File size: 74,213 Bytes
5070096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
standard library package ISQMechanics {
    doc
    /*
     * International System of Quantities and Units
     * Generated on 2022-08-07T14:44:27Z from standard ISO-80000-4:2019 "Mechanics"
     * see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-4:ed-2:v1:en
     * 
     * Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts,
     * with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks.
     * Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is 
     * defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system) 
     * or TensorMeasurementReference.
     */

    private import ScalarValues::Real;
    private import Quantities::*;
    private import MeasurementReferences::*;
    private import ISQBase::*;

    /* Quantity definitions referenced from other ISQ packages */
    private import ISQThermodynamics::EnergyValue;

    /* ISO-80000-4 item 4-1 mass */
    /* See package ISQBase for the declarations of MassValue and MassUnit */

    /* ISO-80000-4 item 4-2 mass density, density */
    attribute def MassDensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-2 mass density, density
         * symbol(s): `ρ`, `ρ_m`
         * application domain: generic
         * name: MassDensity
         * quantity dimension: L^-3*M^1
         * measurement unit(s): kg*m^-3
         * tensor order: 0
         * definition: quantity representing the spatial distribution of mass of a continuous material: `ρ(vec(r)) = (dm)/(dV)` where `m` is mass of the material contained in an infinitesimal domain at point `vec(r)` and `V` is volume of this domain
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MassDensityUnit[1];
    }

    attribute massDensity: MassDensityValue[*] nonunique :> scalarQuantities;

    attribute def MassDensityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
    }

    alias DensityUnit for MassDensityUnit;
    alias DensityValue for MassDensityValue;
    alias density for massDensity;

    /* ISO-80000-4 item 4-3 specific volume */
    attribute def SpecificVolumeValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-3 specific volume
         * symbol(s): `v`
         * application domain: generic
         * name: SpecificVolume
         * quantity dimension: L^3*M^-1
         * measurement unit(s): kg^-1*m^3
         * tensor order: 0
         * definition: reciprocal of mass density `ρ` (item 4-2): `v = 1/ρ`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SpecificVolumeUnit[1];
    }

    attribute specificVolume: SpecificVolumeValue[*] nonunique :> scalarQuantities;

    attribute def SpecificVolumeUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
    }

    /* ISO-80000-4 item 4-4 relative mass density, relative density */
    attribute def RelativeMassDensityValue :> DimensionOneValue {
        doc
        /*
         * source: item 4-4 relative mass density, relative density
         * symbol(s): `d`
         * application domain: generic
         * name: RelativeMassDensity (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of mass density of a substance `ρ` and mass density of a reference substance `ρ_0` : `d = ρ/ρ_0`
         * remarks: Conditions and material should be specified for the reference substance.
         */
    }
    attribute relativeMassDensity: RelativeMassDensityValue :> scalarQuantities;

    alias relativeDensity for relativeMassDensity;

    /* ISO-80000-4 item 4-5 surface mass density, surface density */
    attribute def SurfaceMassDensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-5 surface mass density, surface density
         * symbol(s): `ρ_A`
         * application domain: generic
         * name: SurfaceMassDensity
         * quantity dimension: L^-2*M^1
         * measurement unit(s): kg*m^-2
         * tensor order: 0
         * definition: quantity representing the areal distribution of mass of a continuous material: `ρ_A(vec(r)) = (dm)/(dA)` where `m` is the mass of the material at position `vec(r)` and `A` is area
         * remarks: The name "grammage" should not be used for this quantity.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SurfaceMassDensityUnit[1];
    }

    attribute surfaceMassDensity: SurfaceMassDensityValue[*] nonunique :> scalarQuantities;

    attribute def SurfaceMassDensityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
    }

    alias SurfaceDensityUnit for SurfaceMassDensityUnit;
    alias SurfaceDensityValue for SurfaceMassDensityValue;
    alias surfaceDensity for surfaceMassDensity;

    /* ISO-80000-4 item 4-6 linear mass density, linear density */
    attribute def LinearMassDensityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-6 linear mass density, linear density
         * symbol(s): `ρ_I`
         * application domain: generic
         * name: LinearMassDensity
         * quantity dimension: L^-1*M^1
         * measurement unit(s): kg*m^-1
         * tensor order: 0
         * definition: quantity representing the linear distribution of mass of a continuous material: `ρ_I(vec(r)) = (dm)/(dI)` where `m` is the mass of the material at position `vec(r)` and `l` is length
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: LinearMassDensityUnit[1];
    }

    attribute linearMassDensity: LinearMassDensityValue[*] nonunique :> scalarQuantities;

    attribute def LinearMassDensityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
    }

    alias LinearDensityUnit for LinearMassDensityUnit;
    alias LinearDensityValue for LinearMassDensityValue;
    alias linearDensity for linearMassDensity;

    /* ISO-80000-4 item 4-7 moment of inertia */
    attribute def MomentOfInertiaValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-7 moment of inertia (magnitude)
         * symbol(s): `J`
         * application domain: generic
         * name: MomentOfInertia
         * quantity dimension: L^2*M^1
         * measurement unit(s): kg*m^2
         * tensor order: 0
         * definition: tensor (ISO 80000-2) quantity representing rotational inertia of a rigid body relative to a fixed centre of rotation expressed by the tensor product: `vec(L) = vec(vec(J)) vec(ω)` where `vec(L)` is angular momentum (item 4-11) of the body relative to the reference point and `vec(ω)` is its angular velocity (ISO 80000-3)
         * remarks: The calculation of the value requires an integration.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MomentOfInertiaUnit[1];
    }

    attribute momentOfInertia: MomentOfInertiaValue[*] nonunique :> scalarQuantities;

    attribute def MomentOfInertiaUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF); }
    }

    attribute def Cartesian3dMomentOfInertiaTensor :> TensorQuantityValue {
        doc
        /*
         * source: item 4-7 moment of inertia (tensor)
         * symbol(s): `vec(vec(J))`
         * application domain: generic
         * name: MomentOfInertia
         * quantity dimension: L^2*M^1
         * measurement unit(s): kg*m^2
         * tensor order: 2
         * definition: tensor (ISO 80000-2) quantity representing rotational inertia of a rigid body relative to a fixed centre of rotation expressed by the tensor product: `vec(L) = vec(vec(J)) vec(ω)` where `vec(L)` is angular momentum (item 4-11) of the body relative to the reference point and `vec(ω)` is its angular velocity (ISO 80000-3)
         * remarks: The calculation of the value requires an integration.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[9];
        attribute :>> mRef: Cartesian3dMomentOfInertiaMeasurementReference[1];
    }

    attribute momentOfInertiaTensor: Cartesian3dMomentOfInertiaTensor :> tensorQuantities;

    attribute def Cartesian3dMomentOfInertiaMeasurementReference :> TensorMeasurementReference {
        attribute :>> dimensions = (3, 3);
        attribute :>> isBound = false;
        attribute :>> mRefs: MomentOfInertiaUnit[9];
    }

