanEntropy
* quantity dimension: 1
* measurement unit(s): Sh, Hart, nat
* tensor order: 0
* definition: `H' = lim_(m->∞) H_m/m` where `H_m` is the entropy (item 13-3) of the set of all sequences of `m` characters
* remarks: See ISO/IEC 2382-16, item 16.04.09.
*/
attribute :>> num: Real;
attribute :>> mRef: CharacterMeanEntropyUnit[1];
}
attribute characterMeanEntropy: CharacterMeanEntropyValue[*] nonunique :> scalarQuantities;
attribute def CharacterMeanEntropyUnit :> DimensionOneUnit {
}
/* IEC-80000-13 item 13-38 average information rate */
attribute def AverageInformationRateValue :> ScalarQuantityValue {
doc
/*
* source: item 13-38 average information rate
* symbol(s): `H^"*"`
* application domain: generic
* name: AverageInformationRate
* quantity dimension: T^-1
* measurement unit(s): Sh/s, Hart/s, nat/s
* tensor order: 0
* definition: `H^"*" = (H')/(t(X))`, where `H'` is character mean entropy (item 13-37) and `t(X)` is the mean value of the duration of a character in the set `X`
* remarks: See ISO/IEC 2382-16, item 16.04.10.
*/
attribute :>> num: Real;
attribute :>> mRef: AverageInformationRateUnit[1];
}
attribute averageInformationRate: AverageInformationRateValue[*] nonunique :> scalarQuantities;
attribute def AverageInformationRateUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
/* IEC-80000-13 item 13-39 character mean transinformation content */
attribute def CharacterMeanTransinformationContentValue :> ScalarQuantityValue {
doc
/*
* source: item 13-39 character mean transinformation content
* symbol(s): `T'`
* application domain: generic
* name: CharacterMeanTransinformationContent
* quantity dimension: 1
* measurement unit(s): Sh, Hart, nat
* tensor order: 0
* definition: `T' = lim_(m->∞) T_m/m` where `T_m` is the mean transinformation content (item 13-36) for all pairs of input and output sequences of `m` characters
* remarks: See ISO/IEC 2382-16, item 16.04.11. In practice, the unit "shannon per character" is generally used, and sometimes the units "hartley per character" and "natural unit per character".
*/
attribute :>> num: Real;
attribute :>> mRef: CharacterMeanTransinformationContentUnit[1];
}
attribute characterMeanTransinformationContent: CharacterMeanTransinformationContentValue[*] nonunique :> scalarQuantities;
attribute def CharacterMeanTransinformationContentUnit :> DimensionOneUnit {
}
/* IEC-80000-13 item 13-40 average transinformation rate */
attribute def AverageTransinformationRateValue :> ScalarQuantityValue {
doc
/*
* source: item 13-40 average transinformation rate
* symbol(s): `T^"*"`
* application domain: generic
* name: AverageTransinformationRate
* quantity dimension: T^-1
* measurement unit(s): Sh/s, Hart/s, nat/s
* tensor order: 0
* definition: `T^"*" = (T')/(sum_(i=1)^n sum_(j=1)^m p(x_i,y_j) t(x_i,y_j) )`, where `T'` is character mean transinformation content (item 13-39) and `t(x_i,y_j)` is the mean duration of the pair of characters `(x_i,y_j)` with joint probability `p(x_i,y_j)`
* remarks: See ISO/IEC 2382-16, item 16.04.12.
*/
attribute :>> num: Real;
attribute :>> mRef: AverageTransinformationRateUnit[1];
}
attribute averageTransinformationRate: AverageTransinformationRateValue[*] nonunique :> scalarQuantities;
attribute def AverageTransinformationRateUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
/* IEC-80000-13 item 13-41 channel capacity per character, channel capacity */
attribute def ChannelCapacityPerCharacterValue :> ScalarQuantityValue {
doc
/*
* source: item 13-41 channel capacity per character, channel capacity
* symbol(s): `C'`
* application domain: generic
* name: ChannelCapacityPerCharacter
* quantity dimension: 1
* measurement unit(s): Sh, Hart, nat
* tensor order: 0
* definition: `C' = max T'`, where `T'` is character mean transinformation content (item 13-39)
* remarks: See ISO/IEC 2382-16, item 16.04.13. In practice, the unit "shannon per character" is generally used, and sometimes the units "hartley per character" and "natural unit per character".
*/
attribute :>> num: Real;
attribute :>> mRef: ChannelCapacityPerCharacterUnit[1];
}
attribute channelCapacityPerCharacter: ChannelCapacityPerCharacterValue[*] nonunique :> scalarQuantities;
attribute def ChannelCapacityPerCharacterUnit :> DimensionOneUnit {
}
alias ChannelCapacityUnit for ChannelCapacityPerCharacterUnit;
alias ChannelCapacityValue for ChannelCapacityPerCharacterValue;
alias channelCapacity for channelCapacityPerCharacter;
/* IEC-80000-13 item 13-42 channel time capacity */
attribute def ChannelTimeCapacityValue :> ScalarQuantityValue {
doc
/*
* source: item 13-42 channel time capacity
* symbol(s): `C^"*"`
* application domain: generic
* name: ChannelTimeCapacity
* quantity dimension: T^-1
* measurement unit(s): Sh/s, Hart/s, nat/s
* tensor order: 0
* definition: `C^"*" = max T^"*"`, where `T^"*"` is average transinformation rate (item 13-40)
* remarks: See ISO/IEC 2382-16, item 16.04.13. Note for SysML ISQ: Alias "channel capacity", that was present in IEC 80000-12:2008, has been removed as it duplicates the alias of channel capacity per character (item 13-41).
*/
attribute :>> num: Real;
attribute :>> mRef: ChannelTimeCapacityUnit[1];
}
attribute channelTimeCapacity: ChannelTimeCapacityValue[*] nonunique :> scalarQuantities;
attribute def ChannelTimeCapacityUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
}
|