    /* ISO-80000-4 item 4-8 momentum */
    attribute def MomentumValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-8 momentum (magnitude)
         * symbol(s): `p`
         * application domain: generic
         * name: Momentum
         * quantity dimension: L^1*M^1*T^-1
         * measurement unit(s): kg*m*s^-1
         * tensor order: 0
         * definition: product of mass `m` (item 4-1) of a body and velocity `vec(v)` (ISO 80000-3) of its centre of mass: `vec(p) = m  vec(v)`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MomentumUnit[1];
    }

    attribute momentum: MomentumValue[*] nonunique :> scalarQuantities;

    attribute def MomentumUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    attribute def Cartesian3dMomentumVector :> VectorQuantityValue {
        doc
        /*
         * source: item 4-8 momentum (vector)
         * symbol(s): `vec(p)`
         * application domain: generic
         * name: Momentum
         * quantity dimension: L^1*M^1*T^-1
         * measurement unit(s): kg*m*s^-1
         * tensor order: 1
         * definition: product of mass `m` (item 4-1) of a body and velocity `vec(v)` (ISO 80000-3) of its centre of mass: `vec(p) = m  vec(v)`
         * remarks: None.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dMomentumCoordinateFrame[1];
    }

    attribute momentumVector: Cartesian3dMomentumVector :> vectorQuantities;

    attribute def Cartesian3dMomentumCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: MomentumUnit[3];
    }

    /* ISO-80000-4 item 4-9.1 force */
    attribute def ForceValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-9.1 force (magnitude)
         * symbol(s): `F`
         * application domain: generic
         * name: Force
         * quantity dimension: L^1*M^1*T^-2
         * measurement unit(s): N, kg*m*s^-2
         * tensor order: 0
         * definition: vector (ISO 80000-2) quantity describing interaction between bodies or particles
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ForceUnit[1];
    }

    attribute force: ForceValue[*] nonunique :> scalarQuantities;

    attribute def ForceUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    attribute def Cartesian3dForceVector :> VectorQuantityValue {
        doc
        /*
         * source: item 4-9.1 force (vector)
         * symbol(s): `vec(F)`
         * application domain: generic
         * name: Force
         * quantity dimension: L^1*M^1*T^-2
         * measurement unit(s): N, kg*m*s^-2
         * tensor order: 1
         * definition: vector (ISO 80000-2) quantity describing interaction between bodies or particles
         * remarks: None.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dForceCoordinateFrame[1];
    }

    attribute forceVector: Cartesian3dForceVector :> vectorQuantities;

    attribute def Cartesian3dForceCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: ForceUnit[3];
    }

    /* ISO-80000-4 item 4-9.2 weight */
    attribute def Cartesian3dWeightVector :> VectorQuantityValue {
        doc
        /*
         * source: item 4-9.2 weight
         * symbol(s): `vec(F_g)`
         * application domain: generic
         * name: Weight (specializes Force)
         * quantity dimension: L^1*M^1*T^-2
         * measurement unit(s): N, kg*m*s^-2
         * tensor order: 1
         * definition: force (item 4-9.1) acting on a body in the gravitational field of Earth: `vec(F_g) = m vec(g)` where `m` (item 4-1) is the mass of the body and `vec(g)` is the local acceleration of free fall (ISO 80000-3)
         * remarks: In colloquial language, the name "weight" continues to be used where "mass" is meant. This practice should be avoided. Weight is an example of a gravitational force. Weight comprises not only the local gravitational force but also the local centrifugal force due to the rotation of the Earth.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dForceCoordinateFrame[1];
    }

    attribute weightVector: Cartesian3dWeightVector :> vectorQuantities;

    /* ISO-80000-4 item 4-9.3 static friction force, static friction */
    attribute def Cartesian3dStaticFrictionForceVector :> VectorQuantityValue {
        doc
        /*
         * source: item 4-9.3 static friction force, static friction
         * symbol(s): `vec(F_s)`
         * application domain: generic
         * name: StaticFrictionForce (specializes Force)
         * quantity dimension: L^1*M^1*T^-2
         * measurement unit(s): N, kg*m*s^-2
         * tensor order: 1
         * definition: force (item 4-9.1) resisting the motion before a body starts to slide on a surface
         * remarks: For the static friction coefficient, see item 4-23.1.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dForceCoordinateFrame[1];
    }

    attribute staticFrictionForceVector: Cartesian3dStaticFrictionForceVector :> vectorQuantities;

    alias staticFrictionVector for staticFrictionForceVector;

    /* ISO-80000-4 item 4-9.4 kinetic friction force, dynamic friction force */
    attribute def Cartesian3dKineticFrictionForceVector :> VectorQuantityValue {
        doc
        /*
         * source: item 4-9.4 kinetic friction force, dynamic friction force
         * symbol(s): `vec(F_μ)`
         * application domain: generic
         * name: KineticFrictionForce (specializes Force)
         * quantity dimension: L^1*M^1*T^-2
         * measurement unit(s): N, kg*m*s^-2
         * tensor order: 1
         * definition: force (item 4-9.1) resisting the motion when a body slides on a surface
         * remarks: For the kinetic friction factor, see item 4-23.2.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dForceCoordinateFrame[1];
    }

    attribute kineticFrictionForceVector: Cartesian3dKineticFrictionForceVector :> vectorQuantities;

    alias dynamicFrictionForceVector for kineticFrictionForceVector;

    /* ISO-80000-4 item 4-9.5 rolling resistance, rolling drag, rolling friction force */
    attribute def Cartesian3dRollingResistanceVector :> VectorQuantityValue {
        doc
        /*
         * source: item 4-9.5 rolling resistance, rolling drag, rolling friction force
         * symbol(s): `vec(F_"rr")`
         * application domain: generic
         * name: RollingResistance (specializes Force)
         * quantity dimension: L^1*M^1*T^-2
         * measurement unit(s): N, kg*m*s^-2
         * tensor order: 1
         * definition: force (item 4-9.1) resisting the motion when a body rolls on a surface
         * remarks: For the rolling resistance factor, see item 4-23.3.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dForceCoordinateFrame[1];
    }

    attribute rollingResistanceVector: Cartesian3dRollingResistanceVector :> vectorQuantities;

    alias rollingDragVector for rollingResistanceVector;

    alias rollingFrictionForceVector for rollingResistanceVector;

    /* ISO-80000-4 item 4-9.6 drag force */
    attribute def Cartesian3dDragForceVector :> VectorQuantityValue {
        doc
        /*
         * source: item 4-9.6 drag force
         * symbol(s): `vec(F_D)`
         * application domain: generic
         * name: DragForce (specializes Force)
         * quantity dimension: L^1*M^1*T^-2
         * measurement unit(s): N, kg*m*s^-2
         * tensor order: 1
         * definition: force (item 4-9.1) resisting the motion of a body in a fluid
         * remarks: For the drag coefficient, see item 4-23.4.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dForceCoordinateFrame[1];
    }

    attribute dragForceVector: Cartesian3dDragForceVector :> vectorQuantities;

    /* ISO-80000-4 item 4-10 impulse */
    attribute def ImpulseValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-10 impulse (magnitude)
         * symbol(s): `I`
         * application domain: generic
         * name: Impulse
         * quantity dimension: L^1*M^1*T^-1
         * measurement unit(s): N*s, kg*m*s^-1
         * tensor order: 0
         * definition: vector (ISO 80000-2) quantity describing the effect of force acting during a time interval: `vec(I) = int_(t_1)^(t_2) vec(F)*dt` where `vec(F)` is force (item 4-9.1), `t` is time (ISO 80000-3) and `[t_1, t_2]` is considered time interval
         * remarks: For a time interval `[t_1, t_2]`, `vec(I)(t_1, t_2) = vec(p)(t_1) - vec(p)(t_2) = vec(Δp)` where `vec(p)` is momentum (item 4-8).
         */
        attribute :>> num: Real;
        attribute :>> mRef: ImpulseUnit[1];
    }

    attribute impulse: ImpulseValue[*] nonunique :> scalarQuantities;

    attribute def ImpulseUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    attribute def Cartesian3dImpulseVector :> VectorQuantityValue {
        doc
        /*
         * source: item 4-10 impulse (vector)
         * symbol(s): `vec(I)`
         * application domain: generic
         * name: Impulse
         * quantity dimension: L^1*M^1*T^-1
         * measurement unit(s): N*s, kg*m*s^-1
         * tensor order: 1
         * definition: vector (ISO 80000-2) quantity describing the effect of force acting during a time interval: `vec(I) = int_(t_1)^(t_2) vec(F)*dt` where `vec(F)` is force (item 4-9.1), `t` is time (ISO 80000-3) and `[t_1, t_2]` is considered time interval
         * remarks: For a time interval `[t_1, t_2]`, `vec(I)(t_1, t_2) = vec(p)(t_1) - vec(p)(t_2) = vec(Δp)` where `vec(p)` is momentum (item 4-8).
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dImpulseCoordinateFrame[1];
    }

    attribute impulseVector: Cartesian3dImpulseVector :> vectorQuantities;

    attribute def Cartesian3dImpulseCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: ImpulseUnit[3];
    }

    /* ISO-80000-4 item 4-11 angular momentum */
    attribute def AngularMomentumValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-11 angular momentum (magnitude)
         * symbol(s): `L`
         * application domain: generic
         * name: AngularMomentum
         * quantity dimension: L^2*M^1*T^-1
         * measurement unit(s): kg*m^2*s^-1
         * tensor order: 0
         * definition: vector (ISO 80000-2) quantity described by the vector product: `vec(L) = vec(r) xx vec(p)` where `vec(r)` is position vector (ISO 80000-3) with respect to the axis of rotation and `vec(p)` is momentum (item 4-8)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AngularMomentumUnit[1];
    }

    attribute angularMomentum: AngularMomentumValue[*] nonunique :> scalarQuantities;

    attribute def AngularMomentumUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    attribute def Cartesian3dAngularMomentumVector :> VectorQuantityValue {
        doc
        /*
         * source: item 4-11 angular momentum (vector)
         * symbol(s): `vec(L)`
         * application domain: generic
         * name: AngularMomentum
         * quantity dimension: L^2*M^1*T^-1
         * measurement unit(s): kg*m^2*s^-1
         * tensor order: 1
         * definition: vector (ISO 80000-2) quantity described by the vector product: `vec(L) = vec(r) xx vec(p)` where `vec(r)` is position vector (ISO 80000-3) with respect to the axis of rotation and `vec(p)` is momentum (item 4-8)
         * remarks: None.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dAngularMomentumCoordinateFrame[1];
    }

    attribute angularMomentumVector: Cartesian3dAngularMomentumVector :> vectorQuantities;

    attribute def Cartesian3dAngularMomentumCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: AngularMomentumUnit[3];
    }

    /* ISO-80000-4 item 4-12.1 moment of force */
    attribute def MomentOfForceValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-12.1 moment of force (magnitude)
         * symbol(s): `M`
         * application domain: generic
         * name: MomentOfForce
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): N*m, kg*m^2*s^-2
         * tensor order: 0
         * definition: vector (ISO 80000-2) quantity described by the vector product: `vec(M) = vec(r) xx vec(F)` where `vec(r)` is position vector (ISO 80000-3) with respect to the axis of rotation and `vec(F)` is force (item 4-9.1)
         * remarks: The bending moment of force is denoted by `vec(M)_b`.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MomentOfForceUnit[1];
    }

    attribute momentOfForce: MomentOfForceValue[*] nonunique :> scalarQuantities;

    attribute def MomentOfForceUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    attribute def Cartesian3dMomentOfForceVector :> VectorQuantityValue {
        doc
        /*
         * source: item 4-12.1 moment of force (vector)
         * symbol(s): `vec(M)`
         * application domain: generic
         * name: MomentOfForce
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): N*m, kg*m^2*s^-2
         * tensor order: 1
         * definition: vector (ISO 80000-2) quantity described by the vector product: `vec(M) = vec(r) xx vec(F)` where `vec(r)` is position vector (ISO 80000-3) with respect to the axis of rotation and `vec(F)` is force (item 4-9.1)
         * remarks: The bending moment of force is denoted by `vec(M)_b`.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dMomentOfForceCoordinateFrame[1];
    }

    attribute momentOfForceVector: Cartesian3dMomentOfForceVector :> vectorQuantities;

    attribute def Cartesian3dMomentOfForceCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: MomentOfForceUnit[3];
    }

    /* ISO-80000-4 item 4-12.2 torque */
    attribute def TorqueValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-12.2 torque
         * symbol(s): `T`, `M_Q`
         * application domain: generic
         * name: Torque
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): N*m, kg*m^2*s^-2
         * tensor order: 0
         * definition: quantity described by the scalar product: `T = vec(M)*vec(e_Q)` where `vec(M)` is moment of force (item 4-12.1) and `vec(e_Q)` is unit vector of direction with respect to which the torque is considered
         * remarks: For example, torque is the twisting moment of force with respect to the longitudinal axis of a beam or shaft.
         */
        attribute :>> num: Real;
        attribute :>> mRef: TorqueUnit[1];
    }

    attribute torque: TorqueValue[*] nonunique :> scalarQuantities;

    attribute def TorqueUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-4 item 4-13 angular impulse */
    attribute def AngularImpulseValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-13 angular impulse (magnitude)
         * symbol(s): `H`
         * application domain: generic
         * name: AngularImpulse
         * quantity dimension: L^2*M^1*T^-1
         * measurement unit(s): N*m*s, kg*m^2*s^-1
         * tensor order: 0
         * definition: vector (ISO 80000-2) quantity describing the effect of moment of force during a time interval: `vec(H)(t_1; t_2) = int_(t_1)^(t_2) vec(M) dt` where `vec(M)` is moment of force (item 4-12.1), `t` is time (ISO 80000-3) and `[t_1, t_2]` is considered time interval
         * remarks: For a time interval `[t_1, t_2]`, `vec(H)(t_1, t_2) = vec(L)(t_1) - vec(L)(t_2) = vec(ΔL)` where `vec(L)` is angular momentum.
         */
        attribute :>> num: Real;
        attribute :>> mRef: AngularImpulseUnit[1];
    }

    attribute angularImpulse: AngularImpulseValue[*] nonunique :> scalarQuantities;

    attribute def AngularImpulseUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    attribute def Cartesian3dAngularImpulseVector :> VectorQuantityValue {
        doc
        /*
         * source: item 4-13 angular impulse (vector)
         * symbol(s): `vec(H)`
         * application domain: generic
         * name: AngularImpulse
         * quantity dimension: L^2*M^1*T^-1
         * measurement unit(s): N*m*s, kg*m^2*s^-1
         * tensor order: 1
         * definition: vector (ISO 80000-2) quantity describing the effect of moment of force during a time interval: `vec(H)(t_1; t_2) = int_(t_1)^(t_2) vec(M) dt` where `vec(M)` is moment of force (item 4-12.1), `t` is time (ISO 80000-3) and `[t_1, t_2]` is considered time interval
         * remarks: For a time interval `[t_1, t_2]`, `vec(H)(t_1, t_2) = vec(L)(t_1) - vec(L)(t_2) = vec(ΔL)` where `vec(L)` is angular momentum.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dAngularImpulseCoordinateFrame[1];
    }

    attribute angularImpulseVector: Cartesian3dAngularImpulseVector :> vectorQuantities;

    attribute def Cartesian3dAngularImpulseCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: AngularImpulseUnit[3];
    }

    /* ISO-80000-4 item 4-14.1 pressure */
    attribute def PressureValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-14.1 pressure
         * symbol(s): `p`
         * application domain: generic
         * name: Pressure
         * quantity dimension: L^-1*M^1*T^-2
         * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2
         * tensor order: 0
         * definition: quotient of the component of a force normal to a surface and its area: `p = (vec(e_n) * vec(F)) / A` where `vec(e_n)` is unit vector of the surface normal, `vec(F)` is force (item 4-9.1) and `A` is area (ISO 80000-3)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: PressureUnit[1];
    }

    attribute pressure: PressureValue[*] nonunique :> scalarQuantities;

    attribute def PressureUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-4 item 4-14.2 gauge pressure */
    attribute gaugePressure: PressureValue :> scalarQuantities {
        doc
        /*
         * source: item 4-14.2 gauge pressure
         * symbol(s): `p_e`
         * application domain: generic
         * name: GaugePressure (specializes Pressure)
         * quantity dimension: L^-1*M^1*T^-2
         * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2
         * tensor order: 0
         * definition: pressure `p` (item 4-14.1) decremented by ambient pressure `p_amb` : `p_e = p - p_amb`
         * remarks: Often, `p_amb` is chosen as a standard pressure. Gauge pressure is positive or negative.
         */
    }

    /* ISO-80000-4 item 4-15 stress */
    attribute def StressValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-15 stress (magnitude)
         * symbol(s): `σ`
         * application domain: generic
         * name: Stress
         * quantity dimension: L^-1*M^1*T^-2
         * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2
         * tensor order: 0
         * definition: tensor (ISO 80000-2) quantity representing state of tension of matter
         * remarks: Stress tensor is symmetric and has three normal-stress and three shear-stress (Cartesian) components.
         */
        attribute :>> num: Real;
        attribute :>> mRef: StressUnit[1];
    }

    attribute stress: StressValue[*] nonunique :> scalarQuantities;

    attribute def StressUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    attribute def Cartesian3dStressTensor :> TensorQuantityValue {
        doc
        /*
         * source: item 4-15 stress (tensor)
         * symbol(s): `vec(vec(σ))`
         * application domain: generic
         * name: Stress
         * quantity dimension: L^-1*M^1*T^-2
         * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2
         * tensor order: 2
         * definition: tensor (ISO 80000-2) quantity representing state of tension of matter
         * remarks: Stress tensor is symmetric and has three normal-stress and three shear-stress (Cartesian) components.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[9];
        attribute :>> mRef: Cartesian3dStressMeasurementReference[1];
    }

    attribute stressTensor: Cartesian3dStressTensor :> tensorQuantities;

    attribute def Cartesian3dStressMeasurementReference :> TensorMeasurementReference {
        attribute :>> dimensions = (3, 3);
        attribute :>> isBound = false;
        attribute :>> mRefs: StressUnit[9];
    }

    /* ISO-80000-4 item 4-16.1 normal stress */
    attribute def NormalStressValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-16.1 normal stress
         * symbol(s): `σ_n`, `σ`
         * application domain: generic
         * name: NormalStress
         * quantity dimension: L^-1*M^1*T^-2
         * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2
         * tensor order: 0
         * definition: scalar (ISO 80000-2) quantity describing surface action of a force into a body equal to: `σ_n = (d F_n)/(dA)` where `F_n` is the normal component of force (item 4-9.1) and `A` is the area (ISO 80000-3) of the surface element
         * remarks: A couple of mutually opposite forces of magnitude `F` acting on the opposite surfaces of a slice (layer) of homogenous solid matter normal to it, and evenly distributed, cause a constant normal stress `σ_n = F A` in the slice (layer).
         */
        attribute :>> num: Real;
        attribute :>> mRef: NormalStressUnit[1];
    }

    attribute normalStress: NormalStressValue[*] nonunique :> scalarQuantities;

    attribute def NormalStressUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-4 item 4-16.2 shear stress */
    attribute def ShearStressValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-16.2 shear stress
         * symbol(s): `τ_s`, `τ`
         * application domain: generic
         * name: ShearStress
         * quantity dimension: L^-1*M^1*T^-2
         * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2
         * tensor order: 0
         * definition: scalar (ISO 80000-2) quantity describing surface action of a force into a body equal to: `τ_s = (d F_t)/(dA)` where `F_t` is the tangential component of force (item 4-9.1) and `A` is the area (ISO 80000-3) of the surface element
         * remarks: A couple of mutually opposite forces of magnitude `F` acting on the opposite surfaces of a slice (layer) of homogenous solid matter parallel to it, and evenly distributed, cause a constant shear stress `τ = F/A` in the slice (layer).
         */
        attribute :>> num: Real;
        attribute :>> mRef: ShearStressUnit[1];
    }

    attribute shearStress: ShearStressValue[*] nonunique :> scalarQuantities;

    attribute def ShearStressUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-4 item 4-17.1 strain */
    attribute def StrainValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-17.1 strain (magnitude)
         * symbol(s): `ε`
         * application domain: generic
         * name: Strain
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: tensor (ISO 80000-2) quantity representing the deformation of matter caused by stress
         * remarks: Strain tensor is symmetric and has three linear-strain and three shear strain (Cartesian) components.
         */
        attribute :>> num: Real;
        attribute :>> mRef: StrainUnit[1];
    }

    attribute strain: StrainValue[*] nonunique :> scalarQuantities;

    attribute def StrainUnit :> DimensionOneUnit {
    }

    attribute def Cartesian3dStrainTensor :> TensorQuantityValue {
        doc
        /*
         * source: item 4-17.1 strain (tensor)
         * symbol(s): `vec(vec(ε))`
         * application domain: generic
         * name: Strain
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 2
         * definition: tensor (ISO 80000-2) quantity representing the deformation of matter caused by stress
         * remarks: Strain tensor is symmetric and has three linear-strain and three shear strain (Cartesian) components.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[9];
        attribute :>> mRef: Cartesian3dStrainMeasurementReference[1];
    }

    attribute strainTensor: Cartesian3dStrainTensor :> tensorQuantities;

    attribute def Cartesian3dStrainMeasurementReference :> TensorMeasurementReference {
        attribute :>> dimensions = (3, 3);
        attribute :>> isBound = false;
        attribute :>> mRefs: StrainUnit[9];
    }

    /* ISO-80000-4 item 4-17.2 relative linear strain */
    attribute def RelativeLinearStrainValue :> DimensionOneValue {
        doc
        /*
         * source: item 4-17.2 relative linear strain
         * symbol(s): `ε`, `(e)`
         * application domain: generic
         * name: RelativeLinearStrain (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of change in length `Δl` (ISO 80000-3) of an object and its length `l` (ISO 80000-3): `ε = (Δl)/l`
         * remarks: None.
         */
    }
    attribute relativeLinearStrain: RelativeLinearStrainValue :> scalarQuantities;

    /* ISO-80000-4 item 4-17.3 shear strain */
    attribute def ShearStrainValue :> DimensionOneValue {
        doc
        /*
         * source: item 4-17.3 shear strain
         * symbol(s): `γ`
         * application domain: generic
         * name: ShearStrain (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of parallel displacement `Δx` (ISO 80000-3) of two surfaces of a layer and the thickness `d` (ISO 80000-3) of the layer: `γ = (Δx)/d`
         * remarks: None.
         */
    }
    attribute shearStrain: ShearStrainValue :> scalarQuantities;

    /* ISO-80000-4 item 4-17.4 relative volume strain */
    attribute def RelativeVolumeStrainValue :> DimensionOneValue {
        doc
        /*
         * source: item 4-17.4 relative volume strain
         * symbol(s): `θ`
         * application domain: generic
         * name: RelativeVolumeStrain (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of change in volume `ΔV` (ISO 80000-3) of an object and its volume `V_0` (ISO 80000-3): `θ = (ΔV)/V_0`
         * remarks: None.
         */
    }
    attribute relativeVolumeStrain: RelativeVolumeStrainValue :> scalarQuantities;

    /* ISO-80000-4 item 4-18 Poisson number */
    attribute def PoissonNumberValue :> DimensionOneValue {
        doc
        /*
         * source: item 4-18 Poisson number
         * symbol(s): `μ`, `(v)`
         * application domain: generic
         * name: PoissonNumber (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of change in width `Δb` (width is defined in ISO 80000-3) and change in length `Δl` (length is defined in ISO 80000-3) of an object: `μ = (Δb)/(Δl)`
         * remarks: None.
         */
    }
    attribute poissonNumber: PoissonNumberValue :> scalarQuantities;

    /* ISO-80000-4 item 4-19.1 modulus of elasticity, Young modulus */
    attribute def ModulusOfElasticityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-19.1 modulus of elasticity, Young modulus
         * symbol(s): `E`, `E_m`, `Y`
         * application domain: generic
         * name: ModulusOfElasticity
         * quantity dimension: L^-1*M^1*T^-2
         * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2
         * tensor order: 0
         * definition: quotient of normal stress `σ` (item 4-16.1) and relative linear strain `ε` (item 4-17.2): `E = σ/ε`
         * remarks: Conditions should be specified (e.g. adiabatic or isothermal process).
         */
        attribute :>> num: Real;
        attribute :>> mRef: ModulusOfElasticityUnit[1];
    }

    attribute modulusOfElasticity: ModulusOfElasticityValue[*] nonunique :> scalarQuantities;

    attribute def ModulusOfElasticityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    alias YoungModulusUnit for ModulusOfElasticityUnit;
    alias YoungModulusValue for ModulusOfElasticityValue;
    alias youngModulus for modulusOfElasticity;

    /* ISO-80000-4 item 4-19.2 modulus of rigidity, shear modulus */
    attribute def ModulusOfRigidityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-19.2 modulus of rigidity, shear modulus
         * symbol(s): `G`
         * application domain: generic
         * name: ModulusOfRigidity
         * quantity dimension: L^-1*M^1*T^-2
         * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2
         * tensor order: 0
         * definition: quotient of shear stress `τ` (item 4-16.2) and shear strain `γ` (item 4-17.3): `G = τ/γ`
         * remarks: Conditions should be specified (e.g. isentropic or isothermal process).
         */
        attribute :>> num: Real;
        attribute :>> mRef: ModulusOfRigidityUnit[1];
    }

    attribute modulusOfRigidity: ModulusOfRigidityValue[*] nonunique :> scalarQuantities;

    attribute def ModulusOfRigidityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    alias ShearModulusUnit for ModulusOfRigidityUnit;
    alias ShearModulusValue for ModulusOfRigidityValue;
    alias shearModulus for modulusOfRigidity;

    /* ISO-80000-4 item 4-19.3 modulus of compression, bulk modulus */
    attribute def ModulusOfCompressionValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-19.3 modulus of compression, bulk modulus
         * symbol(s): `K`, `K_m`, `B`
         * application domain: generic
         * name: ModulusOfCompression
         * quantity dimension: L^-1*M^1*T^-2
         * measurement unit(s): Pa, N*m^-2, kg*m^-1*s^-2
         * tensor order: 0
         * definition: negative of the quotient of pressure `p` (item 4-14.1) and relative volume strain `θ` (item 4-17.4): `K = -(p/θ)`
         * remarks: Conditions should be specified (e.g. isentropic or isothermal process).
         */
        attribute :>> num: Real;
        attribute :>> mRef: ModulusOfCompressionUnit[1];
    }

    attribute modulusOfCompression: ModulusOfCompressionValue[*] nonunique :> scalarQuantities;

    attribute def ModulusOfCompressionUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    alias BulkModulusUnit for ModulusOfCompressionUnit;
    alias BulkModulusValue for ModulusOfCompressionValue;
    alias bulkModulus for modulusOfCompression;

    /* ISO-80000-4 item 4-20 compressibility */
    attribute def CompressibilityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-20 compressibility
         * symbol(s): `ϰ`
         * application domain: generic
         * name: Compressibility
         * quantity dimension: L^1*M^-1*T^2
         * measurement unit(s): Pa^-1, kg^-1*m*s^2
         * tensor order: 0
         * definition: negative relative change of volume `V` (ISO 80000-3) of an object under pressure `p` (item 4-14.1) expressed by: `ϰ = -(1/V)(dV)/(dp)`
         * remarks: Conditions should be specified (e.g. isentropic or isothermal process). See also ISO 80000-5.
         */
        attribute :>> num: Real;
        attribute :>> mRef: CompressibilityUnit[1];
    }

    attribute compressibility: CompressibilityValue[*] nonunique :> scalarQuantities;

    attribute def CompressibilityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-4 item 4-21.1 second axial moment of area */
    attribute def SecondAxialMomentOfAreaValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-21.1 second axial moment of area
         * symbol(s): `I_a`
         * application domain: generic
         * name: SecondAxialMomentOfArea
         * quantity dimension: L^4
         * measurement unit(s): m^4
         * tensor order: 0
         * definition: geometrical characteristic of a shape of a body equal to: `I_a = int int_M r_Q^2 dA` where `M` is the two-dimensional domain of the cross-section of a plane and considered body, `r_Q` is radial distance (ISO 80000-3) from a Q-axis in the plane of the surface considered and `A` is area (ISO 80000-3)
         * remarks: This quantity is often referred to wrongly as "moment of inertia" (item 4-7). The subscript, `a`, may be omitted when there is no risk of confusion.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SecondAxialMomentOfAreaUnit[1];
    }

    attribute secondAxialMomentOfArea: SecondAxialMomentOfAreaValue[*] nonunique :> scalarQuantities;

    attribute def SecondAxialMomentOfAreaUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 4; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-4 item 4-21.2 second polar moment of area */
    attribute def SecondPolarMomentOfAreaValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-21.2 second polar moment of area
         * symbol(s): `I_p`
         * application domain: generic
         * name: SecondPolarMomentOfArea
         * quantity dimension: L^4
         * measurement unit(s): m^4
         * tensor order: 0
         * definition: geometrical characteristic of a shape of a body equal to: `I_p = int int_M r_Q^2 * dA` where `M` is the two-dimensional domain of the cross-section of a plane and considered body, `r_Q` is radial distance (ISO 80000-3) from a Q-axis perpendicular to the plane of the surface considered and `A` is area (ISO 80000-3)
         * remarks: This quantity is often referred to wrongly as "moment of inertia" (item 4-7). The subscript, `p`, may be omitted when there is no risk of confusion.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SecondPolarMomentOfAreaUnit[1];
    }

    attribute secondPolarMomentOfArea: SecondPolarMomentOfAreaValue[*] nonunique :> scalarQuantities;

    attribute def SecondPolarMomentOfAreaUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 4; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-4 item 4-22 section modulus */
    attribute def SectionModulusValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-22 section modulus
         * symbol(s): `Z`, `(W)`
         * application domain: generic
         * name: SectionModulus
         * quantity dimension: L^3
         * measurement unit(s): m^3
         * tensor order: 0
         * definition: geometrical characteristic of a shape of a body equal to: `Z = I_a/r_(Q_max)` where `I_a` is the second axial moment of area (item 4-21.1) and `r_(Q,max)` is the maximum radial distance (ISO 80000-3) of any point in the surface considered from the Q-axis with respect to which `I_a` is defined
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SectionModulusUnit[1];
    }

    attribute sectionModulus: SectionModulusValue[*] nonunique :> scalarQuantities;

    attribute def SectionModulusUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
    }

    /* ISO-80000-4 item 4-23.1 static friction coefficient, static friction factor, coefficient of static friction */
    attribute def StaticFrictionCoefficientValue :> DimensionOneValue {
        doc
        /*
         * source: item 4-23.1 static friction coefficient, static friction factor, coefficient of static friction
         * symbol(s): `μ_s`, `(f_s)`
         * application domain: generic
         * name: StaticFrictionCoefficient (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: proportionality factor between the maximum magnitude of the tangential component `F_max` of the static friction force (item 4-9.3) and the magnitude of the normal component `N` of the contact force (item 4-9.1) between two bodies at relative rest with respect to each other: `F_max = μ_s * N`
         * remarks: When it is not necessary to distinguish between dynamic friction factor and static friction factor, the name friction factor may be used for both.
         */
    }
    attribute staticFrictionCoefficient: StaticFrictionCoefficientValue :> scalarQuantities;

    alias staticFrictionFactor for staticFrictionCoefficient;

    alias coefficientOfStaticFriction for staticFrictionCoefficient;

    /* ISO-80000-4 item 4-23.2 kinetic friction factor, dynamic friction factor */
    attribute def KineticFrictionFactorValue :> DimensionOneValue {
        doc
        /*
         * source: item 4-23.2 kinetic friction factor, dynamic friction factor
         * symbol(s): `μ`, `(f)`
         * application domain: generic
         * name: KineticFrictionFactor (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: proportionality factor between the magnitudes of the kinetic friction force, `F_μ` (item 4-9.4) and the normal component `N` of the contact force (item 4-9.1): `F_μ = μ * N`
         * remarks: When it is not necessary to distinguish between dynamic friction factor and static friction factor, the name friction factor may be used for both. The dynamic friction factor `µ` is independent in first approximation of the contact surface.
         */
    }
    attribute kineticFrictionFactor: KineticFrictionFactorValue :> scalarQuantities;

    alias dynamicFrictionFactor for kineticFrictionFactor;

    /* ISO-80000-4 item 4-23.3 rolling resistance factor */
    attribute def RollingResistanceFactorValue :> DimensionOneValue {
        doc
        /*
         * source: item 4-23.3 rolling resistance factor
         * symbol(s): `C_"rr"`
         * application domain: generic
         * name: RollingResistanceFactor (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: proportionality factor between the magnitude of the tangential component `F` and the magnitude of the normal component `N` of the force applied to a body rolling on a surface at constant speed: `F = C_(rr)*N`
         * remarks: Also known as rolling resistance coefficient, RRC.
         */
    }
    attribute rollingResistanceFactor: RollingResistanceFactorValue :> scalarQuantities;

    /* ISO-80000-4 item 4-23.4 drag coefficient, drag factor */
    attribute def DragCoefficientValue :> DimensionOneValue {
        doc
        /*
         * source: item 4-23.4 drag coefficient, drag factor
         * symbol(s): `C_D`
         * application domain: generic
         * name: DragCoefficient (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: factor proportional to magnitude `F_D` of the drag force (item 4-9.6) of a body moving in a fluid, dependent on the shape and speed `v` (ISO 80000-3) of a body: `F_D = 1/2 * C_D * ρ * v^2 * A` where `ρ` is mass density (item 4-2) of the fluid and `A` is cross-section area (ISO 80000-3) of the body
         * remarks: None.
         */
    }
    attribute dragCoefficient: DragCoefficientValue :> scalarQuantities;

    alias dragFactor for dragCoefficient;

    /* ISO-80000-4 item 4-24 dynamic viscosity, viscosity */
    attribute def DynamicViscosityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-24 dynamic viscosity, viscosity
         * symbol(s): `η`
         * application domain: generic
         * name: DynamicViscosity
         * quantity dimension: L^-1*M^1*T^-1
         * measurement unit(s): Pa*s, kg*m^-1*s^-1
         * tensor order: 0
         * definition: for laminar flows, proportionality constant between shear stress `τ_(xz)` (item 4-16.2) in a fluid moving with a velocity `v_x` (ISO 80000-3) and gradient `(d v_x)/dz` perpendicular to the plane of shear: `τ_(xz) = η (d v_x)/(dz)`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: DynamicViscosityUnit[1];
    }

    attribute dynamicViscosity: DynamicViscosityValue[*] nonunique :> scalarQuantities;

    attribute def DynamicViscosityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    alias ViscosityUnit for DynamicViscosityUnit;
    alias ViscosityValue for DynamicViscosityValue;
    alias viscosity for dynamicViscosity;

    /* ISO-80000-4 item 4-25 kinematic viscosity */
    attribute def KinematicViscosityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-25 kinematic viscosity
         * symbol(s): `v`
         * application domain: generic
         * name: KinematicViscosity
         * quantity dimension: L^2*T^-1
         * measurement unit(s): m^2*s^-1
         * tensor order: 0
         * definition: quotient of dynamic viscosity `η` (item 4-24) and mass density `ρ` (item 4-2) of a fluid: `v = η/ρ`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: KinematicViscosityUnit[1];
    }

    attribute kinematicViscosity: KinematicViscosityValue[*] nonunique :> scalarQuantities;

    attribute def KinematicViscosityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-4 item 4-26 surface tension */
    attribute def SurfaceTensionValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-26 surface tension
         * symbol(s): `γ`, `σ`
         * application domain: generic
         * name: SurfaceTension
         * quantity dimension: M^1*T^-2
         * measurement unit(s): N*m^-1, kg*s^-2
         * tensor order: 0
         * definition: magnitude of a force acting against the enlargement of area portion of a surface separating a liquid from its surrounding
         * remarks: The concept of surface energy is closely related to surface tension and has the same dimension.
         */
        attribute :>> num: Real;
        attribute :>> mRef: SurfaceTensionUnit[1];
    }

    attribute surfaceTension: SurfaceTensionValue[*] nonunique :> scalarQuantities;

    attribute def SurfaceTensionUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); }
    }

    /* ISO-80000-4 item 4-27.1 power */
    attribute def PowerValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-27.1 power
         * symbol(s): `P`
         * application domain: generic
         * name: Power
         * quantity dimension: L^2*M^1*T^-3
         * measurement unit(s): W, J*s^-1, kg*m^2*s^-3
         * tensor order: 0
         * definition: quotient of energy (ISO 80000-5) and duration (ISO 80000-3)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: PowerUnit[1];
    }

    attribute power: PowerValue[*] nonunique :> scalarQuantities;

    attribute def PowerUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    /* ISO-80000-4 item 4-27 mechanical power */
    attribute mechanicalPower: PowerValue :> scalarQuantities {
        doc
        /*
         * source: item 4-27 mechanical power
         * symbol(s): `P`
         * application domain: mechanics
         * name: MechanicalPower (specializes Power)
         * quantity dimension: L^2*M^1*T^-3
         * measurement unit(s): W, N*m*s^-1, kg*m^2*s^-3
         * tensor order: 0
         * definition: scalar product of force `vec(F)` (item 4-9.1) acting to a body and its velocity `vec(v)` (ISO 80000-3): `P = vec(F) * vec(v)`
         * remarks: None.
         */
    }

    /* ISO-80000-4 item 4-28.1 potential energy */
    attribute potentialEnergy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 4-28.1 potential energy
         * symbol(s): `V`, `E_p`
         * application domain: generic
         * name: PotentialEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, kg*m^2*s^-2
         * tensor order: 0
         * definition: for conservative force `vec(F)`, scalar additive quantity obeying condition `vec(F) = -nabla F`, if it exists
         * remarks: For the definition of energy, see ISO 80000-5. A force is conservative when the force field is irrotational, i.e. `rot(F) = 0` , or `vec(F)` is perpendicular to the speed of the body to ensure `vec(F) * d vec(r) = 0` .
         */
    }

    /* ISO-80000-4 item 4-28.2 kinetic energy */
    attribute kineticEnergy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 4-28.2 kinetic energy
         * symbol(s): `T`, `E_k`
         * application domain: generic
         * name: KineticEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, kg*m^2*s^-2
         * tensor order: 0
         * definition: scalar (ISO 80000-2) quantity characterizing a moving body expressed by: `T = 1/2 m v^2` where `m` is mass (item 4-1) of the body and `v` is its speed (ISO 80000-3)
         * remarks: For the definition of energy, see ISO 80000-5.
         */
    }

    /* ISO-80000-4 item 4-28.3 mechanical energy */
    attribute mechanicalEnergy: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 4-28.3 mechanical energy
         * symbol(s): `E`, `W`
         * application domain: generic
         * name: MechanicalEnergy (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, kg*m^2*s^-2
         * tensor order: 0
         * definition: sum of kinetic energy `T` (item 4-28.2) and potential energy `V` (item 4-28.1): `E = T+V`
         * remarks: The symbols `E` and `W` are also used for other kinds of energy. This definition is understood in a classical way and it does not include thermal motion.
         */
    }

    /* ISO-80000-4 item 4-28.4 mechanical work, work */
    attribute mechanicalWork: EnergyValue :> scalarQuantities {
        doc
        /*
         * source: item 4-28.4 mechanical work, work
         * symbol(s): `A`, `W`
         * application domain: generic
         * name: MechanicalWork (specializes Energy)
         * quantity dimension: L^2*M^1*T^-2
         * measurement unit(s): J, kg*m^2*s^-2
         * tensor order: 0
         * definition: process quantity describing the total action of a force `vec(F)` (item 4-9.1) along a continuous curve `Γ` in three-dimensional space with infinitesimal displacement (ISO 80000-3) `dvec(r)`, as a line integral of their scalar product: `A = int_Γ vec(F) * d vec(r)`
         * remarks: The definition covers the case `A = -int_Γ p*dV` where `Γ` is a curve in the phase space and implies that work generally depends upon `Γ`, and that type of process must be defined (e.g. isentropic or isothermic).
         */
    }

    alias work for mechanicalWork;

    /* ISO-80000-4 item 4-29 mechanical efficiency */
    attribute def MechanicalEfficiencyValue :> DimensionOneValue {
        doc
        /*
         * source: item 4-29 mechanical efficiency
         * symbol(s): `η`
         * application domain: mechanics
         * name: MechanicalEfficiency (specializes DimensionOneQuantity)
         * quantity dimension: 1
         * measurement unit(s): 1
         * tensor order: 0
         * definition: quotient of output power `P_"out"` (item 4-27) from a system and input power `P_"in"` (item 4-27) to this system: `η = P_"out"/P_"in"`
         * remarks: The system must be specified. This quantity is often expressed by the unit percent, symbol %.
         */
    }
    attribute mechanicalEfficiency: MechanicalEfficiencyValue :> scalarQuantities;

    /* ISO-80000-4 item 4-30.1 mass flow */
    attribute def MassFlowValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-30.1 mass flow (magnitude)
         * symbol(s): `j_m`
         * application domain: generic
         * name: MassFlow
         * quantity dimension: L^-2*M^1*T^-1
         * measurement unit(s): kg*m^-2*s^-1
         * tensor order: 0
         * definition: vector (ISO 80000-2) quantity characterizing a flowing fluid by the product of its local mass density `ρ` (item 4-2) and local velocity `vec(v)` (ISO 80000-3): `vec(j_m) = ρ vec(v)`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MassFlowUnit[1];
    }

    attribute massFlow: MassFlowValue[*] nonunique :> scalarQuantities;

    attribute def MassFlowUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

    attribute def Cartesian3dMassFlowVector :> VectorQuantityValue {
        doc
        /*
         * source: item 4-30.1 mass flow (vector)
         * symbol(s): `vec(j_m)`
         * application domain: generic
         * name: MassFlow
         * quantity dimension: L^-2*M^1*T^-1
         * measurement unit(s): kg*m^-2*s^-1
         * tensor order: 1
         * definition: vector (ISO 80000-2) quantity characterizing a flowing fluid by the product of its local mass density `ρ` (item 4-2) and local velocity `vec(v)` (ISO 80000-3): `vec(j_m) = ρ vec(v)`
         * remarks: None.
         */
        attribute :>> isBound = false;
        attribute :>> num: Real[3];
        attribute :>> mRef: Cartesian3dMassFlowCoordinateFrame[1];
    }

    attribute massFlowVector: Cartesian3dMassFlowVector :> vectorQuantities;

    attribute def Cartesian3dMassFlowCoordinateFrame :> VectorMeasurementReference {
        attribute :>> dimensions = 3;
        attribute :>> isBound = false;
        attribute :>> isOrthogonal = true;
        attribute :>> mRefs: MassFlowUnit[3];
    }

    /* ISO-80000-4 item 4-30.2 mass flow rate */
    attribute def MassFlowRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-30.2 mass flow rate
         * symbol(s): `q_m`
         * application domain: generic
         * name: MassFlowRate
         * quantity dimension: M^1*T^-1
         * measurement unit(s): kg*s^-1
         * tensor order: 0
         * definition: scalar (ISO 80000-2) quantity characterizing the total flow through the two-dimensional domain `A` with normal vector `vec(e)_n` of a flowing fluid with mass flow `vec(j)_m` (item 4-30.1) as an integral: `q_m = int int_A vec(j)_m * vec(e)_n dA` where `dA` is the area (ISO 80000-3) of an element of the two-dimensional domain `A`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MassFlowRateUnit[1];
    }

    attribute massFlowRate: MassFlowRateValue[*] nonunique :> scalarQuantities;

    attribute def MassFlowRateUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); }
    }

    /* ISO-80000-4 item 4-30.3 mass change rate */
    attribute def MassChangeRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-30.3 mass change rate
         * symbol(s): `q_m`
         * application domain: generic
         * name: MassChangeRate
         * quantity dimension: M^1*T^-1
         * measurement unit(s): kg*s^-1
         * tensor order: 0
         * definition: rate of increment of mass `m` (item 4-1): `q_m = (dm)/(dt)` where `dm` is the infinitesimal mass (item 4-1) increment and `dt` is the infinitesimal duration (ISO 80000-3)
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: MassChangeRateUnit[1];
    }

    attribute massChangeRate: MassChangeRateValue[*] nonunique :> scalarQuantities;

    attribute def MassChangeRateUnit :> DerivedUnit {
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (massPF, durationPF); }
    }

    /* ISO-80000-4 item 4-31 volume flow rate */
    attribute def VolumeFlowRateValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-31 volume flow rate
         * symbol(s): `q_v`
         * application domain: generic
         * name: VolumeFlowRate
         * quantity dimension: L^3*T^-1
         * measurement unit(s): m^3*s^-1
         * tensor order: 0
         * definition: scalar (ISO 80000-2) quantity characterizing the total flow through the two-dimensional domain `A` with the normal vector `vec(e)_n` of a flowing fluid with velocity `vec(v)` (ISO 80000-3) as an integral: `q_v = int int_A vec(v) * vec(e)_n dA` where `dA` is the area (ISO 80000-3) of an element of the two-dimensional domain `A`
         * remarks: None.
         */
        attribute :>> num: Real;
        attribute :>> mRef: VolumeFlowRateUnit[1];
    }

    attribute volumeFlowRate: VolumeFlowRateValue[*] nonunique :> scalarQuantities;

    attribute def VolumeFlowRateUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
    }

    /* ISO-80000-4 item 4-32 action quantity */
    attribute def ActionQuantityValue :> ScalarQuantityValue {
        doc
        /*
         * source: item 4-32 action quantity
         * symbol(s): `S`
         * application domain: generic
         * name: ActionQuantity
         * quantity dimension: L^2*M^1*T^-1
         * measurement unit(s): J*s, kg*m^2*s^-1
         * tensor order: 0
         * definition: time integral of energy `E` over a time interval `(t_1, t_2)`: `S = int_(t_1)^(t_2) E dt`
         * remarks: The energy may be expressed by a Lagrangian or Hamiltonian function.
         */
        attribute :>> num: Real;
        attribute :>> mRef: ActionQuantityUnit[1];
    }

    attribute actionQuantity: ActionQuantityValue[*] nonunique :> scalarQuantities;

    attribute def ActionQuantityUnit :> DerivedUnit {
        private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
        private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; }
        private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
        attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); }
    }

}